Bone marrow derived circulating endothelial progenitor

Size: px
Start display at page:

Download "Bone marrow derived circulating endothelial progenitor"

Transcription

1 Effects of Granulocyte Colony Stimulating Factor on Functional Activities of Endothelial Progenitor Cells in Patients With Chronic Ischemic Heart Disease Joerg Honold, Ralf Lehmann, Christopher Heeschen, Dirk H. Walter, Birgit Assmus, Ken-Ichiro Sasaki, Hans Martin, Judith Haendeler, Andreas M. Zeiher, Stefanie Dimmeler Objective Bone marrow derived circulating endothelial progenitor cells (EPCs) may contribute to regeneration of infarcted myocardium and enhance neovascularization. Granulocyte colony-stimulating factor (G-CSF) is wellestablished to mobilize hematopoietic stem cells (HSCs) and might, thereby, also increase the pool of endogenously circulating EPC. Therefore, we investigated the effects of G-CSF administration on mobilization and functional activities of blood-derived EPC in patients with chronic ischemic heart disease (CIHD). Methods and Results Sixteen patients with CIHD received 10 g/kg per day subcutaneous G-CSF injection for 5 days. Leukocyte counts, the number of HSCs and EPCs, and the migratory response to VEGF and SDF-1 were analyzed before and after G-CSF-therapy. At day 5 of G-CSF treatment, the number of circulating leukocytes, CD34 CD45 and CD34 CD133 cells was significantly increased. Likewise, G-CSF treatment augmented the numbers of colony forming units with endothelial cell morphology (EC-CFU). However, the functional activity of the EPC as assessed by the migratory response to VEGF and SDF-1 was significantly reduced after G-CSF treatment (P 0.01). Because G-CSF was previously shown to cleave the CXCR4 receptor, we determined the surface expression of the 6H8 epitope of the CXCR4 receptor by fluorescence-activated cell sorter (FACS) analysis. Consistent with the reduced migratory capacity, the surface expression of the functionally active CXCR4 receptor was significantly reduced. To test the functional activity of the cultivated EPCs in vivo, cells were intravenously infused in nude mice after hind limb ischemia. EPCs, which were cultivated before G-CSF administration, increased blood flow recovery and prevented limb necrosis. However, infusion of EPCs, which were isolated 5 days after G-CSF treatment from the same patient, showed a reduced capacity to augment blood flow recovery and to prevent necrosis by 27%. Conclusion G-CSF treatment effectively mobilizes HSCs and EPCs. However, the migratory response to SDF-1 and in vivo capacity of G-CSF-mobilized EPCs was significantly reduced. (Arterioscler Thromb Vasc Biol. 2006;26: ) Key Words: chronic ischemic heart disease endothelial progenitor cells granulocyte colony stimulating factor Bone marrow derived circulating endothelial progenitor cells (EPCs) contribute to regeneration of infarcted myocardium by enhancement of neovascularization and putative paracrine effects such as secretion of pro-angiogenic factors. 1 3 Several studies described the safety, feasibility and beneficial effects of autologous progenitor cell transplantation on left ventricular dysfunction and cardiac remodeling in patients with acute myocardial infarction (AMI) 4 6 and patients with chronic ischemic heart disease (CIHD) Patients with coronary artery disease (CAD) are known to have reduced numbers of ex vivo cultivated EPCs, defined as adherent cells with uptake of diacetylated low-density lipoprotein (LDL) cholesterol and expression of surface markers such as vascular endothelial growth factor (VEGF) receptor 2, von Willebrand factor (vwf) and lectin. 11 Furthermore, the functional activities of progenitor cells in CAD patients are compromised 12 and might thereby limit the potential for neovascularization processes within the myocardium after AMI. Such a numeric and functional impairment of the endogenously circulating EPC pool might also limit the therapeutic effects of further stem cell therapy trials. The granulocyte colony-stimulating factor (G-CSF) is well-established to mobilize hematopoietic stem cells (HSCs) from the bone marrow in patients with hematologic disorders undergoing radiochemotherapy and stem cell transplantation. Thereby, G-CSF activates progenitor cell releasing factors such as neutrophile elastases and matrix-metalloproteinase to release the stem cells from the bone marrow. 13 Within the Original received December 28, 2005; final version accepted July 31, From the Departments of Cardiology and Molecular Cardiology (J.H., R.L., C.H., D.H.W., B.A., K.-I.S., J.H., A.M.Z., S.D.), Internal Medicine III, and Department of Hematology (H.M.), Internal Medicine II, J.W. Goethe University of Frankfurt, Germany. Correspondence to Stefanie Dimmeler, PhD, Department of Molecular Cardiology, Internal Medicine III, J.W. Goethe University of Frankfurt, Theodor-Stern-Kai 7, Frankfurt, Germany. dimmeler@em.uni-frankfurt.de 2006 American Heart Association, Inc. Arterioscler Thromb Vasc Biol. is available at DOI: /01.ATV dd 2238

2 Honold et al G-CSF and Chronic Ischemic Heart Disease 2239 bone marrow, activated elastases were shown to cleave receptors and integrins. Bone marrow stromal cells express vascular cell adhesion molecule (VCAM)-1/CD 106 that adheres to the integrin 4 1 or very late antigen-4 (VLA-4) expressed by HSCs and EPCs. 14 Particularly, the CXCR-4 receptor is cleaved by elastases 15 at its N-terminal extracellular epitope 6H8 leading to an inactivation of the receptor and interruption of the coupling of HSCs and EPCs to the bone marrow 16,17,18 However, the interaction between the chemokine stromalderived factor 1 (SDF-1) and its unique cellular receptor CXCR-4 is crucial not only for retainment in the bone marrow but also for functional properties of EPCs in terms of their neovascularization capacity 19,20. Moreover, it is shown that VEGF as a mediator of postnatal neovascularization transactivates the CXCR4-signaling pathway. Recently, it has been demonstrated that G-CSF can mobilize EPCs not only in healthy subjects, but also in patients at high risk for CAD and patients with documented CAD. 21 In the clinical setting, G-CSF was also used for stem cell mobilization in AMI and CAD patients However, the effects of G-CSF mobilization on functional properties of EPCs needed for neovascularization have not been described so far. Therefore, we investigated the effects of G-CSF-administration on mobilization and functional activities of blood-derived EPCs in patients with CIHD. Materials and Methods Patients and Study Design Sixteen patients with CIHD and significant left ventricular dysfunction under optimized pharmacological therapy were treated with subcutaneous injections of 10 g/kg per day G-CSF (Filgrastim) for 5 subsequent days. Every day, a complete blood count was performed. The patient characteristics are summarized in the Table. The ethics review board of the Hospital of the Johann Wolfgang Goethe University of Frankfurt, Germany, approved the protocol, and the study was conducted in accordance with the Declaration of Helsinki. Written informed consent was obtained from each patient. Isolation, Cultivation, and Characterization of EPCs On day 0 and day 5 of therapy, mononuclear cells (MNCs) were isolated from venous blood via Ficoll density gradient centrifugation and MNCs were plated on fibronectin-coated 24-well dishes in EBM medium containing 20% patient serum with 0.1 mol/l atorvastatin. After 3 days of culture, nonadherent cells were removed by washing with phosphate-buffered saline (PBS) and adherent cells underwent cytochemical analysis for DiLDL uptake as described previously. Colony Assay After 3 days of culture, adherent cells were washed twice with PBS and detached with EDTA; isolated EPCs were seeded in methylcellulose plates (Methocult GF H4434; CellSystems) with 100 ng/ml human recombinant VEGF. Plates were studied under phase-contrast microscopy, and colonies were counted after 14 days of incubation. Colonies that contained a minimum of 50 cells were defined as endothelial cell colony-forming unit (EC-CFU). Flow Cytometry Analysis On day 0 and day 5, a volume of 100 L peripheral blood was incubated for 15 minutes in the dark with monoclonal antibodies against human CD34 (Becton Dickinson), followed by phycoerythrin Baseline Characteristics of the Patients Characteristic n 16 Age, years Male sex, No. (%) 14 (87.5) Body mass index Medical history, No. (%) Hypertension 10 (62.5) Hypercholesterolemia 12 (75) Family history of CAD 8 (50) Diabetes mellitus 2 (12.5) Current smoker 6 (37.5) No. of diseased coronary arteries (%) 1 5 (31.3) 2 3 (18.8) 3 8 (50) Time since myocardial infarction (months) Left ventricular ejection fraction, (%) Lipid profile, mg/dl Total cholesterol LDL cholesterol HDL cholesterol Triglycerides Serum creatinine, mg/dl Current medication, No. (%) Aspirin 16 (100) Clopidogrel 16 (100) Coumarins 0 -Blocker 16 (100) ACE inhibitors/atr-blockers 16 (100) Statins 16 (100) Diuretics 16 (100) Data are mean SE. (PE)-conjugated secondary antibody, with the fluorescein isothiocyanate (FITC)-labeled monoclonal antibodies against human CD45 (Becton Dickinson), with the PE-conjugated monoclonal antibody against human CD133 (Milteny) and an antibody against the N-terminal extracellular domain 6H8 of the CXCR4-receptor (kindly provided by Dr Arenzana-Seisdesdos, Pasteur Institute, Paris). After incubation, cells were lysed, washed with PBS, and fixed in 2% paraformaldehyde before analysis. Migration Assay Isolated EPC were detached using 1 mmol/l EDTA in PBS (ph 7.4), harvested by centrifugation, resuspended in 500 L endothelial basal medium (EBM) and counted; EPCs were then placed in the upper chamber of a modified Boyden chamber assay. The chamber was placed in a 24-well culture dish containing EBM and human recombinant VEGF (50 ng/ml) or SDF-1 (20 ng/ml). After 24 hours incubation at 37 C, the lower side of the filter was washed with PBS and fixed with 2% paraformaldehyde. For quantification, cell nuclei were stained with DAPI. Cells migrating into the lower chamber and attached to the lower side of the filter were counted manually in 3 random microscopic fields. Hindlimb Ischemia Model The neovascularization capacity of EPCs was investigated in a murine model of hindlimb ischemia by use of 8- to 10-week-old

3 2240 Arterioscler Thromb Vasc Biol. October 2006 Figure 1. A, White blood counts on day 0 and day 5 of G-CSF-mobilization reveal a significant increase in numbers of leukocytes after 5 days of G-CSF therapy in all patients (7435/ L / L 7872, n 16, *P 0.01). B, Flow cytometry analysis of peripheral blood cells, normalized to the number of gated events in the leukocyte gate positive for both the stem cell markers CD34 and the earlier marker CD 133 on day 0 and day 5 of G-CSF-mobilization. n 16, *P 0.03, Data are given as mean SEM. C, Flow cytometry analysis of peripheral blood cells, normalized to the number of gated events in the leukocyte gate double positive for the stem cell markers CD 34 and CD 45 on day 0 and day 5 of G-CSF-mobilization. n 16, *P 0.001, data are given as mean SEM. athymic NMRI nude mice (Jackson Laboratory, Bar Harbor) weighing 18 to 22 grams. The proximal portion of the femoral artery including the superficial and the deep branch as well as the distal portion of the saphenous artery and all arterial branches were obliterated with an electrical coagulator. The overlying skin was closed with 3 surgical staples. After 24 hours, EPCs were injected intravenously. Limb Perfusion Measurements After 2 weeks, we measured the perfusion in the ischemic limb (right) and the nonischemic (left) limb with a laser Doppler blood flowmeter (Laser Doppler Perfusion Imager System, moorldi-mark 2; Moor Instruments). Before scanning was initiated, mice were placed on a heating pad at 37 C to minimize variations in temperature. After 2 recordings of laser Doppler color images, the average perfusion of the ischemic and nonischemic limb were calculated on the basis of colored histogram pixels. Calculated perfusion was expressed as the ratio of ischemic to nonischemic hindlimb perfusion. Statistical Analysis All data are presented as mean SD. Continuous variables were compared by means of Student t test or Mann-Whitney U test. P 0.05 was considered significant. All statistical analysis was performed using SPSS for Windows Results Efficiency of G-CSF Mobilization in CAD Patients To evaluate the efficiency of G-CSF for mobilization of HSCs in patients with CIHD, 16 patients with documented CAD, reduced left ventricular function and optimized pharmacological treatment (for patient characteristics see the Table) received Filgrastim doses of 10 g/kg for 5 subsequent days. The described side effects of this treatment like headache and skeletal pain relieved after analgetic therapy. Before the first G-CSF-dose and on day 5 of treatment, venous blood was drawn and examined in a routine white blood count for the increase of leukocytes. Figure 1A illustrates the increase of patient leukocytes before and after G-CSF-treatment from / L blood versus / L blood (P 0.01). To evaluate the mobilization of hematopoietic stem cells, flow cytometry analysis of the patient peripheral blood was performed for the hematopoietic stem cell markers CD34, CD45, and the early marker CD133. After G-CSF treatment, the numbers of circulating CD34 CD133 cells (Figure 1B) and circulating CD34 CD45 cells (Figure 1C) increased significantly by 435% and 185%, respectively. To determine the specific mobilization of endothelial progenitor cells by G-CSF, EPCs were cultivated from mononuclear cells isolated on day 0 and on day 5 of G-CSF administration. Adherent EPCs were characterized by DiLDL uptake and were counted. As illustrated in Figure 2A, the numbers of cultivated and harvested EPC per L blood significantly increased after G-CSF treatment. The influence of G-CSF on the colony forming capacity was investigated before and after G-CSF-mobilization of the same patients. The colony forming capacity of mobilized EPCs, determined as cell clusters with endothelial morphology after 14 days in a methylcellulose assay, increased significantly by 196% (Figure 2B). Effects of G-CSF on the Migration Capacity In Vitro The functional capacity of G-CSF mobilized EPCs was determined in vitro in a modified Boyden chamber assay, using SDF-1 and VEGF as physiological chemoattractants for EPCs to migrate to sites of ischemia. The migratory response to both SDF-1 and VEGF gradients of G-CSF mobilized EPCs was profoundly impaired (see Figure 3A and 3B), compared with the same patient s cells cultivated before therapy. Figure 2. A, Numbers of cultivated EPC in patients on day 0 and day 5 of G-CSF therapy. The ratio of cultivated EPC / L venous blood was determined. n 7, *P Data are given as mean SEM. B, Colony forming capacity of nonmobilized and G-CSF-mobilized EPCs from the same patients cultivated on day 0 and day 5 of therapy, as shown by scoring colonyforming-units. n 13, *P Data are given as mean SEM.

4 Honold et al G-CSF and Chronic Ischemic Heart Disease 2241 Figure 3. A and B, Migratory activity of nonmobilized and G-CSF-mobilized EPC derived from the same patients in a modified Boyden chamber assay using VEGF and SDF-1 as chemoattractant shows significant impairment of migration toward both the VEGF and SDF-1 gradient after mobilization. n 15, *P Data are given as mean SEM. C, Flow cytometry analysis of the functional N-terminal epitope 6 H 8 of the CXCR4-receptor on cultivated EPC before and after G-CSF treatment: the number of cells expressing the epitope 6H8decreases significantly after G-CSF-mobilization. n 9, *P Data are given as mean SEM. D, Flow cytometry analysis of peripheral blood before and after G-CSF-treatment, normalized to the number of gated events for CXCR4 6H8 cells: in peripheral blood, a similar loss of the epitope 6H8 in CXCR4 cells than in cultivated EPC was observed (n 7, data are given as mean SEM, *P 0.02). The CXCR4 receptor plays a crucial role for migration of HSCs and EPCs. Therefore, we investigated whether a cleavage and subsequent reduction of the CXCR4 receptor may contribute to the migration impairment observed in patients after G-CSF administration. Indeed, the number of EPC expressing the CXCR4 epitope 6H8 was significantly reduced in EPCs isolated from patients after G-CSF administration (Figure 3C), suggesting that the G-CSF treatment may impair the functional expression of the CXCR4 receptor on EPC. Additionally, FACS analysis of circulating noncultivated cells showed a decrease in the epitope 6H8 in CXCR4 cells to a similar extent as analysis of cultured EPC (Figure 3D). These data indicate that G-CSF treatment stimulates the cleavage of the CXCR4-receptor epitope 6H8, which is important for the functional activity of the CXCR4 receptor. To exclude that G-CSF directly influences EPC migration, we directly added G-CSF in equivalent doses to ex vivo cultivated EPC. However, the direct addition of G-CSF to EPC ex vivo did not affect the migratory capacity of EPC ( migrated EPC/high power field cultivated without G-CSF versus migrated EPC/high power field cultivated with G-CSF enriched medium, mean SEM, n 12, P NS) supporting the assumption that in vivo CXCR4 receptor cleavage by G-CSF-induced activation of bone marrow residing proteases contributes to EPC impairment. Effects of G-CSF on the Neovascularization Capacity In Vivo A reduced migratory capacity of bone marrow derived mononuclear cells is associated with an impaired capacity of the cells to improve neovascularization in animal models. 12 Moreover, ex vivo migration of bone marrow derived cells or EPC correlates with functional recovery of patients after cell therapy. 26 Therefore, we investigated the neovascularization improvement of EPCs isolated before and after G-CSF administration by using a hind limb ischemia model. Infusion of EPCs from patients before G-CSF administration reduced the number of necrotic limbs 2 weeks after ischemia, compared with mice without cell therapy. 12 However, the incidence of toe or limb necrosis was significantly higher when similar numbers of EPC from patients after G-CSF treatment were infused into the mice (Figure 4A). Likewise, the Laser Doppler-derived measurement of recovery of blood flow showed a slight, but significant decrease when G-CSFmobilized EPCs were infused, compared with blood flow recovery after infusion of nonmobilized EPC from the same patients (Figure 4B). Discussion The present study describes the effects of G-CSF on the mobilization and function of circulating progenitor cells. The investigated patients with CAD and impaired left ventricular Figure 4. A, Number of gangrenic amputations in animals that received mobilized EPC compared with animals treated with nonmobilized EPC, *P 0.05, n 10). B, Laser Doppler-derived blood flow 14 days after intravenous infusion of cultivated nonmobilized and mobilized EPCs from the same patients (n 10) before and after G-CSF-administration, *P 0.05, data are given as mean SEM.

5 2242 Arterioscler Thromb Vasc Biol. October 2006 function were treated with a state-of-the-art pharmacotherapy including statins, ACE-inhibitors and beta-blockers, excluding an intrinsic mobilization effect initiated by statins as described. 27,28 Consistent with findings from other groups, we could show that G-CSF leads to a mobilization of CD34 or CD133 progenitor cells from the bone marrow in CAD patients 21 with left ventricular dysfunction. We demonstrated that the number of cultivated endothelial progenitor cells and their clonal capacity significantly increased after G-CSF administration, indicating a potential use of G-CSF in cellbased studies for cardiac repair. Our next goal was to investigate whether G-CSF leads to an alteration of the functional properties of EPCs. Therefore, we tested the migratory capacity toward the chemoattractant factors SDF-1 and VEGF, which are believed to play an important role for in vivo homing of EPCs to ischemic tissues However, VEGF-induced and SDF-1 induced migration of EPCs isolated from G-CSF mobilized patients was significantly reduced. Moreover, we demonstrated a significant reduction of the 6H8 epitope of the CXCR4 receptors on EPCs cultivated from G-CSF treated patients. Because the cleavage of the 6H8 epitope by G-CSF activated proteases in vivo reduces the functional activity of CXCR4, one may envision that the impairment of the CXCR4 receptor signaling underlines the inhibition of EPC migration after G-CSF treatment. The reduced response toward VEGF might be rationalized by the finding, that the CXCR4 receptor is transactivated by other growth factor receptors. Indeed, the addition of CXCR4 neutralizing antibodies also impaired the response of EPC toward VEGF, 32 suggesting that the G-CSF-mediated activation of proteases leading to cleavage of the CXCR4 receptor in vivo might be the reason for the functionally impaired response of ex vivo cultivated EPC toward SDF-1 and VEGF. However, we cannot rule out that EPCs from G-CSF mobilized patients exhibit additional signaling defects. Because G-CSF did not affect the migratory response of EPC in vitro, we at least can exclude a direct negative effect of G-CSF on EPC function. Consistent with the migration impairment, EPCs from patients after G-CSF treatment showed a significant lower capacity to augment blood flow after ischemia despite a higher clonal expansion capacity. Because the migration capacity correlates with in vivo homing and incorporation of progenitor cells to sites of ischemia and might represent a predictor for the clinical outcome of cell therapy-treated patients, 27 one may argue that G-CSF mobilized EPCs may exhibit a reduced recruitment to the ischemic tissue. However, the results of recent clinical trials using G-CSF for treatment of patients with acute myocardial infarction demonstrating no effect of G-CSF on functional improvement may support this assumption. 33 Whether this G-CSF mobilization-induced impairment of functional capacities of EPC indeed leads to an attenuation of improvement in cardiac function in CAD patients after cell therapy remains to be elucidated. The use of other mobilizing substances, such as AMD3100, which lack a negative influence on the migratory capacity of circulating progenitor cells 34 may be a preferred option for future treatment of ischemic disease. Acknowledgments We acknowledge the expert technical assistance of Tina Rasper. Sources of Funding This work was supported by a research grant from the Deutsche Forschungsgemeinschaft (Wa 1461/2-1) to Dirk H. Walter and Andreas M. Zeiher and the Leducq Foundation. None Disclosures References 1. Anversa P, Nadal-Ginard B. Myocyte renewal and ventricular remodelling. Nature. 2002;415: Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal- Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A. 2001;98: Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7: Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, Grunwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation. 2002;106: Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002;106: Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H. Intracoronary autologous bonemarrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364: Erbs S, Linke A, Adams V, Lenk K, Thiele H, Diederich KW, Emmrich F, Kluge R, Kendziorra K, Sabri O, Schuler G, Hambrecht R. Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res. 2005;97: Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, Rossi MI, Carvalho AC, Dutra HS, Dohmann HJ, Silva GV, Belem L, Vivacqua R, Rangel FO, Esporcatte R, Geng YJ, Vaughn WK, Assad JA, Mesquita ET, Willerson JT. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation. 2003;107: Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet. 2003;361: Fuchs S, Satler LF, Kornowski R, Okubagzi P, Weisz G, Baffour R, Waksman R, Weissman NJ, Cerqueira M, Leon MB, Epstein SE. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J Am Coll Cardiol. 2003;41: Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89:E1 E Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A, Walter DH, Martin H, Zeiher AM, Dimmeler S. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation. 2004;109: Shier LR, Schultz KR, Imren S, Regan J, Issekutz A, Sadek I, Gilman A, Luo Z, Panzarella T, Eaves CJ, Couban S. Differential effects of granulocyte colony-stimulating factor on marrow- and blood-derived hematopoietic and immune cell populations in healthy human donors. Biol Blood Marrow Transplant. 2004;10: Chavakis E, Aicher A, Heeschen C, Sasaki KI, Kaiser R, El Makhfi N, Urbich C, Peters T, Scharffetter-Kochanek K, Zeiher AM, Chavakis T, Dimmeler S. Role of {beta}2-integrins for homing and neovascular-

6 Honold et al G-CSF and Chronic Ischemic Heart Disease 2243 ization capacity of endothelial progenitor cells. J Exp Med. 2005;201: Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002;109: Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood. 2001;98: Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest. 2003;111: Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol. 2002;30: Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med. 1999;5: Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD, DiCorleto PE, Topol EJ, Penn MS. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003;362: Powell TM, Paul JD, Hill JM, Thompson M, Benjamin M, Rodrigo M, McCoy JP, Read EJ, Khuu HM, Leitman SF, Finkel T, Cannon RO 3rd. Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2005;25: Kang HJ, Kim HS, Zhang SY, Park KW, Cho HJ, Koo BK, Kim YJ, Soo Lee D, Sohn DW, Han KS, Oh BH, Lee MM, Park YB. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet. 2004;363: Boyle AJ, Whitbourn R, Schlicht S, Krum H, Kocher A, Nandurkar H, Bergmann S, Daniell M, O Day J, Skerrett D, Haylock D, Gilbert RE, Itescu S. Intra-coronary high-dose CD34 stem cells in patients with chronic ischemic heart disease: A 12-month follow-up. Int J Cardiol. 2006;109: Wang Y, Tagil K, Ripa RS, Nilsson JC, Carstensen S, Jorgensen E, Sondergaard L, Hesse B, Johnsen HE, Kastrup J. Effect of mobilization of bone marrow stem cells by granulocyte colony stimulating factor on clinical symptoms, left ventricular perfusion and function in patients with severe chronic ischemic heart disease. Int J Cardiol. 2005;100: Ince H, Petzsch M, Kleine HD, Eckard H, Rehders T, Burska D, Kische S, Freund M, Nienaber CA. Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINE-AMI) Trial. Circulation. 2005; 112:I73 I Britten MB, Abolmaali ND, Assmus B, Lehmann R, Honold J, Schmitt J, Vogl TJ, Martin H, Schachinger V, Dimmeler S, Zeiher AM. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation. 2003; 108: Vasa M, Fichtlscherer S, Adler K, Mildner-Rihm C, Aicher A, Martin H, Zeiher AM, Dimmeler S. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation. 2001;103: Assmus B, Urbich C, Aicher A, Hofmann WK, Haendeler J, Rossig L, Spyridopoulos I, Zeiher AM, Dimmeler S. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res. 2003;92: Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation. 2003;107: Murayama T, Tepper OM, Silver M, Ma H, Losordo DW, Isner JM, Asahara T, Kalka C. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol. 2002;30: Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 2004;110: Walter DH, Haendeler J, Reinhold J, Rochwalsky U, Seeger F, Honold J, Hoffmann J, Urbich C, Lehmann R, Arenzana-Seisdesdos F, Aicher A, Heeschen C, Fichtlscherer S, Zeiher AM, Dimmeler S. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res. 2005;97: Zohlnhofer D, Ott I, Mehilli J, Schomig K, Michalk F, Ibrahim T, Meisetschlager G, von Wedel J, Bollwein H, Seyfarth M, Dirschinger J, Schmitt C, Schwaiger M, Kastrati A, Schomig A. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA. 2006;295: Larochelle A, Krouse A, Metzger M, Orlic D, Donahue RE, Fricker S, Bridger G, Dunbar CE, Hematti P. AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in nonhuman primates. Blood. 2006;107:

Supplemental Table 1 Clinical trials of cell-based cardiac repair without controls or with nonrandomized study design

Supplemental Table 1 Clinical trials of cell-based cardiac repair without controls or with nonrandomized study design Cell-Based Therapy for Myocar Ischemia and Infarction: Pathophysiological Mechanisms Supplemental Table 1 Clinical trials of cell-based cardiac repair without s or with nonrandom study design Head-tohead

More information

Stem Cells. Keith Channon. Department of Cardiovascular Medicine University of Oxford John Radcliffe Hospital, Oxford

Stem Cells. Keith Channon. Department of Cardiovascular Medicine University of Oxford John Radcliffe Hospital, Oxford Stem Cells Keith Channon Department of Cardiovascular Medicine University of Oxford John Radcliffe Hospital, Oxford Adult Stem Cells Unique cells that are capable of self-renewal Have the ability to differentiate

More information

Progenitor cells circulate in the bloodstream, with the

Progenitor cells circulate in the bloodstream, with the Granulocyte Colony-Stimulating Factor Mobilizes Functional Endothelial Progenitor Cells in Patients With Coronary Artery Disease Tiffany M. Powell, Jonathan D. Paul, Jonathan M. Hill, Michael Thompson,

More information

CD34+ Cells: A Comparison of Stem and Progenitor Cells in Cord Blood, Peripheral Blood, and the Bone Marrow

CD34+ Cells: A Comparison of Stem and Progenitor Cells in Cord Blood, Peripheral Blood, and the Bone Marrow White Paper September 2016 CD34+ Cells: A Comparison of Stem and Progenitor Cells in Cord Blood, Peripheral Blood, and the Bone Marrow Lily C. Trajman, PhD Introduction: Hematopoietic Stem Cells (HSCs)

More information

Stem cell therapy of cardiac disease: an update

Stem cell therapy of cardiac disease: an update Nephrol Dial Transplant (2004) 19: Editorial Comments 1673 PS analyses, the authors found that the results between these two techniques were not materially different in most of these studies. Even if the

More information

Impaired potency of bone marrow mononuclear cells for inducing therapeutic angiogenesis in obese diabetic rats

Impaired potency of bone marrow mononuclear cells for inducing therapeutic angiogenesis in obese diabetic rats Am J Physiol Heart Circ Physiol 290: H1362 H1369, 2006. First published October 14, 2005; doi:10.1152/ajpheart.00766.2005. CALL FOR PAPERS Regulation and Function of Stem Cells in the Cardiovascular System

More information

Mr S. is a 62-year-old restaurant owner who has had

Mr S. is a 62-year-old restaurant owner who has had Brief Review: From Bench to Bedside Endothelial Progenitor Cells New Hope for a Broken Heart Paul E. Szmitko, BSc; Paul W.M. Fedak, MD; Richard D. Weisel, MD; Duncan J. Stewart, MD; Michael J.B. Kutryk,

More information

Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy

Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy Massimiliano Gnecchi, Zhiping Zhang, Aiguo Ni, Victor J. Dzau Circulation Research 2008 Nov 21;103(11):1204-19 Introduction(1) After AMI all

More information

Update on stem cells in cardiovascular disease

Update on stem cells in cardiovascular disease Andreas M. Zeiher, MD Dept. of Internal Medicine III University of Frankfurt Germany Update on stem cells in cardiovascular disease Cardiology Forum 2010, Rome, 05 / 2010 Disclosure information: Guidant

More information

Cell Therapy Update what have we learned from clinical trials?

Cell Therapy Update what have we learned from clinical trials? Andreas M. Zeiher, MD Dept. of Internal Medicine III University of Frankfurt Germany Cell Therapy Update what have we learned from clinical trials? Cardiology Update 2011, Davos, 2 / 2011 Disclosure information:

More information

Reprogramming through micrornas Stefanie Dimmeler

Reprogramming through micrornas Stefanie Dimmeler Klinikum der Johann Wolfgang Goethe Universität Frankfurt am Main Reprogramming through micrornas Stefanie Dimmeler Conflict of interest: T2cure GmbH, Miragen Non-coding DNA & RNA and micrornas Human Genome

More information

Endothelial Injury and Repair as a Working Paradigm

Endothelial Injury and Repair as a Working Paradigm Endothelial Injury and Repair as a Working Paradigm A. Linke ESC Meeting 2010 UNIVERSITÄTLEIPZIG H ERZZEN TRUM Physiology of Endothelial Function: Regulation of Vascular Tone L-Arg. L-Arg. Agonists Shear

More information

The identification of various types of bone marrow

The identification of various types of bone marrow Priming With Angiopoietin-1 Augments the Vasculogenic Potential of the Peripheral Blood Stem Cells Mobilized With Granulocyte Colony-Stimulating Factor Through a Novel Tie2/Ets-1 Pathway Min-Seok Kim,

More information

Mesenchymal Stem Cells to Repair Vascular Damage after Chemotherapy: Past, Present and Future

Mesenchymal Stem Cells to Repair Vascular Damage after Chemotherapy: Past, Present and Future Mesenchymal Stem Cells to Repair Vascular Damage after Chemotherapy: Past, Present and Future Cell Therapy 2014 Las Vegas, NV, USA Sulaiman Al-Hashmi, PhD Sultan Qaboos University Oman What are MSCs? Stem

More information

Since endothelial progenitor cells (EPCs) were identified. Molecular Cardiology

Since endothelial progenitor cells (EPCs) were identified. Molecular Cardiology Molecular Cardiology CD34-Positive Cells Exhibit Increased Potency and Safety for Therapeutic Neovascularization After Myocardial Infarction Compared With Total Mononuclear Cells Atsuhiko Kawamoto, MD,

More information

Transcoronary Transplantation of Progenitor Cells after Myocardial Infarction

Transcoronary Transplantation of Progenitor Cells after Myocardial Infarction The new england journal of medicine original article Transcoronary Transplantation of Progenitor Cells after Myocardial Infarction Birgit Assmus, M.D., Jörg Honold, M.D., Volker Schächinger, M.D., Martina

More information

Stem Cell Mobilization by Granulocyte Colony-Stimulating Factor for Myocardial Recovery After Acute Myocardial Infarction

Stem Cell Mobilization by Granulocyte Colony-Stimulating Factor for Myocardial Recovery After Acute Myocardial Infarction Journal of the American College of Cardiology Vol. 51, No. 15, 2008 2008 by the American College of Cardiology Foundation ISSN 0735-1097/08/$34.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2007.11.073

More information

Relationship between perioperative cardiovascular risk factors and bone marrow cells from patients undergoing coronary artery bypass grafting surgery

Relationship between perioperative cardiovascular risk factors and bone marrow cells from patients undergoing coronary artery bypass grafting surgery Relationship between perioperative cardiovascular risk factors and bone marrow cells from patients undergoing coronary artery bypass grafting surgery L. Zhang*, R. Wang*, C.-S. Xiao, Y. Wu and C.-Q. Gao

More information

No option-patients : Is angiogenesis with gene or cell therapy still an option?

No option-patients : Is angiogenesis with gene or cell therapy still an option? No option-patients : Is angiogenesis with gene or cell therapy still an option? Professor Sigrid Nikol Clinical and Interventional Angiology Asklepios-Klinik St. Georg Hamburg, Germany Angiogenic gene

More information

Autologous bone marrow stem cell transplantation,

Autologous bone marrow stem cell transplantation, Tissue Distribution of F-FDG-Labeled Peripheral Hematopoietic Stem Cells After Intracoronary Administration in Patients with Myocardial Infarction Won Jun Kang 1, Hyun-Jae Kang 2, Hyo-Soo Kim 2, June-Key

More information

Vitamin C Reversed Malfunction of Peripheral Blood-Derived Mononuclear Cells in Smokers Through Antioxidant Properties

Vitamin C Reversed Malfunction of Peripheral Blood-Derived Mononuclear Cells in Smokers Through Antioxidant Properties Circ J 2008; 72: 654 659 Vitamin C Reversed Malfunction of Peripheral Blood-Derived Mononuclear Cells in Smokers Through Antioxidant Properties Yoshiaki Takeshita, MD; Yoshio Katsuki, MD; Yousuke Katsuda,

More information

Chapter. Department of Cardiology, 2 Department of Nuclear Medicine and the 3

Chapter. Department of Cardiology, 2 Department of Nuclear Medicine and the 3 Chapter 9 Saskia L.M.A. Beeres 1 Jeroen J. Bax 1 Petra Dibbets-Schneider 2 Marcel P.M. Stokkel 2 Willem E. Fibbe 3 Ernst E. van der Wall 1 Martin J. Schalij 1 Douwe E. Atsma 1 1 Department of Cardiology,

More information

ENDOTHELIAL PROGENITOR CELLS AS A NOVEL BIOMARKER OF VASCULAR HEALTH

ENDOTHELIAL PROGENITOR CELLS AS A NOVEL BIOMARKER OF VASCULAR HEALTH ENDOTHELIAL PROGENITOR CELLS AS A NOVEL BIOMARKER OF VASCULAR HEALTH I Jialal, MD, PhD. FRCPath.DABCC Robert E. Stowell Chair in Experimental Pathology Professor of Pathology and Medicine Director, Laboratory

More information

Catheter-Based Transendocardial. Autologous Bone-Marrow- Derived Mononuclear Cells

Catheter-Based Transendocardial. Autologous Bone-Marrow- Derived Mononuclear Cells Clinical Investigation Guilherme V. Silva, MD* Emerson C. Perin, MD, PhD* Hans F.R. Dohmann, MD* Radovan Borojevic, PhD Suzana A. Silva, MD Andre L.S. Sousa, MD Joao A.R. Assad, MD William K. Vaughn, PhD

More information

Protocol. Progenitor Cell Therapy for the Treatment of Damaged Myocardium Due to Ischemia

Protocol. Progenitor Cell Therapy for the Treatment of Damaged Myocardium Due to Ischemia (20218) Medical Benefit Effective Date: 01/01/11 Next Review Date: 07/15 Preauthorization No Review Dates: 09/10, 07/11, 07/12, 07/13, 07/14 The following Protocol contains medical necessity criteria that

More information

Endothelial progenitor cells (EPCs) are

Endothelial progenitor cells (EPCs) are Separation and identification of endothelial progenitor cells from rat peripheral blood Si-Lin Pan, Quan-Sheng Xing, Long Sun Qingdao, China 50 Background: Kawasaki disease (KD) as the most commonly acquired

More information

Transplant of autologous bone marrow stem cells in ischemic heart disease

Transplant of autologous bone marrow stem cells in ischemic heart disease 22 I. Jaafar et al. / Brunei Darussalam Journal of Health Volume 1, 2006 Transplant of autologous bone marrow stem cells in ischemic heart disease Isham Jaafar 1,6, Reiji Hattori¹, Azhari Yakub¹, Jeswant

More information

Stem Cell Therapy for Ischemic Heart Disease : A Status Report

Stem Cell Therapy for Ischemic Heart Disease : A Status Report Stem Cell Therapy for Ischemic Heart Disease : A Status Report Do Sun Lim, M.D. Department of Internal Medicine Korea University College of Medicine Anam Hospital E mail : dslmd@kumc.or.kr Abstract Myocardial

More information

Journal of the American College of Cardiology Vol. 44, No. 8, by the American College of Cardiology Foundation ISSN /04/$30.

Journal of the American College of Cardiology Vol. 44, No. 8, by the American College of Cardiology Foundation ISSN /04/$30. Journal of the American College of Cardiology Vol. 44, No. 8, 2004 2004 by the American College of Cardiology Foundation ISSN 0735-1097/04/$30.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2004.08.014

More information

Myocardial infarction

Myocardial infarction NEW CARDIAC MARKERS AND CARDIAC REGENERATION Päivi Lakkisto, MD, PhD Specialist in Clinical Chemistry Clinical lecturer University of Helsinki and HUSLAB Minerva Institute for Medical Research Myocardial

More information

Synergistic Effect of Bone Marrow Mobilization and Vascular Endothelial Growth Factor-2 Gene Therapy in Myocardial Ischemia

Synergistic Effect of Bone Marrow Mobilization and Vascular Endothelial Growth Factor-2 Gene Therapy in Myocardial Ischemia Synergistic Effect of Bone Marrow Mobilization and Vascular Endothelial Growth Factor-2 Gene Therapy in Myocardial Ischemia Atsuhiko Kawamoto, MD, PhD*; Toshinori Murayama, MD, PhD*; Kengo Kusano, MD,

More information

DECLARATION OF CONFLICT OF INTEREST. No conflicts of interest

DECLARATION OF CONFLICT OF INTEREST. No conflicts of interest DECLARATION OF CONFLICT OF INTEREST No conflicts of interest University Heart Centre Tübingen Angiogenic actions of platelets Meinrad Gawaz, MD, FESC Tübingen, Germany ESC 2011 Paris GPIb GPIb GPVI TxA2

More information

Protocol. Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia

Protocol. Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia (20218) Medical Benefit Effective Date: 01/01/11 Next Review Date: 07/18 Preauthorization No Review Dates: 09/10, 07/11, 07/12, 07/13, 07/14, 07/15, 07/16, 07/17 This protocol considers this test or procedure

More information

Bone Marrow Resident and Circulating Progenitor Cells in Patients Undergoing Cardiac Surgery

Bone Marrow Resident and Circulating Progenitor Cells in Patients Undergoing Cardiac Surgery Bone Marrow Resident and Circulating Progenitor Cells in Patients Undergoing Cardiac Surgery Olena Dotsenko, MD, Qingzhong Xiao, PhD, Qingbo Xu, PhD, and Marjan Jahangiri, FRCS Department of Cardiothoracic

More information

ENDOGENOUS CARDIAC STEM CELLS IN THE REGENERATION OF ACUTE AND CHRONIC ISCHEMIC MYOCARDIUM

ENDOGENOUS CARDIAC STEM CELLS IN THE REGENERATION OF ACUTE AND CHRONIC ISCHEMIC MYOCARDIUM ENDOGENOUS CARDIAC STEM CELLS IN THE REGENERATION OF ACUTE AND CHRONIC ISCHEMIC MYOCARDIUM Bernardo Nadal-Ginard, M.D., Ph.D. New York Medical College Angioplasty Summit 2004, Seoul 04/29/04 MYOCARDIAL

More information

FEP Medical Policy Manual

FEP Medical Policy Manual FEP Medical Policy Manual Effective Date: October 15, 2018 Related Policies: 8.01.52 Orthopedic Applications of Stem Cell Therapy (Including Allografts and Bone Substitutes Used With Autologous Bone Marrow)

More information

JACC: CARDIOVASCULAR INTERVENTIONS VOL. 4, NO. 8, PUBLISHED BY ELSEVIER INC. DOI: /j.jcin

JACC: CARDIOVASCULAR INTERVENTIONS VOL. 4, NO. 8, PUBLISHED BY ELSEVIER INC. DOI: /j.jcin JACC: CARDIOVASCULAR INTERVENTIONS VOL. 4, NO. 8, 2011 2011 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION ISSN 1936-8798/$36.00 PUBLISHED BY ELSEVIER INC. DOI: 10.1016/j.jcin.2011.05.005 Recovery of

More information

Cardiac Myocytes are Recruited by Bone Marrow-Derived Cells in Intact Murine Heart

Cardiac Myocytes are Recruited by Bone Marrow-Derived Cells in Intact Murine Heart Kobe J. Med. Sci., Vol. 48, No. 6, pp. 161-166, 2002 Cardiac Myocytes are Recruited by Bone Marrow-Derived Cells in Intact Murine Heart SEIMI SATOMI-KOBAYASHI 1, SEINOSUKE KAWASHIMA 1*, TSUYOSHI SAKODA

More information

Coronary artery disease (CAD) remains a major cause of

Coronary artery disease (CAD) remains a major cause of Improved Exercise Capacity and Ischemia 6 and 12 Months After Transendocardial Injection of Autologous Bone Marrow Mononuclear Cells for Ischemic Cardiomyopathy Emerson C. Perin, MD, PhD*; Hans F.R. Dohmann,

More information

SDF-1/CXCR4 Axis on Endothelial Progenitor Cells Regulates Bone Fracture Healing

SDF-1/CXCR4 Axis on Endothelial Progenitor Cells Regulates Bone Fracture Healing SDF-1/CXCR4 Axis on Endothelial Progenitor Cells Regulates Bone Fracture Healing Yohei Kawakami, M.D., Ph.D. 1,2, Masaaki Ii 3, Tomoyuki Matsumoto, M.D., Ph.D. 1, Astuhiko Kawamoto, M.D., Ph.D. 2, Yutaka

More information

Innovation Interlude: Molecular Imaging in Cardiology. Celestial Doppelgangers and Relativity

Innovation Interlude: Molecular Imaging in Cardiology. Celestial Doppelgangers and Relativity Innovation Interlude: Molecular Imaging in Cardiology Jonathan R. Lindner, M.D. M. Lowell Edwards Professor of Cardiology Knight Cardiovascular Institute Oregon National Primate Research Center Oregon

More information

Dual stem cell comprising administration of G-CSF and Sitagliptin improves stem cell homing, cardiac function and survival after MI in mice

Dual stem cell comprising administration of G-CSF and Sitagliptin improves stem cell homing, cardiac function and survival after MI in mice Dual stem cell comprising administration of G-CSF and Sitagliptin improves stem cell homing, cardiac function and survival after MI in mice Hans D Theiss, Lisa Krieg, Marcus Vallaster, Josef Mueller- Hoecker

More information

Journal Club Semmler Lorenz

Journal Club Semmler Lorenz Beer et al. 2015 - Analysis of the Secretome of Apoptotic Peripheral Blood Mononuclear Cells: Impact of Released Proteins and Exosomes for Tissue Regeneration Journal Club 13.11.2017 1 Introduction to

More information

Circulating Endothelial Progenitor Cells and Cardiovascular Outcomes

Circulating Endothelial Progenitor Cells and Cardiovascular Outcomes original article Circulating Endothelial Progenitor Cells and Cardiovascular Outcomes Nikos Werner, M.D., Sonja Kosiol, M.D., Tobias Schiegl, M.D., Patrick Ahlers, M.D., Katrin Walenta, M.D., Andreas Link,

More information

Growth-factor-induced mobilisation of stem cells after acute infarction: which growth factors and when?

Growth-factor-induced mobilisation of stem cells after acute infarction: which growth factors and when? Growth-factor-induced mobilisation of stem cells after acute infarction: which growth factors and when? Giulio Pompilio MD PhD DEPT. OF CARDIOVASCULAR SURGERY LABORATORY OF VASCULAR BIOLOGY AND REGENERATIVE

More information

Medical Coverage Policy Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia

Medical Coverage Policy Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia Medical Coverage Policy Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia EFFECTIVE DATE: 02 01 2017 POLICY LAST UPDATED: 02 20 2018 OVERVIEW Progenitor cell therapy describes

More information

Strategic Research Development in Stem Cell and Regenerative Medicine in HKU Professor Sum-ping Lee Dean HKU Li Ka Shing Faculty of Medicine

Strategic Research Development in Stem Cell and Regenerative Medicine in HKU Professor Sum-ping Lee Dean HKU Li Ka Shing Faculty of Medicine Strategic Research Development in Stem Cell and Regenerative Medicine in HKU Professor Sum-ping Lee Dean HKU Li Ka Shing Faculty of Medicine Adult stem cells Cells that are capable of self renewal and

More information

Stem cells and progenitor cells in renal disease

Stem cells and progenitor cells in renal disease Kidney International, Vol. 68 (2005), pp. 1932 1936 Stem cells and progenitor cells in renal disease HERMANN HALLER,KIRSTEN DE GROOT,FERDINAND BAHLMANN, MARLIES ELGER, and DANILO FLISER Department of Nephrology,

More information

Current developments in the use of stem cell for therapeutic neovascularisation: is the future therapy cell-free?

Current developments in the use of stem cell for therapeutic neovascularisation: is the future therapy cell-free? Published 17 December 2010, doi:10.4414/smw.2010.13130 Cite this as: Current developments in the use of stem cell for therapeutic neovascularisation: is the future therapy cell-free? Zijiang Yang a, Stefano

More information

CD34 + VEGFR-3 + progenitor cells have a potential to differentiate towards lymphatic endothelial cells

CD34 + VEGFR-3 + progenitor cells have a potential to differentiate towards lymphatic endothelial cells CD34 + VEGFR-3 + progenitor cells have a potential to differentiate towards lymphatic endothelial cells Tan YZ et al. J Cell Mol Med. (2014 Mar;18(3):422-33) Denise Traxler-Weidenauer April 2014 Introduction

More information

115 Endothelial Progenitor Cells: A Novel Laboratory-Based Biomarker of Vascular Health. Ishwarlal Jialal

115 Endothelial Progenitor Cells: A Novel Laboratory-Based Biomarker of Vascular Health. Ishwarlal Jialal 115 Endothelial Progenitor Cells: A Novel Laboratory-Based Biomarker of Vascular Health Ishwarlal Jialal 211 Annual Meeting Las Vegas, NV AMERICAN SOCIETY FOR CLINICAL PATHOLOGY 33 W. Monroe, Ste. 16 Chicago,

More information

Citation for published version (APA): Velde, S. V. D. (2006). Stem cell-mediated regeneration of the infarcted heart: inflammation rules? s.n.

Citation for published version (APA): Velde, S. V. D. (2006). Stem cell-mediated regeneration of the infarcted heart: inflammation rules? s.n. University of Groningen Stem cell-mediated regeneration of the infarcted heart Velde, Susanne van der IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to

More information

The Number of Endothelial Progenitor Cell Colonies in the Blood Is Increased in Patients With Angiographically Significant Coronary Artery Disease

The Number of Endothelial Progenitor Cell Colonies in the Blood Is Increased in Patients With Angiographically Significant Coronary Artery Disease Journal of the American College of Cardiology Vol. 48, No. 8, 2006 2006 by the American College of Cardiology Foundation ISSN 0735-1097/06/$32.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2006.04.101

More information

Diabetes and the Heart

Diabetes and the Heart Diabetes and the Heart Association of Specialty Professors April 4, 2013 Jorge Plutzky, MD Co-Director, Preventive Cardiology Director, The Lipid Clinic Cardiovascular Division Brigham and Women s Hospital

More information

Stem Cell Therapy in Acute Myocardial Infarction: hype or reality?

Stem Cell Therapy in Acute Myocardial Infarction: hype or reality? Stem Cell Therapy in Acute Myocardial Infarction: hype or reality? Stefan Janssens, MD, PhD Department of Cardiology Gasthuisberg University Hospital Leuven, Belgium No disclosures Brussels, 8-12-27 Cardiac

More information

Review Article Autologous Stem Cell Transplantation for Regeneration of Infarcted Myocardium: Clinical Trials

Review Article Autologous Stem Cell Transplantation for Regeneration of Infarcted Myocardium: Clinical Trials Hellenic J Cardiol 2008; 49: 163-168 Review Article Autologous Stem Cell Transplantation for Regeneration of Infarcted Myocardium: Clinical Trials GEORGIOS PAXINOS 1, DEMOSTHENES KATRITSIS 2 1 Cardiology

More information

The vascular endothelium represents a dynamic border

The vascular endothelium represents a dynamic border Brief Review Endothelial Progenitor Cells Mobilization, Differentiation, and Homing Mihail Hristov, Wolfgang Erl, Peter C. Weber Abstract Postnatal bone marrow contains a subtype of progenitor cells that

More information

Annals of West University of Timisoara

Annals of West University of Timisoara Annals of West University of Timisoara Series of Chemistry 20 (2) (2011) 45-52 FICOLL DENSITY GRADIENT ISOLATION METHOD VS. DIRECT FLOW CYTOMETRIC QUANTIFICATION OF EPCS Cristiana Bujor a, A. Anghel a,

More information

Hypothesis: When compared to conventional balloon angioplasty, cryoplasty post-dilation decreases the risk of SFA nses in-stent restenosis

Hypothesis: When compared to conventional balloon angioplasty, cryoplasty post-dilation decreases the risk of SFA nses in-stent restenosis Cryoplasty or Conventional Balloon Post-dilation of Nitinol Stents For Revascularization of Peripheral Arterial Segments Background: Diabetes mellitus is associated with increased risk of in-stent restenosis

More information

Previous studies from our laboratory 1 6 and others 7 13 have

Previous studies from our laboratory 1 6 and others 7 13 have Basic Science Reports Endothelial Progenitor Cell Vascular Endothelial Growth Factor Gene Transfer for Vascular Regeneration Hideki Iwaguro, MD; Jun-ichi Yamaguchi, MD, PhD; Christoph Kalka, MD; Satoshi

More information

Section: Medicine Last Reviewed Date: October Policy No: 100 Effective Date: January 1, 2014

Section: Medicine Last Reviewed Date: October Policy No: 100 Effective Date: January 1, 2014 Medical Policy Manual Topic: Progenitor Cell Therapy for the Treatment of Damaged Myocardium Due to Ischemia Date of Origin: August 3, 2004 Section: Medicine Last Reviewed Date: October 2013 Policy No:

More information

Leading the Way in Cardiovascular Regenerative Medicine

Leading the Way in Cardiovascular Regenerative Medicine Slide 1 Leading the Way in Cardiovascular Regenerative Medicine Leading the Way in Cardiovascular Regenerative Medicine This slide set presents the current work in cell therapy in treating cardiovascular

More information

Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction

Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction CIRCULATIONAHA/2004/472191 Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction Birgit Assmus #, M.D., J. W. Goethe Universität

More information

Cell therapy: enhancing the therapeutic potential of cardiac progenitors for delivery post myocardial infarction. Rita Alonaizan

Cell therapy: enhancing the therapeutic potential of cardiac progenitors for delivery post myocardial infarction. Rita Alonaizan Cell therapy: enhancing the therapeutic potential of cardiac progenitors for delivery post myocardial infarction Rita Alonaizan Department of Physiology, Anatomy & Genetics St Catherine s College Supervisor:

More information

PhD THESIS FACTORS MODULATING THE THERAPEUTIC POTENTIAL OF ENDOTHELIAL PROGENITOR CELLS FOR NEOVASCULARIZATION OF ISCHEMIC TISSUES

PhD THESIS FACTORS MODULATING THE THERAPEUTIC POTENTIAL OF ENDOTHELIAL PROGENITOR CELLS FOR NEOVASCULARIZATION OF ISCHEMIC TISSUES ROMANIAN ACADEMY INSTITUTE OF CELLULAR BIOLOGY AND PATHOLOGY "NICOLAE SIMIONESCU" PhD THESIS FACTORS MODULATING THE THERAPEUTIC POTENTIAL OF ENDOTHELIAL PROGENITOR CELLS FOR NEOVASCULARIZATION OF ISCHEMIC

More information

Future Applications of Contrast Echocardiography

Future Applications of Contrast Echocardiography Future Applications of Contrast Echocardiography Jonathan R. Lindner, M.D. Knight Cardiovascular Institute Oregon Health & Science University Portland, Oregon, USA Disclosures: Investigator-initiated grant

More information

Chapter. Department of Cardiology, 2 Department of Nuclear Medicine and the 3

Chapter. Department of Cardiology, 2 Department of Nuclear Medicine and the 3 Chapter 10 Saskia L.M.A. Beeres 1 Jeroen J. Bax 1 Petra Dibbets-Schneider 2 Marcel P.M. Stokkel 2 Willem E. Fibbe 3 Ernst E. van der Wall 1 Martin J. Schalij 1 Douwe E. Atsma 1 1 Department of Cardiology,

More information

Dr. Alexander Lyon Senior Lecturer and Consultant Cardiologist Clinical Lead in Cardio-Oncology Royal Brompton Hospital, London UK

Dr. Alexander Lyon Senior Lecturer and Consultant Cardiologist Clinical Lead in Cardio-Oncology Royal Brompton Hospital, London UK Advanced heart failure - devices, mechanical circulatory support and cardiac transplantation Monday 30 January 2017 Stem cell and gene therapies for heart failure Dr. Alexander Lyon Senior Lecturer and

More information

Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia. Original Policy Date

Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia. Original Policy Date MP 2.02.14 Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia Medical Policy Section Medicine Issue 12:2013 Original Policy Date 12:2013 Last Review Status/Date Reviewed with

More information

Diabetes mellitus is associated with both an increased risk

Diabetes mellitus is associated with both an increased risk Human Endothelial Progenitor Cells From Type II Diabetics Exhibit Impaired Proliferation, Adhesion, and Incorporation Into Vascular Structures Oren M. Tepper, BA; Robert D. Galiano, MD; Jennifer M. Capla,

More information

Previous studies have suggested that bone marrow

Previous studies have suggested that bone marrow Essential Role of ICAM-1/CD18 in Mediating EPC Recruitment, Angiogenesis, and Repair to the Infarcted Myocardium Yaojiong Wu, James E. Ip, Jing Huang, Lunan Zhang, Kenichi Matsushita, Choong-Chin Liew,

More information

Various experimental and clinical studies demonstrate

Various experimental and clinical studies demonstrate ATVB in Focus Vascular Precursors: Origin, Regulation and Function Series Editor: Karen K. Hirschi Regulation of Bone Marrow Derived Vascular Progenitor Cell Mobilization and Maintenance Stefanie Dimmeler

More information

CD34 Hybrid Cells Promote Endothelial Colony-Forming Cell Bioactivity and Therapeutic Potential for Ischemic Diseases

CD34 Hybrid Cells Promote Endothelial Colony-Forming Cell Bioactivity and Therapeutic Potential for Ischemic Diseases CD34 Hybrid Cells Promote Endothelial Colony-Forming Cell Bioactivity and Therapeutic Potential for Ischemic Diseases Jun Hee Lee, Sang Hun Lee, So Young Yoo, Takayuki Asahara, Sang Mo Kwon Downloaded

More information

Incidence of Ventricular Arrhythmias after Stem Cell Therapy in Patients with Chagas Cardiomyopathy

Incidence of Ventricular Arrhythmias after Stem Cell Therapy in Patients with Chagas Cardiomyopathy Incidence of Ventricular Arrhythmias after Stem Cell Therapy in Patients with Chagas Cardiomyopathy Adriana Sebba Barroso de Souza, Weimar Kunz Sebba Barroso Souza, Sandra Araujo Costa, Elis Marra de Moreira

More information

The concept of regenerative medicine using the body s

The concept of regenerative medicine using the body s MINI-REVIEW: EXPERT OPINIONS Stem Cell Therapy in Perspective Bodo E. Strauer, MD; Ran Kornowski, MD The concept of regenerative medicine using the body s own stem cells and growth factors to repair tissues

More information

Endothelial Progenitor Cell Dysfunction: a Novel Concept in the Pathogenesis of Vascular Complications of Type 1 Diabetes

Endothelial Progenitor Cell Dysfunction: a Novel Concept in the Pathogenesis of Vascular Complications of Type 1 Diabetes Chapter3 Endothelial Progenitor Cell Dysfunction: a Novel Concept in the Pathogenesis of Vascular Complications of Type 1 Diabetes Cindy J.M. Loomans 1, Eelco J.P. de Koning 1, Frank J.T. Staal 2, Maarten

More information

G-CSF ATTENUATES VENTRICULAR REMODELLING AFTER ACUTE STEMI. RESULTS OF STem cells Mobilization in Acute Myocardial Infarction

G-CSF ATTENUATES VENTRICULAR REMODELLING AFTER ACUTE STEMI. RESULTS OF STem cells Mobilization in Acute Myocardial Infarction ESC CONGRESS 2010 Stockholm 28 August-1 September G-CSF ATTENUATES VENTRICULAR REMODELLING AFTER ACUTE STEMI. RESULTS OF STem cells Mobilization in Acute Myocardial Infarction C. Malafronte MD Alessandro

More information

McAb and rhil-2 activated bone marrow on the killing and purging of leukemia cells

McAb and rhil-2 activated bone marrow on the killing and purging of leukemia cells Effects of McAb and rhil-2 activated bone marrow on the killing and purging of leukemia cells X.C. Wei, D.D. Yang, X.R. Han, Y.A. Zhao, Y.C. Li, L.J. Zhang and J.J. Wang Institute of hematological research,

More information

CXCR4 Expression Determines Functional Activity of Bone Marrow Derived Mononuclear Cells for Therapeutic Neovascularization in Acute Ischemia

CXCR4 Expression Determines Functional Activity of Bone Marrow Derived Mononuclear Cells for Therapeutic Neovascularization in Acute Ischemia CXCR4 Expression Determines Functional Activity of Bone Marrow Derived Mononuclear Cells for Therapeutic Neovascularization in Acute Ischemia Florian H. Seeger, Tina Rasper, Masamichi Koyanagi, Henrik

More information

Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: A prospective randomized study

Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: A prospective randomized study Patel et al Evolving Technology Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: A prospective randomized study Amit N. Patel, MD, MS, a,b,c Luis Geffner,

More information

Role of Inflammation in Pulmonary Hypertension

Role of Inflammation in Pulmonary Hypertension Role of Inflammation in Pulmonary Hypertension K. R. Stenmark University of Colorado Denver, USA Prominent Fibroproliferative Changes are Observed in the Lung Vasculature of Infants With Pulmonary Arterial

More information

Mesenchymal Stem Cells

Mesenchymal Stem Cells Mesenchymal Stem Cells Science and therapeutic applications Dirk Büscher (Former VP-R&D Cellerix) GRIFOLS SA May 10 th, 2010 EMA 1 Discovery and Definition of Mesenchymal Stem Cells MSC must be plastic-adherent

More information

REGENERATIVE MEDICINE

REGENERATIVE MEDICINE REGENERATIVE MEDICINE Concise Review: Circulating Endothelial Progenitor Cells for Vascular Medicine TAKAYUKI ASAHARA, a,b ATSUHIKO KAWAMOTO, b HARUCHIKA MASUDA a a Department of Regenerative Medicine

More information

ALTERNATIVE APPROACH FOR END-STAGED ISCHEMIC CARDIOMYOPATHY WITH LV ANEURYSM COMBINING SURGICAL AND CELL THERAPY THESSALONIKI, 2018

ALTERNATIVE APPROACH FOR END-STAGED ISCHEMIC CARDIOMYOPATHY WITH LV ANEURYSM COMBINING SURGICAL AND CELL THERAPY THESSALONIKI, 2018 ALTERNATIVE APPROACH FOR END-STAGED ISCHEMIC CARDIOMYOPATHY WITH LV ANEURYSM COMBINING SURGICAL AND CELL THERAPY THESSALONIKI, 2018 Kostas Katsavrias Sotirios N. Prapas A Cardiac Surgery Dpt Henry Dunant

More information

Autologous Bone Marrow Mononuclear Cells Transplant in Patients With Critical Leg Ischemia: Preliminary Clinical Results

Autologous Bone Marrow Mononuclear Cells Transplant in Patients With Critical Leg Ischemia: Preliminary Clinical Results ARTIcle Autologous Bone Marrow Mononuclear Cells Transplant in Patients With Critical Leg Ischemia: Preliminary Clinical Results Min Li, 1 Hua Zhou, 2 Xing Jin, 2 Mo Wang, 2 Shiyi Zhang, 2 Lei Xu 2 Abstract

More information

ISCHEMIC HEART DISEASE (IHD) IS. Adult Bone Marrow Derived Cells for Cardiac Repair. A Systematic Review and Meta-analysis REVIEW ARTICLE

ISCHEMIC HEART DISEASE (IHD) IS. Adult Bone Marrow Derived Cells for Cardiac Repair. A Systematic Review and Meta-analysis REVIEW ARTICLE REVIEW ARTICLE Adult Bone Marrow Derived Cells for Cardiac Repair A Systematic Review and Meta-analysis Ahmed Abdel-Latif, MD; Roberto Bolli, MD; Imad M. Tleyjeh, MD, MSc; Victor M. Montori, MD, MSc; Emerson

More information

ISAR-LEFT MAIN: A Randomized Clinical Trial on Drug-Eluting Stents for Unprotected Left Main Lesions

ISAR-LEFT MAIN: A Randomized Clinical Trial on Drug-Eluting Stents for Unprotected Left Main Lesions Julinda Mehilli, MD Deutsches Herzzentrum Technische Universität Munich Germany ISAR-LEFT MAIN: A Randomized Clinical Trial on Drug-Eluting Stents for Unprotected Left Main Lesions Background Left main

More information

Novel Reduction of PCSK9 Expression: Mechanistic Insights into the Anti-Atherosclerotic & Hypolipidemic Effects of Heat Shock Protein 27

Novel Reduction of PCSK9 Expression: Mechanistic Insights into the Anti-Atherosclerotic & Hypolipidemic Effects of Heat Shock Protein 27 Novel Reduction of PCSK9 Expression: Mechanistic Insights into the Anti-Atherosclerotic & Hypolipidemic Effects of Heat Shock Protein 27 Ed O Brien, Jean-Claude Bakala-N Goma, Chunhua Shi Cumming School

More information

Resident cardiac stem cells: how to find and use them

Resident cardiac stem cells: how to find and use them Resident cardiac stem cells: how to find and use them G. Hasenfuß Cardiology and Pneumology Heart Research Center Göttingen Georg-August-University Göttingen Definition: Stem cell Selfrenewal Stem cell

More information

A novel cyanobacterial ligand for human L-selectin extracted from Aphanizomenon flos aquae potential role for stem cell biology in vitro and in vivo?

A novel cyanobacterial ligand for human L-selectin extracted from Aphanizomenon flos aquae potential role for stem cell biology in vitro and in vivo? A novel cyanobacterial ligand for human L-selectin extracted from Aphanizomenon flos aquae potential role for stem cell biology in vitro and in vivo? Introduction The objective of this study was to evaluate

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10188 Supplementary Figure 1. Embryonic epicardial genes are down-regulated from midgestation stages and barely detectable post-natally. Real time qrt-pcr revealed a significant down-regulation

More information

Secretion of Angiogenic and Antiapoptotic Factors by Human Adipose Stromal Cells

Secretion of Angiogenic and Antiapoptotic Factors by Human Adipose Stromal Cells Secretion of Angiogenic and Antiapoptotic Factors by Human Adipose Stromal Cells Jalees Rehman, MD; Dmitry Traktuev, BS; Jingling Li, MS; Stephanie Merfeld-Clauss, BS; Constance J. Temm-Grove, PhD; Jason

More information

ROLE OF INFLAMMATION IN HYPERTENSION. Dr Barasa FA Physician Cardiologist Eldoret

ROLE OF INFLAMMATION IN HYPERTENSION. Dr Barasa FA Physician Cardiologist Eldoret ROLE OF INFLAMMATION IN HYPERTENSION Dr Barasa FA Physician Cardiologist Eldoret Outline Inflammation in CVDs the evidence Basic Science in Cardiovascular inflammation: The Main players Inflammation as

More information

Diminished Circulating Monocytes after Peripheral Bypass Surgery for Critical Limb Ischemia

Diminished Circulating Monocytes after Peripheral Bypass Surgery for Critical Limb Ischemia Yale University EliScholar A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 5-6-2009 Diminished Circulating Monocytes after Peripheral Bypass

More information

Translating Molecular Insights Into New Cellular Therapies For Cardiovascular Disease

Translating Molecular Insights Into New Cellular Therapies For Cardiovascular Disease Ottawa Hospital Research Institute Institute de recherche de l Hopital d Ottawa Translating Molecular Insights Into New Cellular Therapies For Cardiovascular Disease ACC Rockies March 11-14, 2012 Dr. Duncan

More information

Financial Disclosures. Bone Marrow Mononuclear Cells. Cell Based Therapies: What Do They Do and Will They Work in CLI?

Financial Disclosures. Bone Marrow Mononuclear Cells. Cell Based Therapies: What Do They Do and Will They Work in CLI? Cell Based Therapies: What Do They Do and Will They Work in CLI? None Financial Disclosures Michael P. Murphy, MD The Vascular and Cardiac Adult Stem Cell Therapy Center Indiana University School of Medicine

More information

Endothelial progenitor cells (EPCs) have been discovered

Endothelial progenitor cells (EPCs) have been discovered Smoking Cessation Rapidly Increases Circulating Progenitor Cells in Peripheral Blood in Chronic Smokers Takahisa Kondo, Mutsuharu Hayashi, Kyosuke Takeshita, Yasushi Numaguchi, Koichi Kobayashi, Shigeo

More information

Relationship between exercise capacity, endothelial progenitor cells and cytochemokines in patients undergoing cardiac rehabilitation

Relationship between exercise capacity, endothelial progenitor cells and cytochemokines in patients undergoing cardiac rehabilitation 2009 Schattauer GmbH, Stuttgart Cardiovascular Biology and Cell Signalling Relationship between exercise capacity, endothelial progenitor cells and cytochemokines in patients undergoing cardiac rehabilitation

More information