Nitrogen Balance and Plasma Amino Acids in the Evaluation of Protein Sources for Extremely Low Birth weight Infants

Size: px
Start display at page:

Download "Nitrogen Balance and Plasma Amino Acids in the Evaluation of Protein Sources for Extremely Low Birth weight Infants"

Transcription

1 Nutrition of the Very Low Birthweight Infant, edited by Ekhard E. Ziegler. Alan Lucas. Guido E. Moro. Nestle Nutrition Workshop Series, Paediatric Programme. Vol. 43. Neslec Ltd.. Vevey/Lippincott Williams & Wilkins Philadelphia. Pennsylvania Nitrogen Balance and Plasma Amino Acids in the Evaluation of Protein Sources for Extremely Low Birth weight Infants Jacques Rigo a, G. Putet*, J.C. Picaud c, C. Pieltain a, M. De Curtis^, B.L. Salle c, J. Senterre* "Department of Neonatology, University of Liege, Hopital de la Citadelle, Liege, Belgium. b Department of Neonatology, Hopital Debrousse, Lyon, France;'Department of Neonatology, Hopital Edouard Herriot, Lyon, France; d lstituto Materno Infantile, University of Palermo, Italy The nutritional problems of preterm babies have become particularly relevant in the last decade because of the increased survival of extremely low birthweight (ELBW) infants and the numerous studies underlining the importance of early feeding on short- and long-term development (1). It is well known that the nutritional requirements of extremely premature infants are greater than those of other, larger premature and full-term neonates and that nutritional support should be initiated early in the neonatal period, combining the use of parenteral and enteral feeding (2). The reduction of gut motility, enzyme function, and intestinal nutrient absorption in these very small babies has led to the use of total parenteral nutrition as a prolonged exclusive feeding process during the first weeks of life. However, "minimal enteral feeding" has been shown to enhance gut motility and accelerate establishment of full enteral feeding (3,4). There is now some evidence that early enteral nutrition may be well tolerated without adverse effects in ELBW infants, but precise guidelines on early enteral support need to be established. Enteral feeding is generally initiated with the baby's own mother's milk, with or without fortification with energy, minerals, and proteins, or with a preterm formula. More recently, to improve gastric emptying and gastrointestinal digestibility and to prevent atopic diseases, the use of partially hydrolyzed protein formulas has been suggested (5). There are insufficient published data for accurate evaluation of the influence of protein quality on nitrogen absorption, nitrogen utilization, and plasma amino acid concentrations in ELBW infants. This information therefore needs to be obtained by extrapolation from the results of the numerous studies that have been carried out on larger preterm infants studied at various gestational ages and body weights. 139

2 140 NUTRITION BALANCE AND PLASMA AMINO ACID NITROGEN ABSORPTION Various factors may affect nitrogen absorption in preterm infants (6). The stomach does not contribute significantly to overall protein digestion (7). The breakdown of most large-molecular-weight proteins into smaller peptides and amino acids is the result of luminal hydrolysis and subsequently of peptidase activity, located at the level of the microvillus membrane or within the enterocyte (7). In human milk, antibodies, enzymes, and growth factors appear to survive the gastrointestinal environment and can be detected in the stool, decreasing the apparent nitrogen absorption rate (7). Studies in animal preterm neonates suggest that bovine and human whey proteins are hydrolyzed more slowly than casein (8). In addition, the decreasing level of immunoreactive human a-lactalbumin found in the serum of preterm infants with increasing gestational age suggests a relative impairment of protein hydrolysis at the earlier stages of development (9). Because of this, the use of formulas containing partially or more extensively hydrolyzed proteins has been suggested, but their effect on nitrogen absorption is still questionable as the transport of small peptides or individual amino acids may not be as efficient as it is when they have been initially hydrolyzed by microvillus membrane peptidases (10). Over a period of more than 20 years, we have performed 356 metabolic balance studies (11-16) in preterm infants fed human milk, either unsupplemented or supplemented with various human milk fortifiers (HMF; n = 88), European whey-predominant formulas designed before 1980 (WPF1; n = 72) and after 1980 (WPF2; n = 49), American whey-predominant formulas (WPF3; n = 58), hydrolyzed whey formulas (HWF; n = 31), and casein-predominant formulas also designed before 1980 (CPF; n = 58) (Table 1). In all, almost 30 different regimens were evaluated. Fecal nitrogen excretion represents the sum of endogenous fecal nitrogen derived from the gastrointestinal tract (desquamation, secretion) and the nonabsorbed fraction of the nitrogen intake. The apparent nitrogen absorption rate may be estimated as the ratio between absorbed nitrogen and nitrogen intake. The apparent nitrogen absorption rate differs significantly according to the feeding regimen. It was higher with WPF1 (89.9%), WPF2 (90.7%), or CPF (89.5%) than with HMF (82.7%), WHF (84.3%), or WPF3 (86.0%) (Table 1). The fractional nitrogen absorption rate (true digestibility) can be estimated by regression analysis between nitrogen absorbed and nitrogen ingested, as the nitrogen coefficient (Fig. 1). Calculated values for this coefficient are (see Fig. 1) 83.4 ± 3.0% for HMF; 93.3 ± 1.0% for WPF1, WPF2, and CPF combined; 76.9 ±6.1% for WPF3; and 80.6 ± 7.9.% for WHF. From these data, the endogenous nitrogen excretion was estimated in the group with the highest nitrogen absorption rate. The mean value lies between 30 and 40 mg/kg body weight per day. When we evaluated the American whey-predominant formulas (WPF3), which are essentially in-can liquid formulas sterilized with heat treatment that induced a Maillard reaction, our data confirm that the technical process may impair nitrogen absorption (17). Similarly, the technologies necessary to perform partial protein hydrolysis appear to reduce nitrogen absorption significantly in preterm infants. Reanalyzing the results of numerous metabolic balance studies reported by various groups, Micheli and Schutz (6) suggested that nitrogen absorption could be di-

3 TABLE 1. Metabolic balances in preterm infants fed various formulas: population* Milk group HMF WPF1 WPF 2 WPF 3 WHF CPF N Birthweight (g) Gestat. age (wks) Postnatal age (d) Cor. GA wks Weight (g) Intake (mg/kg/d) Fecal excretion (mg/kg/d) Absorption (mg/kg/d) Absorption (% of intake) Urinary excretion (mg/kg/d) Retention (mg/kg/d) Net prot. utilsat. *(%) Prot. efficiency (%) ± 255"' 30.5 ± 1.8"'" 28 ± 11b"' 34.5 ± 1.5" 1730 ± 247" c ' 517 ± 86 e ' 90 ± 28* c "' 428 ± 76* ce ' 82.7 ± 4.8* c "' 121 ± 45*"' 307 ± 56 c " e 59.7 ± 7.7" "' 72.1 ± 7.6" c "' ± 231 ac "<" 32.3 ± 1.6 ac " e ' 18 ± 6 ac " e 34.9 ± 1.4 a "' 2005 ± 254 ac *" 545 ± 102* 53 ± 16 a " e ' 492 ± 104 a "' 89.9 ± 3.7 a " e 191 ± 95 ac " e ' 3 01 ± 67 c " e 56.0 ± 11 ac " e ' 62.6 ± I3.2 acde ' ± 382"' 30.6 ± 2.8*"' 28 ± 15"' 34.6 ± ± 280 aw 522 ± 70 e ' 49 ± 19 a " e ' 474 ± 65 a "' 90.7 ± 3.3 a " 8 ' 106 ± 36"' OOo 0/ 71.5 ± 6.5 a *" e ' 77.7 ± 6.4 a * e ' ± 295"' 29.7 ± 2.1 a "' 32 ± 12 a * 8 ' 34.1 ± 1.7* 1880 ± 269" e ' 506 ± 58" e/ 71 ± 29 a " ce 434 ± 52" ce ' 86 ± 5 a " c ' 98 ± 21 a * e ' 337 ± 46 a * c ' * oe/ 77.5 ± 4.4 a6e ' ± 276" 30.5 ± 2.3* 28 ± 12"" 34.4 ± ± 224*" 553 ± 56 ac "' R7 + ofificdf 466 ± 51 a "' 84 ± 4.0* ' 122 ± 39*"' 343 ± 42 a * c ' 62.4 ± 6.5* c "' 74.0 ± 6.9* c "' ± 264 ac " e 31.8 ± 1.4 a * c " e 19 ± 8 ac " e 34.6 ± ± 272 a * c " e 688 ± I43 a6c * 70 ± AB abce 618 ± -\25 abcde 89.5 ± 2.7 ac " ± W% aljcde 299 ± 82 c " e 44.1 ± 10.5 a * c " e 49.3 ± 11.9 a * c " e 5 5^ 2j * Values are expressed as mean ± 1 SD. a p < 0.05 versus HMF * p < 0.05 versus WPF 1 c p < 0.05 versus WPF 2 " p < 0.05 versus WPF 3 e p < 0.05 versus WHF ' p < 0.05 versus CPF * nitrogen retention/nitrogen intake nitrogen retention/nitrogen absorbed

4 Nitrogen balance Absorption Retention A ^XK HMF Slope=83.4±3.0 m $? I/O 0. / I S 450 O) ^400 c o s. D ~~O< HMF Slope=60.4±4.8! «! I OD "^ o 6--o Nitrogen intake (mg/kg/d) S Nitrogen absorbed (mg/kg/d) B a WPF1 WPF2 A CPF S/ope=93.3±7.0 y O Nitrogen intake (mg/kg/d) FA o 500 o S c 0) 250 O E WPF2 IW>F3 Slope=76.2±4.0 M tsrvu * R...« Nitrogen absorbed (mg/kg/d) T3 g 550 O * 4S0 c WPF3 A. WHF Slope=76.7±4.4 if.i if i r i r Nitrogen intake (mg/kg/d) E F" S/ope= *D» WPF1: 29.3 ±6.9 ~~±^ WHF: 55.3 ±11.4 "» CPF: 36.2 ±6.4 \--K ^ n i * D a Nitrogen absorbed (mg/kg/d) 142

5 NUTRITION BALANCE AND PLASMA AMINO A C1D 143 rectly related to gestational age and that immaturity of ELBW infants could significantly reduce metabolizable nitrogen. Multivariate analysis of our data does not confirm this hypothesis but suggests that nitrogen absorption is independent of weight or gestational age at the time of the balance study (Fig. 2). Thus data we obtained in VLBW infants could probably be extrapolated to ELBW infants. NITROGEN UTILIZATION During the second part of gestation, lean body mass and protein accretion increase faster than weight gain owing to a progressive reduction in total water content (18). The fetus has a much higher fractional protein turnover rate than the term infant, because of the increased ratio of organs with high rates of protein synthesis over other tissues. Body nitrogen content increases exponentially during this period, whereas protein gain represents around 20% to 25% of protein synthesis (18). Many factors are known to affect protein utilization in ELBW infants: protein and nitrogen intakes, energy-to-protein ratio, biological value of ingested proteins, nutritional status, hormones, and clinical factors (6). Various studies have shown that daily protein gain increases linearly with protein supply up to around 4 g/kg-d, at which point the effect of protein gain appears to decrease. However, an additional effect of metabolizable energy has been demonstrated. This effect appears to be more pronounced at suboptimal energy intakes (< 100 kcal/kg-d). The efficiency of protein gain can be estimated by the ratio between retained and absorbed nitrogen, as well as by the slope of the regression line calculated between nitrogen retained and nitrogen absorbed (see Fig. 1D-F). In our results the efficiency of protein gain differs according to the feeding regimen (Table 1); the highest values were obtained in preterm infants fed WPF2 (77.7%) and WPF3 (77.5%). The efficiency of protein gain was significantly reduced in infants fed WHF (74.0%) and HMF (72.1 %). The lower value obtained with HMF may be related to the nonprotein nitrogen (NPN) fraction of human milk, representing 20% to 25% of the total nitrogen content of human milk but 13.5% to 17% of the total nitrogen content of HMF. As demonstrated for urea nitrogen, the contribution of this metabolizable NPN fraction to protein gain is lower than that of a-lactalbumin or casein in human milk (19). By contrast, the significantly lower value obtained with WHF suggests that the process of hydrolysis itself reduces the bioavailability of whey protein. The low efficiency values obtained with the use of WPF1 (62.6%) and CPF (49.3%) may be related, on the one hand, to the higher nitrogen supply provided by those formulas reaching the protein gain plateau and, on the other hand, by a relative reduction in metabolizable energy caused by the use of a poorly absorbed cow's milk fat blend in most of the formulas made before ^ FIG. 1. Left: Relation between nitrogen absorption and intake in preterm infants according to feeding regimen: (A) HMF; n = 88; (B) WPF1, WPF2, and CPF; n = 179; (C) WPF3 and WHF, n = 89. Right: Relation between nitrogen retention and absorption in preterm infants according to feeding regimen: (D) HMF, n = 88; (E) WPF2 and WPF3, n = 107; (F) WPF1, WHF, and CPF; n= 161.

6 144 NUTRITION BALANCE AND PLASMA AMINO ACID "S 80 I" I so o 50 ^ # A : A m HMF Abs.% * * Body weight (g) D ^ di g J.4LA ^4-^ - o '- - 1 D < abs. z iency (fsi ret. Prot. effici B -100 * 90 to 8 so 110 ~ I 70 B 60 Q. o I 50 < A _ D * J ṯa WPF2&3 >^ Abs.% "tk Effic.% : LJ ] i5d^ >3 q Isn-U" 3 A ' 4? 3b p L A Body weight (g) 100 ^ so (0 CO Z u.92 'o i e FIG. 2. Relation between nitrogen absorption rate (%), protein efficiency (%), and body weight in preterm infants fed HMF (A) and WPF2 and WPF3 (B). The efficiency of whey-predominant and casein-predominant formulas has been demonstrated more recently by Cooke et al. (20), who compared three preterm formulas with 60:40, 35:65, and 20:80 whey/casein ratios. The absorption rate was slightly lower with the whey-predominant formula (83% versus 86% and 85%), whereas efficiency was around 80% and similar in the three groups.

7 NUTRITION BALANCE AND PLASMA AMINO ACID 145 Thus, with respect to net protein utilization (N retained/n ingested), cow's milk protein formulas, whether whey-predominant or casein-predominant, appear to be more efficient than human milk, with or without protein supplementation. However, our studies confirm that in formulas the protein bioavailability can be altered by various technical processes such as heat treatment or hydrolysis (21). The fractional protein synthesis rate decreases with gestational age in fetal sheep at a greater rate than the fractional growth rate, but both curves indicate a much higher protein turnover and presumably a greater utilization in ELBW infants (18). Animal studies and metabolic balances performed in preterm infants show that the rate of protein accretion per unit body weight decreases throughout gestation (18). Reanalyzing the results of numerous metabolic balance studies in preterm infants, Micheli and Schutz (6) showed that there is a gestational-age-related change in the percentage of protein energy needed to achieve optimal protein gain. However, the efficiency of protein gain the ratio between protein gain and metabolizable protein seems to be independent of gestational age. In contrast, in preterm infants fed HMF or formulas with the highest protein efficiency (WPF2, WPF3), we calculated that protein gain was dependent not only on the absorbed protein supply but also on the body weight at the time of the balance study. The efficiency of protein gain (ratio of protein retained to protein absorbed) was inversely related to body weight (see Fig. 2), suggesting a greater efficiency of protein deposition in ELBW infants. PLASMA AMINO ACID CONCENTRATIONS ELBW infants have incomplete development of several amino acid metabolic pathways and require high-quality protein with an adequate nitrogen supply to prevent deficiency or overload of various essential or semi-essential amino acids. It is still a matter of debate whether the plasma amino acid disturbances commonly observed in preterm infants on oral or parenteral nutrition are harmful for development. Optimal values for plasma amino acid concentrations in preterm infants are also a matter of discussion. At least three different gold standards have been proposed for premature infants: 1. amino acid concentrations from the umbilical cord obtained at fetal cord puncture or after birth; 2. amino acid concentrations obtained in rapidly growing preterm infants receiving their own mother's milk or human milk supplemented with human milk proteins; 3. amino acid concentrations in healthy breastfed term infants (22-27). For ELBW infants, levels that obtain during the last trimester of gestation or in growing infants with optimal intake of human milk protein appear to be safe. However, since large differences are observed for some amino acids (threonine, valine, tyrosine, phenylalanine, lysine, and histidine) between fetal and postnatal values, a combined reference standard has been proposed (Fig. 3), taking into account the mean ± 1 SD of the values obtained in cord blood and in preterm infants fed human milk supplemented with human milk protein (28,29).

8 146 NUTRITION BALANCE AND PLASMA AMINO ACID 70 r HM+HMP CORD BLOOD c o B I 20 IB 10 CO = < Q. (0 FIG. 3. Plasma amino acid reference values for preterm infants. Cord blood amino acid concentrations (mean ± 1 SD) were combined with the values obtained in preterm infants fed human milk fortified with human milk protein (mean ± 1 SD). According to this reference, preterm infants fed human milk fortified with whole cow's milk protein or casein hydrolysate have plasma amino acid concentrations within the normal range. On the other hand, the use of whey hydrolysate as a fortifier induces a significant increase in plasma threonine and a relative reduction in phenylalanine (29,30). In view of the fact that bovine casein has a different amino acid composition from human milk, that bovine whey is quite different from human whey, and that human milk contains a relatively large proportion of nonprotein nitrogen partially available for protein synthesis, it is virtually impossible in cow's milk-based formulas to obtain a nitrogen and amino acid pattern identical to that found in human milk. Thus there have been numerous studies evaluating indices of protein metabolism and plasma amino acid concentrations in preterm infants fed formula with various whey/casein ratios (20,31-33). Recent data (20,32,33) suggest that the type of protein has no effect on metabolic acidosis, uremia, or hyperammonemia, in contrast to data reported in preterm infants receiving older preterm formulas (34). However, the supply of individual amino acids differs significantly according to the whey/casein ratio, thereby influencing the plasma amino acid concentrations. Thus, compared with reference values, threonine is increased and histidine is relatively decreased in infants fed WPF, whereas methionine and aromatic amino acids are increased in infants fed CPF. However, these disturbances of plasma amino acid concentrations do not reach the level previously reported with older formulas (35,36).

9 NUTRITION BALANCE AND PLASMA AMINO ACID 147 Whey-hydrolyzed formulas have recently been evaluated in preterm infants (5,37). Indeed, various technological processes necessary to reduce protein antigenicity may modify amino acid content and amino acid bioavailability (21). The use of a higher percentage of whey in protein-hydrolyzed formulas aggravates the distortion of plasma amino acids previously observed with the use of whey-predominant formulas, with an increase in threonine and a decrease in aromatic amino acid concentrations. Moreover, a sharp decrease in plasma histidine and tryptophan concentrations was also observed, which could be related to a relative reduction in amino acid bioavailability. Therefore histidine and tryptophan supplementation seems to be required for these formulas (37). Whey protein separation is obtained by acidic or enzymatic casein precipitation from cow's milk proteins. In contrast to enzymatic precipitation, in the acidic precipitation process the K-casein and its glycomacropeptide rich in threonine are eliminated from the soluble phase with the casein (38). Therefore it is now possible to design whey-predominant or whey-hydrolyzed formulas with a lower threonine content. Using a crossover study design, we recently evaluated plasma amino acid concentrations in 14 preterm infants receiving either a conventional enzymatic or an acidic whey-predominant formula (39). A sharp reduction in plasma threonine concentration was observed in infants fed the acidic WPF (27.9 ± 8.5 (xmol/dl) compared with those receiving the conventional WPF (37.5 ± 8.4 xmol/dl). All the other plasma amino acid concentrations were similar with the exception of valine, which was also reduced in the infants fed with acidic WPF. Similarly, in another study in preterm infants receiving an acidic whey-hydrolyzed formula (40), the plasma threonine concentration was significantly lower (35.7 ± 9.2 (jumol/dl; n = 13) than the value observed in those fed the enzymatic whey-hydrolyzed formula (48.7 ± 11.3 jjumol/dl; n = 11). Considering that threonine metabolism is highly dependent on gestational age (41) and that the increase of brain threonine concentration related to plasma concentrations is higher than that of the other essential amino acids (42), it is highly advisable to use acidic whey rather than enzymatic whey in formulas for ELBW infants. Glutamine is the most abundant amino acid in the human body and the predominant amino acid supplied to the fetus through the placenta. It is thought to be an important fuel for rapidly dividing cells such as enterocytes and lymphocytes. In ELBW infants who undergo numerous stresses during the first weeks of life and are fed by parenteral and oral nutrition, the provision of glutamine is limited at a time of increased demand. It could indeed be a conditionally essential amino acid. It has recently been suggested that glutamine supplementation in formula may decrease hospital-acquired sepsis and improve tolerance of enteral feedings in ELBW infants (43). Therefore glutamine supplementation in formulas specially designed for ELBW infants should be considered and carefully evaluated. CONCLUSION There is much evidence that early enteral feeding, by enhancing the maturation of the gastrointestinal tract, decreases the number of days of feeding intolerance without

10 148 NUTRITION BALANCE AND PLASMA AM1NO ACID adverse effect in ELBW infants. However, owing to the immaturity of numerous metabolic pathways and their precarious state, there is a need for more appropriate guidelines on early enteral support. Several studies support the use of human milk, but attention needs to be focused on specific nutrient limitations. Calcium, phosphorus, proteins, and energy supplements are available, but they markedly increase the osmolality of the feed. When human milk is not available, specifically designed formulas can be used. A review of numerous metabolic balance studies has shown that nitrogen absorption and utilization appear satisfactory. However, absorption and utilization may be impaired by the technical processes involved in protein isolation, protein hydrolysis, or sterilization. The immaturity of amino acid metabolic pathways in ELBW infants may easily induce an amino acid overload or deficiency, which may be deleterious for development. Therefore protein sources, amino acid composition, and the bioavailability of amino acids require careful evaluation and adaptation to optimize plasma amino acid concentrations. REFERENCES 1. Lucas A. Programming by early nutrition: an experimental approach. J Nutr 1998; 128:401^ Pereira GR. Nutritional care of the extremely premature infant. Clin Perinatal 1995;22: Berseth CL. Minimal enteral feeding. Clin Perinatal 1995;22: Denne SC, Clark SE, Poindexter BB, et al. Nutrition and metabolism in the high-risk neonate. In: Fanaroff AA, Martin RJ, eds. Neonatal-perinatal medicine: disease of the fetus and infant. St. Louis: Mosby Year Book; 1997: Rigo J, Salle BL, Picaud J-C, Putet G, Senterre J. Nutritional evaluation of protein hydrolysate formulas. EurJ Clin Nutr 1995;49:S Micheli JL, Schutz Y. Protein. In: Tsang RC, Lucas A, Uauy R, Zlotkin S, eds. Nutritional needs of thepreterm infants. Baltimore: Williams & Wilkins; 1993: Hamosh M. Digestion in the newborn. Clin Perinatol 1996;23: Lindberg T, Engberg S, Jakobsson I, Lonnerdal B. Digestion of proteins in human milk, human milk fortifier, and preterm formula in infant rhesus monkeys. J Pediatr Gastroenterol Nutr 1997;24: Axelsson I, Jakobsson I, Lindberg T, Polberger S, Benediktsson B, Raiha N. Macromolecular absorption in preterm and term infants. Acta Paediatr Scand 1989;78: Neu J, Koldovsky O. Nutrient absorption in the preterm neonate. Clin Perinatol 1996;23: Putet G, Senterre J, Rigo G, Salle B. Nutrient balance, energy utilization and composition of weight gain in very-low-birth-weight-infants fed pooled human milk or preterm formula. J Pediatr 1984; 105: Putet G, Rigo J, Salle B, Senterre J. Supplementation of pooled human milk with casein hydrolysate: energy and nitrogen balance and weight gain composition in very-low-birth-weight infants. Pediatr Res 1987;21: De Curtis M, Brooke OG. Energy and nitrogen balances in very low birth weight infants. Arch Dis Child 1987;62:83O Senterre J, Vouer M, Putet G, Rigo J. Nitrogen, fat and mineral balance studies in preterm infants fed bank human milk, a human milk formula, or a low-birth-weight infant formula. In: Baum JD, ed. Human milk processing, fractionation, and the nutrition of the low birth-weight baby. Nestle nutrition Workshop Series, vol 3. New York: Raven Press; 1983: Senterre J, Rigo J. Nutritional requirements of low birthweight infants. In: Gracey M, Falkner F, eds. Nutritional needs and assessment of normal growth. Nestle Nutrition Workshop Series, vol 7. New York: Raven Press; 1985:45^ Picaud JC, Putet G, Rigo J, Salle BL, Senterre J. Metabolic and energy balance in small- and appropriate-for-gestational age very low-birth-weight infants. Acta Paediatr 1994;[Suppl]405: Rudloff S, Lonnerdal B. Solubility and digestibility of milk proteins in infant formulas exposed to different heat treatments. J Pediatr Gastroenterol Nutr 1992; 15: Hay WW. Nutritional requirements of extremely low birthweight infants. Acta Paediatr Scand 1994;402:94-99.

11 NUTRITION BALANCE AND PLASMA AMINO A CID Lonnerdal B. Nutritional importance of non-protein nitrogen. In: Raiha NCR, ed. Protein metabolism during infancy. Nestle Nutrition Workshop Series No 33. New York: Raven Press; 1994: Cooke R, Watson D, Werkman S, Conner C. Effects of type of dietary protein on acid-base status, protein nutritional status, plasma levels of amino acids, and nutrient balance in the very low birth weight infant. J Pediatr 1992; 121: Donovan SM, Lonnerdal B. Non-protein nitrogen and true protein in infants formulas. Ada Paediatr Scand 1989;78: Hanning RM, Zlotkin SH. Amino acid and protein needs of the neonate: effects of excess and deficiency. Semin Perinatol 1989;13:131-14I. 23. Polberger S, Axelsson I, Raiha N. Amino acid concentrations in plasma and urine in very low birth weight infants fed non-protein-enriched or human milk protein-enriched human milk. Pediatrics 1990;86: Mclntosh N, Rodeck CH, Heath R. Plasma amino acids of the mid trimester human fetus. Biol Neonate 1984;45: Atkinson SA, Hanning RM. Amino acid metabolism and requirements of the premature infant: does human milk feeding represent the gold standard? In: Atkinson SA, Lonnerdal B, eds. Protein and nonprotein nitrogen in human milk. Boca Raton: CRC Press; Rigo J. Azote et acides amines. In: Ricour C, Ghisolfi J, Putet G, Goulet O, eds. Traite de nutrition pediatrique. Paris: Maloione; 1993: Rigo J, Senterre J. Significance of plasma amino acid pattern in preterm infants. Biol Neonate 28. Rigo J. Les besoins en acides amines des prematures alimentes par voie orale ou parenterale. Liege: University of Liege (Derouaux Ordina eds); 1991: [Thesis.] 29. Rigo J. Azote et acides amines. In: Ricour C, Ghisolfi J, Putet G, Goulet O, eds. Traite de nutrition pediatrique. Paris: Maloione; 1993: Rigo J, Senterre J, Putet G, Salle B. Various human milk fortifiers in low birth weight infants fed pooled human milk: plasma and urinary amino acid concentrations. In: Koletzko B, Okken A, Rey J, Salle B, Van Biervliet JP, eds. Recent advances in infant feeding. Stuttgart: Georg Thieme Verlag; 1992: Janas LM, Picciano MF, Hatch TF. Indices of protein metabolism in term infants fed either human milk or formulas with reduced protein concentration and various whey/casein ratios. J Pediatr 1987;110: Kashyap S, Okamoto E, Kanaya S, et al. Protein quality in feeding low birth weight infants: a comparison of whey-predominant versus casein-predominant formulas. Pediatrics 1987;79: Priolisi A, Didato M, Gioeli R, Fazzolari-Nesci A, Raiha NCR. Milk protein quality in low birth weight infants: effects of protein-fortified human milk and formulas with three different wheyto-casein ratios on growth and plasma amino acid profiles. J Pediatr Gastroenterol Nutr 1992; 14: Jarvenpaa A-L, Raiha NCR, Rassin DK, et al. Milk protein quantity and quality in the term infant. I. Metabolic responses and effects on growth. Pediatrics 1982;70: Rassin DK, Gaull GE, Heinonen K. Milk protein quantity and quality in low birth weight infants. II. Effects on selected alphatic amino acids in plasma and urine. Pediatrics 1977;59:407^t Rassin DK, Gaull GE, Raiha NCR, et al. Milk protein quantity and quality in low birth weight infants. IV. Effects on tyrosine and phenylalanine in plasma and urine. J Pediatr 1977;90: Rigo J, Senterre J. Metabolic balance studies and plasma amino acid concentrations in preterm infants fed experimental protein hydrolysate preterm formulas. Ada Paediatr Suppl 1994;405: Boehm G, Cervantes H, Georgi G, et al. Effect of increasing dietary threonine intakes on amino acid metabolism of the central nervous system and peripheral tissues in growing rats. Pediatr Res 1998;44: Rigo J, Nyamugabo K, Studzinski F, Senterre J. Reduction of hyperthreoninemia in preterm infant fed whey predominant formula without kappa-casein. ESPGAN, 29th annual meeting, Munich; 1996 (abst.). 40. Rigo J, Picaud JC, Lapillonne A, Salle B, Senterre J. Metabolic balance and plasma amino acid concentrations in VLBW infants fed a new acidic whey hydrolysate preterm formula. J Pediatr Gastroenterol Nutr 1997;24:A459 (abst.). 41. Rigo J, Senterre J. Optimal threonine intake for preterm infants fed on oral or parenteral nutrition. J Parenter Enteral Nutr 1980;4: Gustafson JM, Dodds SJ, Burgus RC, Mercier LP. Prediction of brain and serum free amino acid profiles in rats fed graded levels of protein. J Nutr 1986; 116: Neu J, Roig JC, Meetze WH, et al. Enteral glutamine supplementation for very low birth weight infants decreases morbidity. J Pediatr 1997; 131:

12 150 NUTRITION BALANCE AND PLASMA AMINO A CID DISCUSSION Prof. Lucas: Do you believe that there are adequate efficacy and safety data on hydrolyzed preterm formulas in general, or the one you are talking about in particular, to make their use recommendable in clinical care? Dr. Rigo: Hydrolyzed formulas have been used in term infants for many years, and there have been many improvements in their composition. About 10 years ago, we made the first study on the nutritional efficiency of protein-hydrolyzed formula, and we found significant differences between some of the formulas on the market at that time and cow's milk-based formulas. Since then, however, there has been a great improvement in the quality of the hydrolyzed protein. There are still some differences from conventional formulas with respect to absorption and perhaps utilization of nitrogen. And there may also be components that are present in normal formulas but not in hydrolyzed formulas. We now have sufficient data on energy utilization and on calcium and phosphorus retention, but data on zinc and trace element accretion with hydrolyzed formulas are still insufficient. Although the quality of hydrolyzed formulas has improved, we need further nutritional studies. Prof. Haschke: I would extend that question. Are sufficient safety data available for the presently used nonhydrolysate premature infant formulas? The long-term outcome data presently available are for premature formulas that are no longer on the market and are completely outdated. We know nothing about the long-term outcome of premature formulas that are on the market at present. In clinical practice both the hydrolysates and the nonhydrolysates are well tolerated, but we have not studied them with an adequate sample size as in pharmaceutical trials. Dr. Rigo: There are still some differences between hydrolysate and nonhydrolysate premature infant formulas that request evaluation. The difficulties are illustrated in relation to the threonine concentration. We know that with previous whey hydrolysate formulas the threonine concentration was quite high. We had two possibilities: one was for the industry to change the composition of the formula by using acidic whey, which decreased the threonine concentration; the other issue was to carry out large developmental studies to determine the effect of a high threonine concentration. The work involved for developmental studies would be more extensive than decreasing the threonine concentration by using acidic whey. Dr. Atkinson: In support of hydrolysate formulas for premature infants, you suggested first, improved digestibility over whole protein, though your data do not support that; second, prevention of allergy, and I wonder if you have any data showing that there is less allergy in premature infants fed on hydrolysates; and third, improved gastric motility, and again do you have any data to support that? You also said that the acidic processing of whey reduces the threonine content. Do you really feel that the level of threonine in standard whey-predominant formulas is potentially toxic? Dr. Rigo: Protein digestibility was a little lower than for whole protein because the absorption rate was significantly different. Regarding atopic disease, there are data from Lucas suggesting that premature infants may develop atopy, but we have no follow-up data in preterm infants fed protein hydrolysate to evaluate the efficacy of whey hydrolysate protein in preventing atopic disease. Regarding gastric emptying, there is some evidence that it is more rapid with protein hydrolysate than with whole protein. In relation to your question about threonine, there are no current data suggesting that threonine could be toxic during development. However, with whey protein hydrolysate formulas we are reaching levels not previously attained with whey-predominant formulas, and we know that there is a close relation between the threonine concentration in plasma and in brain. Thus there is a need for caution and follow-up studies.

13 NUTRITION BALANCE AND PLASMA AM1NO ACID 151 Prof. Lucas: Our data on allergy are being misused in the context of hydrolyzed formula. We showed that it was only subjects with a positive family history of allergy who benefited from exclusion of cow's milk protein. The majority of infants with a negative family history probably benefit from being given whole protein. My other point is that we've had much experience with using whole-protein formulas but very little experience with using hydrolyzed formulas, in terms of clinical trial testing. From everything I've heard, it would seem that the use of these formulas should be regarded as theoretical and experimental (but see discussion of Ziegler's Chapter 16 ED). Dr. Atkinson: I have another point I would like your opinion on. Traditionally, one purpose of hydrolysate formulas was to rest the gut in case of gastrointestinal problems. Do you think that the preterm infant's gut needs rest? Or maybe by giving them a hydrolysate are we doing harm by suppressing the induction of proteases? Dr. Rigo: Such formulas have been used for quite a long time now without apparent ill effects on the gut, but I don't have the data to give you a complete answer on the effect on protease activity. Dr. Guesry: I can give some partial answers to Dr. Atkinson's questions. With regard to the toxicity of threonine, we have no human studies, but there are animal studies that have been published [1] and show that baby rats with up to four times the normal level of threonine in the brain are perfectly normal in their behavior after 3 months. So there is no observable change in the behavior of rats submitted to high threonine levels. Your question about resting the intestine of the premature baby by giving hydrolyzed protein was also investigated in an animal experiment. We did studies in minipigs and showed that you don't rest the intestinal enzymes when you feed hydrolyzed protein trypsin, chymotrypsin, all the pancreatic enzymes and intestinal enzymes were normal. Prof. Mom: Does the acidic methodology influence other amino acids apart from threonine? Dr. Rigo: The only significant difference was a small reduction in valine concentration. All the other amino acids were similar in the two groups. Prof. Pohlandt: I would like to address the question of absorption and the derived values of efficiency. I think your data are based on nitrogen retention, but you didn't mention whether you had taken into account the different urea concentrations in human milk and formula. You tried to explain the surprisingly low absorption rate of human milk protein by the presence of immunoglobulins, but quantitatively the immunoglobulins are less important than urea. Urea accounts for about 25% of the nitrogen in breast milk but only 15% in commercially available formulas on the European market. I think this 10% difference in urea nitrogen could easily explain the apparently lower protein absorption from human milk. Dr. Rigo: I disagree. Urea is very well absorbed. The difference in absorption must be due to a protein component of human milk that are not digested like immunoglobulins, transferrin, and so on. Urea is not well utilized, but 95% is absorbed, and some goes directly into the urine. Urea does not interfere with absorption rate but it does influence significantly the utilization rate and therefore the nitrogen balance. Prof. Pohlandt: But you haven't taken it into account in the efficiency calculation. Dr. Rigo: I showed you the global efficiency that is, the ratio between nitrogen retention and nitrogen absorption. I explained that one of the differences between formula and human milk was the higher urea content of human milk, which is well absorbed but not well utilized, so it decreases the apparent efficiency of human milk. Dr. Walker: Why were whey predominant formulas 2 and 3 so much more efficient than formula 1 with respect to absorption and retention? Dr. Rigo: WPF1 was a very old formula that was used before 1980, and it had reduced en-

14 152 NUTRITION BALANCE AND PLASMA AMINO ACID ergy content. The fat blend was also completely different, and we showed that the fat absorption was sometimes very low. So the metabolizable energy available with formula 1 was relatively poor. In addition, nitrogen content was also relatively high. There was no significant difference in protein absorption, but utilization is a function of the energy available. Dr. Walker: Several years ago, it was suggested that certain amino acids are essential in premature infants that are not essential in term infants. Is this taken into consideration when providing nitrogen for the premature infant? Dr. Rigo: I think the essential amino acids for the preterm infant are the same as for the term infant. The formula used by Raiha 20 years ago is completely different from the formulas we have now. There was a big difference in the protein content and also in the fat blend. There was also a higher phosphorus content. The amino acid content of the old formulas was not well balanced, and they were low in cysteine and taurine. Current formulas are much better balanced and are adequate in terms of their amino acid content. Prof. Heird: As valuable as those earlier studies by Raiha, Gaull, and coworkers were at the time, they have one major problem: the mineral and particularly the sodium, potassium, and phosphorus contents of those formulas were the same, and also the same as in human milk. So our calculations lead us to the conclusion that there is no way that the higher protein intake could in fact have been retained. In fact, 2.25 g/kg-d was about the maximum that could have been retained, and that obviously is important in terms of this whole issue of the utilization of protein intake. Prof. Koletzko: You referred to the disadvantages of heat-treated liquid formulas and implied that the Maillard reaction was a possible explanation. Do you believe we should not use heat-treated liquid formula, or is there a way to avoid the protein damage? Dr. Rigo: We need to consider heat treatment not only in terms of protein absorption, but also in terms of amino acid bioavailability. There is certainly some reduction in amino acid bioavailability with heat treatment, and we need to bear that in mind. But the overall protein efficiency of the liquid formula was similar to the powdered formula, and the only difference we found was in absorption. Plasma amino acid concentrations were also similar to powdered formula; there were slight differences, but the profile was exactly the same. Prof. Moro: If I understood correctly, your group of babies receiving fortified human milk was a mixture of those receiving supplementary human protein and those receiving supplementary bovine protein. I don't think you can make valid comparisons with such a composite group. You should separate babies receiving only human milk protein from the babies receiving human milk protein plus protein deriving from the fortifier. Dr. Rigo: I agree with you, we could have split this group into two, but then I would also have had to present comparisons of seven groups, and since there was not a large difference between the two fortified human milk groups, I preferred to combine them. Also in the group fed cow milk human milk fortifier, the range of nitrogen intake would be smaller than in those fed human milk alone and with addition of human milk protein. Prof. Wu: Several studies support the use of human milk. I think it would be better to use preterm human milk. Preterm milk has a higher content of total nitrogen, protein nitrogen, sodium, calcium, magnesium, zinc, copper, iron, as well as IgA and other protective factors. Dr. Rigo: Most of the time we try to use own mother's milk, but if we don't have it, we also use banked human milk for feeding preterm infants. It may be difficult to obtain sufficient preterm mothers' milk. Prof. Endres: A group in Berlin has shown that formulas containing hydrolyzed protein do not contain IGF-1. There have been few reports on this, but one study claimed that the endogenous production of IGF-1 was sufficient in premature babies. Do you have a definitive answer to this question?

15 NUTRITION BALANCE AND PLASMA AMINO ACID 153 Dr. Rigo: I have no complete answer to that question and the exact role of IGF-1 in the gastrointestinal tract is not known. This is something that probably needs studying. Dr. Filho: You mentioned the use of glutamine as a supplement for preterm formulas. Do you have any further information on this? Dr. Rigo: There are some data showing a reduction in sepsis in the preterm infant given supplementary glutamine [2]. However, there are serious technical difficulties because glutamine is very unstable. More work needs to be done. REFERENCES 1. Castagne V, Maire JC, Moennoz D, Gyger M. Effect of threonine on the behavioural development of the rat. Pharmacology Biochemistry and Behaviour 1995;52(2): Neu J, Roig JC, Meetze WH, et al. Enteral glutamine supplementation for very low birth weight infants decreases morbidity. J Pediatr 1997;131:

Protein Quantity and Quality in Infant Formula: Closer to the Reference

Protein Quantity and Quality in Infant Formula: Closer to the Reference infant Formula: Closer to the Reference, edited by Niels C. R Ra'ihii and Firminci F' Ruhallelli. Nestle Nutrition Workshop Series. Pediatric Program. Vol. 47 Supplement. Nestec Ltd.. Vevey/Lippincott

More information

Protein Requirements in Infancy

Protein Requirements in Infancy Infant Formula: Closer to the Reference, edited by Niels C. R. Raiha and Firmino F. Rubaltelli. Nestle Nutrition Workshop Series, Pediatric Program. Vol. 47 Supplement. Nestec Ltd.. Vevey/Lippincott Williams

More information

Fortification of Maternal Expressed Breast Milk

Fortification of Maternal Expressed Breast Milk Fortification of Maternal Expressed Breast Milk Title: Version: 2 Ratification Date: April 2016 Review Date: April 2019 Approval: Nottingham Neonatal Service Clinical Guideline Group 20 th April 2016 Author:

More information

4/15/2014. Nurses Take the Lead to Improve Overall Infant Growth. Improving early nutrition. Problem Identification

4/15/2014. Nurses Take the Lead to Improve Overall Infant Growth. Improving early nutrition. Problem Identification Nurses Take the Lead to Improve Overall Infant Growth Cathy Lee Leon, RN, BSN, MBA, NE-BC California Pacific Medical Center-San Francisco Improving early nutrition Standardized feeding protocol Problem

More information

Post Discharge Nutrition. Jatinder Bhatia, MD, FAAP

Post Discharge Nutrition. Jatinder Bhatia, MD, FAAP Post Discharge Nutrition Jatinder Bhatia, MD, FAAP Declaration of potential conflicts of interest Regarding this presentation the following relationships could be perceived as potential conflicts of interest:

More information

Nutrition of the Low-Birth-Weight Infant

Nutrition of the Low-Birth-Weight Infant Nutritional Adaptation of the Gastrointestinal Tract of the Newborn, edited by N. Kretchmer and A. Minkowski. Nestle, Vevey/Raven Press, New York 1983. Nutrition of the Low-Birth-Weight Infant Niels C.

More information

Protein Needs of Preterm Infants: Why Are They So Difficult to Meet?

Protein Needs of Preterm Infants: Why Are They So Difficult to Meet? Protein in the Feeding of Preterm Infants Bhatia J, Shamir R, Vandenplas Y (eds): Protein in Neonatal and Infant Nutrition: Recent Updates. Nestlé Nutr Inst Workshop Ser, vol 86, pp 121 128, (DOI: 10.1159/000442732

More information

Goals. Goals. Maintenance Rations 4/25/2014. Week 4 Lecture 12. Clair Thunes, PhD

Goals. Goals. Maintenance Rations 4/25/2014. Week 4 Lecture 12. Clair Thunes, PhD Maintenance Rations Week 4 Lecture 12 Clair Thunes, PhD Animal Science 126 Equine Nutrition Goals Understand that in reality that horses have an amino acid requirement not a CP requirement That there are

More information

Digestibility and Absorption of Protein in Infants

Digestibility and Absorption of Protein in Infants Protein Metabolism During Infancy, edited by Niels C. R. Raiha. Nestle Nutrition Workshop Series. Vol. 33. Nestec Ltd.. Vevey/ Raven Press. Ltd.. New York 1994. Digestibility and Absorption of Protein

More information

Minimal Enteral Nutrition

Minimal Enteral Nutrition Abstract Minimal Enteral Nutrition Although parenteral nutrition has been used widely in the management of sick very low birth weight infants, a smooth transition to the enteral route is most desirable.

More information

Protein Requirements of Low Birthweight, Very Low Birthweight, and Small for Gestational Age Infants

Protein Requirements of Low Birthweight, Very Low Birthweight, and Small for Gestational Age Infants Protein Metabolism During Infancx, edited by Niels C. R. Raiha. Nestle Nutrition Workshop Series. Vol. 33. Nestec Ltd.. Vevey/ Raven Press. Ltd.. New York 1994. Protein Requirements of Low Birthweight,

More information

Infant Nutrition & Growth to Optimize Outcome Fauzia Shakeel, MD

Infant Nutrition & Growth to Optimize Outcome Fauzia Shakeel, MD Infant Nutrition & Growth to Optimize Outcome Fauzia Shakeel, MD Neonatologist All Children s Hospital / Johns Hopkins Medicine Affiliate Assistant Professor, University of South Florida September 2014

More information

Aggressive Nutrition in Preterm Infants

Aggressive Nutrition in Preterm Infants Aggressive Nutrition in Preterm Infants Jatinder Bhatia, MD, FAAP Declaration of potential conflicts of interest Regarding this presentation the following relationships could be perceived as potential

More information

Postdischarge nutrition,

Postdischarge nutrition, Postdischarge nutrition, is there a role for human milk? Harrie N. Lafeber MD,Ph.D. Professor of Neonatology, VU university medical center, Amsterdam, NL Ehrencranz et al. Indirect calorimetry 120-130

More information

LITTLE TREASURE. Premium Australian Made Powdered Milk Products

LITTLE TREASURE. Premium Australian Made Powdered Milk Products LITTLE TREASURE Premium Australian Made Powdered Milk Products Little Treasure Infant Formula and other Milk Powder products. Made in Australia to the highest possible standard, using milk from Australian

More information

Principles of nutrition in the preterm infant. Importance of nutrition: Undernutrition is very common in VLBW infants

Principles of nutrition in the preterm infant. Importance of nutrition: Undernutrition is very common in VLBW infants Principles of nutrition in the preterm infant Dr. S. Navarro-Psihas Pädiatrie IV, Klinik für Neonatologie Medizinische Universität Innsbruck Importance of nutrition: Undernutrition is very common in VLBW

More information

(1 280 ± 286) g; (1 436 ± 201) g

(1 280 ± 286) g; (1 436 ± 201) g 259 ( 100730) : 34 1 800 g 24 (, 11 ) (, 13 ) 50%, 100 ml / (kg d) FM85, ; (30.6 ± 2.9), (1 280 ± 286) g; (31.6 ± 1.9), (1 436 ± 201) g, 81.6%, 34.1 24.6 d [18.9 vs 17.1 g / (kg d), P = 0.364] (1.16 vs

More information

Learning from nature for a healthier start Staged infant formulas with Lacprodan mimic the changing protein profile of breast milk

Learning from nature for a healthier start Staged infant formulas with Lacprodan mimic the changing protein profile of breast milk Learning from nature for a healthier start Staged infant formulas with Lacprodan mimic the changing protein profile of breast milk By Lotte Neergaard Jacobsen Arla Foods Ingredients. May 013 1 3 4 www.arlafoodsingredients.com

More information

Protein requirements during the first year of life 1 4

Protein requirements during the first year of life 1 4 Protein requirements during the first year of life 1 4 Christophe Dupont ABSTRACT The composition of human milk provides the model for estimated total protein and essential amino acid requirements during

More information

Nutrition in the NICU ANDI MARKELL RD, LD

Nutrition in the NICU ANDI MARKELL RD, LD Nutrition in the NICU ANDI MARKELL RD, LD PORTLAND, OREGON ANDI MARKELL NUTRITION CONSULTANT Conflict of Interest I had no conflict of interest until 2015 when I was asked to join the Nutrition Advisory

More information

HUMAN MILK FOR PRETERM INFANTS: ONE SIZE FITS ALL?

HUMAN MILK FOR PRETERM INFANTS: ONE SIZE FITS ALL? HUMAN MILK FOR PRETERM INFANTS: ONE SIZE FITS ALL? Jatinder Bhatia, MD, FAAP Professor and Chief Division of Neonatology Vice Chair, Clinical Research Department of Pediatrics Chair, Augusta University

More information

Evaluation of a taurine containing amino acid

Evaluation of a taurine containing amino acid Archives ofdisease in Childhood 1991; 66: 21-25 21 Coombe Lying-In Hospital, Dublin 8, Republic of Ireland L Thornton E Griffim Correspondence to: Dr Griffm. Accepted 26 July 199 Evaluation of a taurine

More information

human milk or formula

human milk or formula Archives of Disease in Childhood, 1987, 62, 1257-1264 Plasma amino acids in small preterm infants fed on human milk or formula V VENTURA AND 0 G BROOKE Department of Child Health, St George's Hospital

More information

Human milk. The Gold Standard. Human milk. Human milk. Human milk. Human milk. 3 Types of Human Milk 4/23/2015

Human milk. The Gold Standard. Human milk. Human milk. Human milk. Human milk. 3 Types of Human Milk 4/23/2015 The Gold Standard Defining characteristic of the class Mammalian Ability to produce designed specifically to nourish the young It is a unique complex fluid with a species specific composition It is the

More information

Nutrition in the premie World

Nutrition in the premie World SURVIVAL AND GROWTH NUTRITION ESSENTIALS Nutrition in the premie World DR VISH SUBRAMANIAN MD MRCP (UK) FAAP NEONATAL CRITICAL CARE MERCY CHILDRENS HOSPITAL., SPRINGFIELD MO Prematurity Nutritional Requirements

More information

IMPORTANCE OF ALPHA-LACTALBUMIN IN INFANT NUTRITION

IMPORTANCE OF ALPHA-LACTALBUMIN IN INFANT NUTRITION IMPORTANCE OF ALPHA-LACTALBUMIN IN INFANT NUTRITION By Dr Dan Alaro Learning Objective Describe the roles of α-lactalbumin as an important nutrients for infants. Protein Composition : Human milk The whey-to

More information

Proteins and Amino Acids. Benjamin Caballero, MD, PhD Johns Hopkins University

Proteins and Amino Acids. Benjamin Caballero, MD, PhD Johns Hopkins University This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Protein Deposition in Growing and Finishing Pigs

Protein Deposition in Growing and Finishing Pigs 1 Protein Deposition in Growing and Finishing Pigs DETERMINING WHOLE BODY PROTEIN DEPOSITION RATES IN PIGS. Mark L. Lorschy, Doug A. Gillis, John F. Patience and Kees de Lange. Summary There is controversy

More information

Calf Notes.com. happens to the rest of the protein? It s an interesting observation and may provide some insights into the newborn calf s metabolism.

Calf Notes.com. happens to the rest of the protein? It s an interesting observation and may provide some insights into the newborn calf s metabolism. Calf Notes.com Calf Note 168 Where does the protein go? Introduction Colostrum is special stuff. The composition of maternal colostrum (MC) is profoundly different from that of milk; it s so different

More information

220 SUBJECT INDEX. D Diarrhea and sodium balance, 74 weanling, 161,179,208,212; see also Infection

220 SUBJECT INDEX. D Diarrhea and sodium balance, 74 weanling, 161,179,208,212; see also Infection Subject Index Acid balance, see ph Allergy, food, see also Immunity and beikost, 143-144 and breast milk, 91,143 and formula, 89-90 Antidiuretic hormone, 66 67 Antigens, see also Immunity determinants,

More information

Preterm Dietary Supplements

Preterm Dietary Supplements Preterm Dietary Supplements Dr Umesh Vaidya IAP Neocon, Mumbai 2015 Preterm VLBW Nutrition : Ideal practice Minimal enteral feeds (10 ml / kg / day) Human breast milk Feed advancement @ 20 ml / kg / day

More information

The legally binding text is the original French version TRANSPARENCY COMMITTEE OPINION. 19 October 2011

The legally binding text is the original French version TRANSPARENCY COMMITTEE OPINION. 19 October 2011 The legally binding text is the original French version TRANSPARENCY COMMITTEE OPINION 19 October 2011 PEDIAVEN AP-HP G15, solution for infusion 1000 ml of solution in two chamber bag, B/4 (CIP code: 419

More information

Growth Velocity and Plasma Amino Acids in the Newborn

Growth Velocity and Plasma Amino Acids in the Newborn SCOTT ET AL. 003 1-3998/85/1905-0446$02.00/0 PEDIATRIC RESEARCH Copyright 0 1985 International Pediatric Research Foundation, Inc. Vol. 19, No. 5, 1985 Printed in U.S. A. Growth Velocity and Plasma Amino

More information

Nutrition in the preterm - current menu Dr Heena Hooker Consulting Neonatal Paediatrician Aga Khan University Hospital, Nairobi

Nutrition in the preterm - current menu Dr Heena Hooker Consulting Neonatal Paediatrician Aga Khan University Hospital, Nairobi Nutrition in the preterm - current menu Dr Heena Hooker Consulting Neonatal Paediatrician Aga Khan University Hospital, Nairobi Outline O Background O Challenges in preterm nutrition O Parenteral Nutrition

More information

11/4/10. Making Sense of Infant Formulas, Milk Fortifiers and Additives. Components of infant formula. Goals of Growth.

11/4/10. Making Sense of Infant Formulas, Milk Fortifiers and Additives. Components of infant formula. Goals of Growth. Components of infant formula Making Sense of Infant Formulas, Milk Fortifiers and Additives Jae Kim, MD, PhD UCSD Medical Center Division of Neonatal-Perinatal Medicine Division of Pediatric Gastroenterology,

More information

Easy to digest. Kabrita protein digestibility (1)

Easy to digest. Kabrita protein digestibility (1) Easy to digest Kabrita protein digestibility (1) In vitro analyses of human milk, Kabrita goat milk infant formula (IF) and cow s milk IF in the gastrointestinal model Tiny-TIM agc 90 80 Cum. nitrogen

More information

Product Information: EleCare (for Infants)

Product Information: EleCare (for Infants) 1 of 5 Product Information: 2 of 5 A 20 Cal/fl oz, nutritionally complete amino acid-based formula for infants who cannot tolerate intact or hydrolyzed protein. EleCare is indicated for the dietary management

More information

discussing and investigating appropriate formulas before your baby's birth so that you will be well prepared in case of need. Develop your knowledge

discussing and investigating appropriate formulas before your baby's birth so that you will be well prepared in case of need. Develop your knowledge NFANT FORMULAS - a parent's guide Vicki Martin - Dietitian Auckland New Zealand Abstract Infant formulas are necessary for babies who are not breastfed and those who are being weaned off the breast. This

More information

BREAST MILK COMPONENTS AND POTENTIAL INFLUENCE ON GROWTH

BREAST MILK COMPONENTS AND POTENTIAL INFLUENCE ON GROWTH Note: for non-commercial purposes only CAMPUS GROSSHADERN CAMPUS INNENSTADT BREAST MILK COMPONENTS AND POTENTIAL INFLUENCE ON GROWTH Maria Grunewald, Hans Demmelmair, Berthold Koletzko AGENDA Breast Milk

More information

Phosphoremia (mmol/l) Calcemia (mmol/l) Postnatal age (days) Postnatal age (days) Urinary Calcium (mg/kg/d) Phosphoremia (mmol/l)

Phosphoremia (mmol/l) Calcemia (mmol/l) Postnatal age (days) Postnatal age (days) Urinary Calcium (mg/kg/d) Phosphoremia (mmol/l) 3,0 3,2 Calcemia (mmol/l) 2,8 2,6 2,4 2,2 2,0 1,8 Phosphoremia (mmol/l) 3,0 2,8 2,6 2,4 2,2 2,0 1,8 1,6 1,4 1,2 1,6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Postnatal age (days) 1,0 0 1 2 3 4 5 6 7 8 9 10 11

More information

Symposium 3. Pre-term Infant in the First Week of Life

Symposium 3. Pre-term Infant in the First Week of Life Symposium 3 Fl id d N t iti S t f th Fluid and Nutrition Support of the Pre-term Infant in the First Week of Life Guidelines for the Provision of Amino Acids in the Preterm Infant During the First Week

More information

REVIEW PeptoPro in Sports Performance

REVIEW PeptoPro in Sports Performance REVIEW PeptoPro in Sports Performance Tammy Wolhuter, RD (SA) & Anne Till, RD(SA) From: Anne Till & Associates, Registered Dietitians 1. Nutrition and Sporting Performance Optimal and good nutrition is

More information

HIJAM-HMF A READY RECKONER HUMAN MILK FORTIFIER 1 gm per Sachet

HIJAM-HMF A READY RECKONER HUMAN MILK FORTIFIER 1 gm per Sachet HIJAM-HMF A READY RECKONER HUMAN MILK FORTIFIER 1 gm per Sachet To ensure long-term health and development of preterm infants, an early nutritional support is utmost important. Breast milk is undoubtedly

More information

Nutramigen with Enflora LGG *

Nutramigen with Enflora LGG * Nutramigen with Enflora LGG * For Cow s Milk Allergy * LGG is a registered trademark of Valio Ltd. Indication Nutramigen with Enflora LGG is an iron-fortified, lactose-free, galactose-free, hypoallergenic

More information

Part 2: Commercial Formulas

Part 2: Commercial Formulas Sanford Medical Center Aunt Cathy s Guide to: Choosing Appropriate Infant Milks and Formulas 4/2012 Aunt Cathy Cathy Breedon PhD, RD, CSP, FADA Prenatal/Pediatric Nutrition Specialist Clinical Nutrition

More information

Soy Protein. Muscle health benefits: for Sports Nutrition Recovery and during aging. May 9, Mark Cope, PhD

Soy Protein. Muscle health benefits: for Sports Nutrition Recovery and during aging. May 9, Mark Cope, PhD Soy Protein Muscle health benefits: for Sports Nutrition Recovery and during aging May 9, 2017 Mark Cope, PhD Blending Proteins to Provide Better Muscle Health Importance of Muscle Health The Benefits

More information

FISH BOVINE. Extraction. Purification. Raw Material

FISH BOVINE. Extraction. Purification. Raw Material 50 LAPI GELATINE 1966-2016 Collagen peptides are a versatile source of protein and an important element of healthy nutrition. Their nutritional and physiological properties promote the health of bones

More information

Product Category: EleCare

Product Category: EleCare EleCare Product Category: EleCare EleCare (for Infants) Updated 4/28/2016 Product Information: EleCare (for Infants) 1 of 4 A 20 Cal/fl oz, nutritionally complete amino acid-based formula for infants who

More information

1 University of Kansas School of Medicine-Wichita, Department of Pediatrics 2 Wesley Medical Center, Department of Neonatology

1 University of Kansas School of Medicine-Wichita, Department of Pediatrics 2 Wesley Medical Center, Department of Neonatology Impact of on Very Low Birth Weight Infants Siddharthan Sivamurthy, M.D. 1, Carolyn R. Ahlers-Schmidt, Ph.D. 1, Katherine S. Williams, M.Ed. 1, Jared Shaw 2, Paula Delmore, M.S.N. 2, Barry T. Bloom, M.D.

More information

BREASTFEEDING TO PREVENT DOUBLE BURDEN OF MALNUTRITION

BREASTFEEDING TO PREVENT DOUBLE BURDEN OF MALNUTRITION BREASTFEEDING TO PREVENT DOUBLE BURDEN OF MALNUTRITION Sirinuch Chomtho Department of Pediatrics, Chulalongkorn University, Bangkok, Thailand The double burden of malnutrition means under- and over-nutrition

More information

ENTERAL NEEDS OF PRETERM INFANTS

ENTERAL NEEDS OF PRETERM INFANTS ENTERAL NEEDS OF PRETERM INFANTS A Capstone Seminar Paper for NTR 690: Seminar in Nutrition Presented to Dr. Rayane AbuSabha Department of Nutrition Sciences Sage Graduate School In Partial Fulfillment

More information

Dr Shipa Shah, Lorraine Bell Dietician

Dr Shipa Shah, Lorraine Bell Dietician CLINICAL GUIDELINES ID TAG Title: Author: Speciality / Division: Directorate: Enteral feeding and use of fortification and supplements in the preterm infant Dr Shipa Shah, Lorraine Bell Dietician Neonatalogy

More information

Optimal Distribution and Utilization of Donated Human Breast Milk: A Novel Approach

Optimal Distribution and Utilization of Donated Human Breast Milk: A Novel Approach 653738JHLXXX10.1177/0890334416653738Journal of Human LactationSimpson et al research-article2016 Original Research: Brief Report Optimal Distribution and Utilization of Donated Human Breast Milk: A Novel

More information

RD s In Practice: Advancing Pediatric Nutrition

RD s In Practice: Advancing Pediatric Nutrition RD s In Practice: Advancing Pediatric Nutrition A Strong Beginning Mindy Morris, DNP, NNP-BC, CNS Extremely Low Birth Weight Program Coordinator Objectives Understand the challenges associated with the

More information

Human Milk Analysis Measure protein, fat and carbohydrate. The first step in a healthy preterm baby s life is nutrition

Human Milk Analysis Measure protein, fat and carbohydrate. The first step in a healthy preterm baby s life is nutrition Human Milk Analysis Measure protein, fat and carbohydrate The first step in a healthy preterm baby s life is nutrition Preterm babies Premature babies are incredibly fragile and what we do during the first

More information

Amino Acids: essential nonessential

Amino Acids: essential nonessential Protein: a component of every living cell provides structure and framework in the body plays a role in fluid balance and acid--base balance used to transport substances through the blood provides 4 cal/g

More information

Enteral nutrition for optimal growth in preterm infants

Enteral nutrition for optimal growth in preterm infants Review article Kim Korean MJ J Pediatr Enteral 2016;59(12):466-470 nutrition pissn 1738-1061 eissn 2092-7258 Korean J Pediatr Enteral nutrition for optimal growth in preterm infants Myo-Jing Kim, MD Department

More information

Supporting improved nutrition for appropriate growth and improved long-term health outcomes

Supporting improved nutrition for appropriate growth and improved long-term health outcomes Supporting improved nutrition for appropriate growth and improved long-term health outcomes ZTC831/07/2015 The first 1000 days are a critical period for growth and development Achieving optimal nutrition

More information

Protein Requirements in Preterm Infants: Effect of Different Levels of Protein Intake on Growth and Body Composition

Protein Requirements in Preterm Infants: Effect of Different Levels of Protein Intake on Growth and Body Composition 0031-3998/05/5805-0855 PEDIATRIC RESEARCH Vol. 58, No. 5, 2005 Copyright 2005 International Pediatric Research Foundation, Inc. Printed in U.S.A. Protein Requirements in Preterm Infants: Effect of Different

More information

Breast Milk. Composition of Breast Milk

Breast Milk. Composition of Breast Milk Breast Milk Composition of Breast Milk Knowledge of the biological composition and constituents of breast milk are critical to the dietitian, because they form the rationale for effective practice in both

More information

Mare s milk. Mare s milk, in chemical composition and particularly in the protein content, it is one of the most similar milks of human milk.

Mare s milk. Mare s milk, in chemical composition and particularly in the protein content, it is one of the most similar milks of human milk. Mare s milk The mare s milk is produced for the mare (the female of horse) Mares, like all the mammal females, have mammary glands that secrete what it have to the unique food for their children during

More information

Necrotizing Enterocolitis: The Role of the Immune System

Necrotizing Enterocolitis: The Role of the Immune System Necrotizing Enterocolitis: The Role of the Immune System Patricia Denning, M.D. Associate Professor in Pediatrics Division of Neonatology Emory University School of Medicine What is NEC? What is NEC? Necrotizing

More information

SOME ASPECTS OF INFANT FEEDING. Quak Seng Hock

SOME ASPECTS OF INFANT FEEDING. Quak Seng Hock SOME ASPECTS OF INFANT FEEDING Quak Seng Hock Contents Introduction Importance of proper nutrition in the infant Breastfeeding Nutritional requirements of infants Introducing solid food Vitamin requirements

More information

Ruminant Health, Vitamin, Minerals & Nutrition. Presented by Marty Ulrich

Ruminant Health, Vitamin, Minerals & Nutrition. Presented by Marty Ulrich Ruminant Health, Vitamin, Minerals & Nutrition Presented by Marty Ulrich Ruminants require a number of minerals for optimal growth and reproduction. Selecting the correct mineral supplement is important

More information

Quantity Per Serving. 27 grams

Quantity Per Serving. 27 grams Whey Protein Isolate Nutrient Details Certain nutrients are included or omitted in our Regular Whey Isolate formula for specific reasons backed by scientific research and development Nutrient Type Protein

More information

Protein Intake and Growth in Preterm Infants: A Systematic Review

Protein Intake and Growth in Preterm Infants: A Systematic Review 554698GPHXXX10.1177/2333794X14554698Global Pediatric HealthTonkin et al research-article2014 Review Article Protein Intake and Growth in Preterm Infants: A Systematic Review Global Pediatric Health January-December

More information

GESKES/ SSNC Individualized Nutritional Support in the Case of Postnatal Growth Restriction

GESKES/ SSNC Individualized Nutritional Support in the Case of Postnatal Growth Restriction Case Presentation for the Course in Clinical Nutrition GESKES/ SSNC Individualized Nutritional Support in the Case of Postnatal Growth Restriction Dr. med. Chantal Cripe-Mamie Division of Neonatology Department

More information

Product Information: Similac Special Care 24 High Protein

Product Information: Similac Special Care 24 High Protein Product Information: Similac Special Care 24 High Protein 1 of 5 A 24 Cal/fl oz iron-fortified feeding for growing, low-birth-weight infants and premature infants who may need extra protein to help support

More information

Professor Joseph HADDAD Pediatric Department Saint George Univ Hosp Balamand Univ Beirut Lebanon

Professor Joseph HADDAD Pediatric Department Saint George Univ Hosp Balamand Univ Beirut Lebanon Nutrition & Growth in Premature Infant Professor Joseph HADDAD Pediatric Department Saint George Univ Hosp Balamand Univ Beirut Lebanon PART ONE : THE GROWTH OF THE PREMATURE INFANT ARE WE ON THE RIGHT

More information

, CCNE: What s the difference between cow s milk, goat s milk, formula, and breast milk?

, CCNE: What s the difference between cow s milk, goat s milk, formula, and breast milk? 00-000-00, CCNE: What s the difference between cow s milk, goat s milk, formula, and breast milk? Client-centered nutrition education uses methods like group discussions and hands-on activities to engage

More information

The EFSA Journal (2005) 280, 1-16

The EFSA Journal (2005) 280, 1-16 The EFSA Journal (2005) 280, 1-16 Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies on a request from the Commission related to the safety and suitability for particular nutritional

More information

Product Information: Similac Special Care 30

Product Information: Similac Special Care 30 Product Information: Similac Special Care 30 1 of 5 A 30 Cal/fl oz iron-fortified feeding for growing, low-birth-weight infants and premature infants. First 30-Cal/fl oz ready-to-feed liquid preterm infant

More information

EU RISK MANAGEMENT PLAN (EU RMP) Nutriflex Omega peri emulsion for infusion , version 1.1

EU RISK MANAGEMENT PLAN (EU RMP) Nutriflex Omega peri emulsion for infusion , version 1.1 EU RISK MANAGEMENT PLAN (EU RMP) Nutriflex Omega peri emulsion for infusion 13.7.2015, version 1.1 III.1. Elements for a Public Summary III.1.1. Overview of disease epidemiology Patients may need parenteral

More information

Protein in Neonatal and Infant Nutrition: Recent Updates

Protein in Neonatal and Infant Nutrition: Recent Updates 86 th Nestlé Nutrition Institute Workshop Protein in Neonatal and Infant Nutrition: Recent Updates 24-27 May 2015 Beijing, China Introduction The quality and quantity of proteins introduced to infants

More information

ANNEX. to the COMMISSION REGULATION (EU) /

ANNEX. to the COMMISSION REGULATION (EU) / EUROPEAN COMMISSION Brussels, XXX SANTE/12273/2015 ANNEX (POOL/E4/2015/12273/12273-EN ANNEX.doc) D043783/01 [ ](2016) XXX draft ANNEX 1 ANNEX to the COMMISSION REGULATION (EU) / amending Regulation (EU)

More information

Comparison of cow-milk, breast milk and formula: nutritional, immunologic and developmental considerations

Comparison of cow-milk, breast milk and formula: nutritional, immunologic and developmental considerations Comparison of cow-milk, breast milk and formula: nutritional, immunologic and developmental considerations Eugene Dinkevich, MD Downstate Healthy Lifestyles Program Department of Pediatrics SUNY-Downstate

More information

SUMMARY OF PRODUCT CHARACTERISTICS

SUMMARY OF PRODUCT CHARACTERISTICS SUMMARY OF PRODUCT CHARACTERISTICS 1. NAME OF THE MEDICINAL PRODUCT PRIMENE 10% 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each litre of the infusion solution contains: L-Isoleucine L-Leucine L-Valine

More information

Should I Eat More Protein?

Should I Eat More Protein? Should I Eat More Protein? The undeniable fact that muscles are very rich in protein has led to a huge dietary protein supplement industry. A quick Internet search gave 74,023 pages with stuff about this.

More information

NUTRITIONAL REQUIREMENTS

NUTRITIONAL REQUIREMENTS NUTRITION AIMS To achieve growth and nutrient accretion similar to intrauterine rates To achieve best possible neurodevelopmental outcome To prevent specific nutritional deficiencies Target population

More information

Threonine Is More Limiting Than Valine in Diets of Lactating Sows with High Rates of Body Protein Loss

Threonine Is More Limiting Than Valine in Diets of Lactating Sows with High Rates of Body Protein Loss Threonine Is More Limiting Than Valine in Diets of Lactating Sows with High Rates of Body Protein Loss Kevin T. Soltwedel, Robert A. Easter, and James E. Pettigrew Department of Animal Sciences University

More information

Amino Acids and Sorbitol injection with/without Electrolytes NIRMIN *

Amino Acids and Sorbitol injection with/without Electrolytes NIRMIN * For the use of a registered medical practitioner or a Hospital or a Laboratory only Amino Acids and Sorbitol injection with/without Electrolytes NIRMIN * DESCRIPTION: NIRMIN * is a clear, colourless injection

More information

Lecture Notes 2: Protiens

Lecture Notes 2: Protiens Lecture Notes 2: Protiens BY/ARSHED ABD ALI SHIHAD Proteins and Amino Acids What Are Proteins? Large molecules Made up of chains of amino acids Are found in every cell in the body Are involved in most

More information

Early Life Nutrition: Feeding Preterm Babies for Lifelong Health

Early Life Nutrition: Feeding Preterm Babies for Lifelong Health Early Life Nutrition: Feeding Preterm Babies for Lifelong Health Jane Alsweiler Frank Bloomfield Anna Tottman Barbara Cormack Tanith Alexander Jane Harding Feeding Preterm Babies for Lifelong Health Why

More information

Basic Requirements. Meeting the basic nutrient requirements

Basic Requirements. Meeting the basic nutrient requirements Basic Requirements It is imperative that cattle producers have an adequate understanding of the basic nutrient requirements of the cow herd to make informed and effective nutrition-related decisions. Meeting

More information

Clinical Benefits of Human Milk for Premature Infants

Clinical Benefits of Human Milk for Premature Infants Nutrition of the Very Low Birthweight Infant, edited by Ekhard Ei. Zicgler, Alan Lucas. Guido E. Moro. Nestle Nutrition Workshop Series, Paediatric Programme, Vol. 43, Nestec Ltd., Vevcy/Lippincott Williams

More information

MILK. Nutritious by nature. The science behind the health and nutritional impact of milk and dairy foods

MILK. Nutritious by nature. The science behind the health and nutritional impact of milk and dairy foods MILK Nutritious by nature The science behind the health and nutritional impact of milk and dairy foods Dairy matrix effects It is increasingly recognised that the effects of milk and dairy foods on health

More information

Human milk fortification

Human milk fortification INAC 2017 Human milk fortification Pr Jean-Charles Picaud Neonatology, Hôpital de la croix Rousse Claude Bernard university Lyon 1 Lyon, France Human milk has specific beneficial effects in preterm infants

More information

MCT AND THE ROLES NUTRITION

MCT AND THE ROLES NUTRITION MCT AND THE ROLES NUTRITION Nguyen Hoang Nhut Hoa Department of Nutrition Children's Hospital 2 OBJECTIVES Structure Absorption and metabolic Effects of MCT in the treatment of certain diseases Demand

More information

What Are Proteins? Lecture 9: Proteins. Proteins: large complex molecules composed of amino acids. Nutrition 150 Shallin Busch, Ph.D.

What Are Proteins? Lecture 9: Proteins. Proteins: large complex molecules composed of amino acids. Nutrition 150 Shallin Busch, Ph.D. What Are Proteins? Lecture 9: Proteins Nutrition 150 Shallin Busch, Ph.D. Proteins: large complex molecules composed of amino acids. Contain carbon, hydrogen, oxygen, nitrogen Primary source of nitrogen

More information

Maternal and Infant Nutrition Briefs

Maternal and Infant Nutrition Briefs Maternal and Infant Nutrition Briefs A research-based newsletter prepared by the University of California for professionals interested in maternal and infant nutrition March/April 2003 New Guidelines on

More information

Energy and Nitrogen Balance of Pigs Fed Four Corn Grains

Energy and Nitrogen Balance of Pigs Fed Four Corn Grains Energy and Nitrogen Balance of Pigs Fed Four Corn Grains R.W. Fent, S.D. Carter, M.J. Rincker, and J.S. Park Story in Brief Because corn is the primary energy source in diets for pigs, any variability

More information

Food for special medical purposes. phenylketonuria (PKU) Important notice: Suitable only for individuals with proven phenylketonuria.

Food for special medical purposes. phenylketonuria (PKU) Important notice: Suitable only for individuals with proven phenylketonuria. PKU Nutri 1 Energy Food for special medical purposes. For the dietary management of proven phenylketonuria (PKU) in infants from birth to 12 months and as a supplementary feed up to 3 years. An amino acid

More information

Product Information: Similac Special Care 30 With Iron

Product Information: Similac Special Care 30 With Iron Product Information: Similac Special Care 30 With Iron 1 of 5 A 30 Cal/fl oz iron-fortified feeding for growing, low-birth-weight infants and premature infants. Use under medical supervision. First 30-Cal/fl

More information

Product Information: Phenex -1

Product Information: Phenex -1 Product Information: Phenex -1 1 of 5 For nutrition support of infants and toddlers with phenylketonuria (PKU). Phenylalanine-free Use under medical supervision. Phenylalanine-free to allow greater intake

More information

Laura Hernandez, MBA RD LD Registered Dietitian KC Bariatric Shawnee, KS

Laura Hernandez, MBA RD LD Registered Dietitian KC Bariatric Shawnee, KS Laura Hernandez, MBA RD LD Registered Dietitian KC Bariatric Shawnee, KS Protein: What Is It? The word protein is derived from the Greek word prōteios which means primary or of prime importance. Proteins

More information

Product Information: Similac Special Care 24

Product Information: Similac Special Care 24 Product Information: Similac Special Care 24 1 of 5 A 24 Cal/fl oz iron-fortified feeding for growing, low-birth-weight infants and premature infants. Use under medical supervision. OptiGRO is our exclusive

More information

March, 2000 Volume 9, No. 1 RESEARCH ODDS & ENDS

March, 2000 Volume 9, No. 1 RESEARCH ODDS & ENDS Research Notes A C o m p i l a t i o n o f V i t a l R e s e a r c h U p d a t e s o n H u m a n N u t r i t i o n March, 2000 Volume 9, No. 1 RESEARCH ODDS & ENDS As many know, Albion is heavily involved

More information

CPT David J. Licciardello, DVM Veterinary Advisor

CPT David J. Licciardello, DVM Veterinary Advisor CPT David J. Licciardello, DVM Veterinary Advisor Carbohydrates Fats (Fatty Acids) Minerals Proteins (Amino Acids) Vitamins Water Referred to as Fiber Made up of the forage portion of a diet In a complete

More information

Amino Acids in Dairy Nutrition Where Do They Fit?

Amino Acids in Dairy Nutrition Where Do They Fit? Amino Acids in Dairy Nutrition Where Do They Fit? T. R. Overton and L. E. Chase Department of Animal Science Cornell University As our understanding of the biology underlying specifics of protein nutrition

More information

ProHydrolase Clinical Phase II Study. Deaton, J.; Dawson, H.; Davidson, J.

ProHydrolase Clinical Phase II Study. Deaton, J.; Dawson, H.; Davidson, J. Clinical Phase II Study Deaton, J.; Dawson, H.; Davidson, J. Clinical Phase II Study University of Wisconsin - La Crosse Office of Research and Sponsored Programs, Morris Hall 7 State St La Crosse, WI

More information