Aluminum-nitride codoped zinc oxide films prepared using a radio-frequency magnetron cosputtering system

Size: px
Start display at page:

Download "Aluminum-nitride codoped zinc oxide films prepared using a radio-frequency magnetron cosputtering system"

Transcription

1 JOURNAL OF APPLIED PHYSICS 102, Aluminum-nitride codoped zinc oxide films prepared using a radio-frequency magnetron cosputtering system Day-Shan Liu a and Chia-Sheng Sheu Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Taiwan 63201, Republic of China Ching-Ting Lee Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan, Republic of China Received 15 February 2007; accepted 27 June 2007; published online 13 August 2007 Al N codoped zinc oxide films were prepared using a radio-frequency magnetron cosputtering system at room temperature. AlN and ZnO materials were employed as the cosputtered targets. The as-deposited cosputtered films at various theoretical atomic ratios Al/ Al+Zn at. % showed n-type conductive behavior in spite of the N atoms exceeding that of the Al dopants, indicating that the N-related acceptors were still inactive. The crystalline structure was obviously correlated with the cosputtered AlN contents and eventually evolved into an amorphous structure for the Al N codoped ZnO film at a theoretical Al doping level reaching 60%. With an adequate postannealing treatment, the N-related acceptors were effectively activated and the p-type ZnO conductive behavior achieved. The appearance of the Zn 3 N 2 phase in the x-ray diffraction pattern of the annealed Al N codoped ZnO film provided evidence of the nitrification of zinc ions. The redshift of the shallow level transition and the apparent suppression of the oxygen-related deep level emission investigated from the photoluminescence spectrum measured at room temperature were concluded to be influenced by the activated N-related acceptors. In addition, the activation of the N acceptors denoted as N Zn bond and the chemical bond related to the Zn 3 N 2 crystalline structure were also observed from the associated x-ray photoelectron spectroscopy spectra American Institute of Physics. DOI: / I. INTRODUCTION Ultraviolet light-emitting diodes and laser diodes are required for the full-color displays and data storage systems in the optoelectronics industry. Zinc oxide ZnO material with wide and direct band gap of 3.37 ev similar to the commercial GaN material is a promising next generation semiconductor because of its large exciton binding energy of 60 mev, much greater than that of GaN 24 mev at room temperature. It becomes an attractive material for inducing stimulated emission at a low threshold voltage. 1 4 The fabrication of n- and p-type ZnO semiconductor using controllable extrinsic doping is required to realize ZnO-based optoelectronic devices. The n-type ZnO is achieved even without intentional doping. Unfortunately, the p-type ZnO is very difficult to prepare for the self-compensation effect originating from native defects as well as the limited solubility and inactivation of the acceptor dopants in the ZnO films. Recently, several researchers have put efforts into the exploration of p-zno film by doping group V elements as p-type dopants such as N, P, As, and Sb Among these acceptors, nitrogen dopants with a shallow acceptor level is a promising candidate to substitute for oxygen atoms as N O in the ZnO films due to their similar ionic radius. To date, N-doped ZnO films have been prepared using various deposition methods such as chemical vapor depositon, 5,12 14 a Author to whom correspondence should be addressed; FAX: ; electronic mail: dsliu@sunws.nfu.edu.tw pulsed-laser deposition, 15 implantation, 6 and sputtering technology using different nitrogen sources such as N 2,NH 3, N 2 O, Zn 3 N 2, and MMH y monomethyl hydrazine. 9,16,17 However, the reliability and reproducibility in obtaining p-type ZnO:N is still controversial. Because of the chemical activity of O is higher than that of N, Zn is prone to combine with O rather than N, resulting in the N atoms being difficult to introduce into ZnO films. To solve this problem, some researches had diverted their concentration on the Zn 3 N 2 material properties, 18 and obtained p-type ZnO using thermal oxidation of Zn 3 N 2 films. 5,9,19 In recent years, p-type ZnO films were comprehensively achieved using the codoping method simultaneously using nitrogen acceptors and reactive III-group donors such as Ga N, In N, and Al N dopants to increase the solubility of N atoms in the ZnO films Compared with Ga and In atoms, Al is more suitable as reactive donors for their superior advantages such as low cost and near containment-free material as well as the superior stability for the strong Al N and Al O bonds. ZnO p-n homojunction devices were therefore successfully prepared with Al N codoped technology using the dc reactive magnetron sputtering system employing a specific Zn:Al alloy metal target under N 2 O O 2 reactive gas ambient. 23 However, the above-mentioned deposition method was reported to be deeply influenced by the Zn:Al mixture target and the partial pressure of reactive N 2 O gas, resulting in an unchanged atomic composition of zinc to aluminum in the deposition film. To simplify the deposition parameters and /2007/102 3 /033516/6/$ , American Institute of Physics

2 Liu, Sheu, and Lee J. Appl. Phys. 102, TABLE I. Detailed cosputtered deposition conditions of the AlN ZnO cosputtered films. Deposition parameters Base pressure Cosputtering gas ambient Cosputtering pressure Size of target rf power supplied on target Deposition temperature Cosputtering film thickness Target-substrate distance Substrate holder rotation Conditions Pa Argon gas 1.33 Pa 5 cm in diameter Zinc oxide target: 40, 46, 76, 137, 321, and 410 W Aluminum nitrogen target: 85 and 150 W Room temperature cooled down by cooling water 500 nm Target center to substrate holder center: 5 cm 72 rpm obtain Al N codoped films at various Al doping levels, we propose a controllable and well-configured rf magnetron cosputtering method using the hexagonal crystalline structures of the ZnO and AlN targets to prepare Al N codoped ZnO films. The doping concentration in the ZnO films was easily controlled and derived using the cosputtered rf power on each target. To activate the N-related acceptor dopants and achieve p-type ZnO films, Al N codoped ZnO films at a specific Al doping level were processed with an additive postannealing treatment. The related electrical and material properties of the cosputtered Al N codoped ZnO films at various theoretical Al atomic ratios Al/ Al+Zn at. % were investigated. The activation of the N-related acceptors in the p-type ZnO film was conducted from the crystalline structure, photoluminescence characteristics, and chemical bond nature compared to that of the undoped ZnO film. II. EXPERIMENT The rf magnetron cosputtering system used in this study is equipped with a dual rf power supply that generated two different rf powers with synchronized phases. The configuration of the rf magnetron cosputtering chamber is illustrated elesewhere. 24 ZnO purity of 99.99% and AlN purity of 99.99% materials were selected as the cosputtered targets. To deposit cosputtered films at various Al doping levels on glass and n-type Si 100 substrate at room temperature, the rf power supplied on AlN target was fixed at 85 W and the rf power supplied on ZnO target was controlled to vary from 46 to 410 W. The high AlN contents introduced into ZnO films was also prepared using the rf powers supplied on the AlN and ZnO targets at 150 and 40 W, respectively. The detailed cosputtered deposition conditions of the AlN ZnO cosputtered films are given in Table I. The theoretical Al atomic ratios Al/ Al+Zn at. % introduced into the ZnO films could be evaluated from the following expression similar to our previous descriptions in preparing the cosputtered indium tin oxide ITO -ZnO transparent and conductive films: 25 D 1 A d 1 : D 2 A d 2 = P:Q, 1 M 1 M 2 where D 1 and D 2 cm/min are the deposition rates evaluated from the thickness of the undoped AlN and ZnO films prepared at specific rf powers, respectively; A cm 2 are defined as the cross-section area of the substrate surface; d 1 and d 2 g/cm 3 are related to the density of the AlN 3.26 g/cm 3 and ZnO 5.66 g/cm 3 materials. In addition, M 1 and M 2 g/mol are the molecular weights of the AlN and ZnO materials; P and Q mole are the synthesized mole ratios of Al and Zn atoms in these cosputtered films. According to the deposition rates of the undoped ZnO and AlN films prepared at each rf power, shown in Table I, the theoretical Al atomic ratios Al/ Al+Zn at. % in the as-deposited cosputtered films were approximated to 5%, 10%, 20%, 30%, 40%, and 60%, respectively. With the aim of effectively activating the doping impurities, especially for the N-related acceptors, a postannealing treatment was carried out. The postannealing temperatures were varied in the range from 300 to 700 C for 30 min under nitrogen ambient. The undoped ZnO film deposited at an rf power of 321 W supplied on the ZnO target was also prepared as a standard reference. The film thickness of the cosputtered films and the undoped ZnO films before and after annealing treatments was measured using a surface profile system Veeco, Dektak 6M. The practical doping levels of Al and N in these as-deposited cosputtered films were examined using an energy dispersive x-ray spectroscopy EDS quantitative analysis attached to a scanning electron microscope JEOL, JSM-5410LV. Resistivity, carrier concentration, and Hall mobility were measured using the van der Pauw method with a Hall measurement system Ecopia, HMS The crystalline structures were examined using x-ray diffraction XRD patterns observed from a diffractometer Siemens, model D-500 using a Cu K radiation source. Photoluminescence PL spectra were measured at room temperature using a He Cd laser =325 nm pumping source. The chemical bonds were analyzed using x-ray photoelectron spectroscopy XPS with a monochromatic Al K source. III. RESULTS AND DISCUSSIONS The measured Al atomic ratios Al/ Zn+Al at. % in these cosputtered films decreased from 9.22 to 2.46 at. % with increasing rf power supplied on the ZnO target conducted from an energy dispersive x-ray spectroscope quantitative analysis were much smaller than the theoretical Al doping levels, indicating that the AlN contents were difficult to incorporate into the ZnO films. The true atomic concentration of nitrogen to aluminum N/Al in at. % in the AlN ZnO cosputtered films as a function of the rf cosputtered power on the ZnO target is shown in Fig. 1. The Al and N

3 Liu, Sheu, and Lee J. Appl. Phys. 102, FIG. 1. Atomic concentration of nitrogen to aluminum N/Al in the AlN ZnO cosputtered films as a function of the rf cosputtered power on ZnO target the theoretical Al atomic ratio Al/ Zn+Al at. % is shown in bracket. dopants were successfully introduced in the cosputtered films referred as Al N codoped ZnO films hereafter. The N atomic concentrations in these Al N codoped ZnO films were found to be higher than that of the Al atomic concentrations, especially for the films prepared at elevated cosputtered powers on the ZnO target. Since large amounts of native defects such as zinc interstitials and oxygen vacancies were reported as prone to be induced while depositing the ZnO films at higher rf powers, 26 N atoms ionized from cosputtering were likely to be attracted by those Zn-rich defects. This brought about more N impurities introduced into the ZnO films. However, because of the soluble limitation of N in the ZnO films, the measured N atom concentrations in these cosputtered films were nearly unchanged in spite of the increased Al doping concentration. As a result, the Al atom doping concentrations in these cosputtered films were gradually close to that of N atoms at lower cosputtered powers supplied on the ZnO target. The electrical property evolutions of these as-deposited Al N codoped ZnO films at various theoretical Al doping levels, as well as that of an undoped ZnO film, are illustrated in Fig. 2. Although the N impurity atomic ratios in the as-deposited cosputtered films were found to be in excess of that of the Al contents. These as-deposited Al N codoped ZnO films still showed n-type conductive behavior. High electron carrier concentrations about cm 3 were obtained from these cosputtered films at theoretical Al atomic ratios ranging from 10% to 40%, while that of the undoped ZnO film showed a much lower electron carrier concentration. This implied that the FIG. 2. Film resistivity, carrier concentration, and Hall mobility of the asdeposited Al N codoped and undoped ZnO films. FIG. 3. X-ray diffraction patterns of the as-deposited Al N codoped ZnO films as well as the undoped ZnO and AlN films. doping Al impurities were able to donate free electrons in the as-deposited cosputtered films whereas the N-related acceptors were electrically inactive. As a result, an apparent increase in the electron carrier concentration was obtained in spite of the high N to Al atomic ratios shown in Fig. 1 measured in the as-deposited Al N codoped ZnO films. Figure 3 shows the crystalline structures of the as-deposited cosputtered films as well as undoped ZnO and AlN films deposited on glass substrates. An apparent diffraction peak determined as ZnO 002 phase was observed from the diffraction pattern of the undoped ZnO film. A weak diffraction peak identified as AlN 100 appeared in the undoped AlN film. This indicated that the preferred growth orientation of the undoped ZnO film was distinct from the undoped AlN film in spite of their similar hexagonal crystalline structures. As a result, the crystalline structure was suggested to be disordered due to the cosputtered AlN contents introduced into the ZnO films. Indeed, the preferred orientations were gradually evolved from the ZnO 002 phase to ZnO 100 phase with increasing the AlN contents in the ZnO films. For the cosputtered film at a theoretical Al atomic ratio of 60%, ZnO phases were entirely absent in the diffraction pattern and it became an amorphous crystalline structure. The poor crystalline structure was the consequence of the inferior electrical property shown in Fig. 2. So far, we succeeded in realizing Al N codoped ZnO films from this rf magnetron cosputtering system using ZnO and AlN targets. The N to Al atomic doping levels in the ZnO films could be simply tuned via controlling the rf powers supplied on the ZnO and AlN targets. The related electrical and material properties were found to be deeply influenced by the AlN contents introduced into the ZnO films. However, from the view point of these cosputtered film conductive types, the incorporated N acceptor dopants in these Al N codoped films deposited at room temperature seemed to be inactive and resulted in the n-type conductive behavior for all the produced cosputtered films. Applications in the photoelectronic devices using ZnO homojunction structures were thus limited due to the monotonic conductive type performance of these as-deposited Al N codoped ZnO films. As a result, the N-related acceptor dopants should be properly activated to convert the cosputtered film conductive type into p-type conductive behavior. Under this consideration, a postannealing treatment was carried out to activate these N-related acceptor dopants in the cosputtered films. For p-type ZnO codoped films with reac-

4 Liu, Sheu, and Lee J. Appl. Phys. 102, TABLE II. Electrical properties of the Al N codoped ZnO films theoretical Al atomic ratio of 10% deposited on silicon substrates annealed at various temperatures under nitrogen ambient for 30 min. Annealing temperature Carrier concentration cm 3 Mobility cm 2 V 1 s 1 Resistivity cm Carrier type As-deposited n 300 C n 400 C p 500 C p 600 C p 700 C p FIG. 4. X-ray diffraction patterns of the Al N codoped theoretical Al atomic ratio of 10% and undoped ZnO films deposited on silicon substrates annealed at a temperature of 400 C under nitrogen ambient for 30 min. tive donors and nitrogen acceptors, the reactive donors using the group III elements III=Al, Ga, or In and 2N was demonstrated by theoretical calculation. 27 As a result, a fine control on the N to Al atoms doping concentration and the suppression of the Al contents in the ZnO film was required to accomplish p-type ZnO film preparation. According to the measured N/Al atomic ratios shown in Fig. 1, the theoretical calculation of N/Al=2:1 indicated by the dashed line is located between the as-deposited cosputtered films at the theoretical Al atomic ratios of 10% and 20%. Because the measured N/Al atomic ratio in the cosputtered film at a theoretical Al doping level of 10% was about 2.69, the p-type conduction was expected to be achieved due to the enhanced quantity of Zn N bonds via complex N Al N shallow acceptors formation after thermal activation treatment. 28 Moreover, since the activation of the N O -double-donor complexes such as N O V O,N O Zn i, and N O Zn O were demonstrated to donate free electron carriers in the N-doped ZnO films, 29,30 the annealing temperature and atmosphere became critical issues to properly activate the N-related acceptors in the cosputtered films. As a result, they were annealed under nitrogen ambient to avoid the outdiffusion of N atoms that had been introduced into the ZnO films by cosputtering. P-type ZnO conductive behavior was obtained from the cosputtered film at a theoretical Al doping level of 10% processed with an additive postannealing treatment at temperatures ranging from 400 to 600 C under nitrogen ambient for 30 min. The carrier concentration, Hall mobility, and resistivity of the Al N codoped ZnO films at a theoretical Al doping level of 10% deposited onto silicon substrates after thermal annealing based on the Hall effect measurements at room temperature are summarized in Table II. At an annealing temperature of 300 C, the Al N codoped ZnO film performed n-type conduction with a slightly higher electron concentration than the as-deposited film. This indicated that the annealing temperature was too low to activate the N-related acceptors and more donors were generated. As the annealing temperature reached 400 C, the annealed Al N codoped ZnO film with a hole carrier concentration of cm 3, mobility of 2.35 cm 2 V 1 s 1, and resistivity of cm was obtained, whereas that of an undoped ZnO film annealed under the same conditions showed an electron carrier concentration of cm 3 and Hall mobility of 5.47 cm 2 V 1 s 1. This implied that large amounts of N-related acceptors were effectively activated and predominated over the donors in the codoped film under this annealing treatment. As a result, free hole carriers were measured from the annealed Al N codoped ZnO films. By further increasing the annealing temperature, more donor-related defects such as V O and V N were prone to be produced, resulting in a decrease in the hole carrier concentration. X-ray diffraction patterns for Al N codoped and undoped ZnO film crystalline structures deposited on silicon substrates annealed at a temperature of 400 C are shown in Fig. 4. It can be seen that both the codoped and undoped ZnO films annealed under nitrogen ambient exhibited polycrystalline structures with the dominated diffraction peaks of ZnO 002 and 101 phases in the associated diffraction patterns. Due to the influence of Al and N impurities, the full width at half maximum FWHM of the ZnO-related diffraction peaks in the diffraction pattern of the annealed Al N codoped ZnO film was broader than that of the undoped ZnO film. According to Scherrer s formula, the mean crystallite size of the annealed Al N codoped ZnO film evaluated from the FWHM of the ZnO 002 phase 9.7 nm was apparently smaller than that of the undoped ZnO film 17.3 nm and as a consequence of the lower carrier mobility due to the grain boundary scattering. In addition, except for the ZnO-related diffraction peaks, a weak diffraction peak determined as Zn 3 N was observed from the annealed Al N codoped ZnO film diffraction pattern. The appearance of the zinc nitride phase was believed to be the nitrification reaction of the excess Zn and N atoms in the codoped films, indicating the excitation of the N ions after thermal annealing. The room temperature PL spectra of the Al N codoped and undoped ZnO films deposited on silicon substrates annealed at a temperature of 400 C are illustrated in Fig. 5. The main feature for the PL spectrum of the undoped ZnO film could be divided into three categories: the near band edge emission 3.24 ev, the low energy tail extending from the near band edge emission 3.07 ev, and the deep level emission 2.11 ev. According to the previous reports, the low energy tail extending from the near band edge emission was related to the Zn-related shallow level transitions, whereas the oxygen-related deep level transitions were responsible for the broad green-yellow emission The PL spectrum of the annealed Al N codoped ZnO film was obviously different from that of the annealed undoped ZnO film in both emission peak structure and intensity. The FWHM of the ultraviolet emission was broader and dominated by the

5 Liu, Sheu, and Lee J. Appl. Phys. 102, FIG. 5. Room temperature PL spectra of the Al N codoped theoretical Al atomic ratio of 10% and undoped ZnO films deposited on silicon substrates annealed at a temperature of 400 C under nitrogen ambient for 30 min. shallow defect transition with an apparent redshift of about 60 mev. The oxygen-related deep emission was suppressed and a broad blue-green emission at about 2.62 ev emerged from the PL spectrum. The blue-green emission was regarded as the dopant-induced defects that also had been observed from related research in the preparation of the Al N codoped ZnO films. 33,34 Except for the defect-related emission induced from the codoping process, the activated N-related acceptors in the oxygen sites N O was responsible for the redshift on the shallow level transition due to the fact that N O was recognized as shallow acceptors and sequentially suppressed the formation of the oxygen-related deep level emission. 35 As a consequence, the annealed Al N codoped ZnO film performed with p-type conductive behavior. Figures 6 a and 6 b show the typical XPS spectra of Zn 2p 3/2 andn1s core level obtain from the Al N codoped and undoped ZnO films deposited on silicon substrates annealed at a temperature of 400 C. The binding energy peak of the Zn 2p 3/2 for the Al N codoped ZnO film ev was higher than that of the undoped ZnO film ev. The related FWHM of the Al N codoped ZnO film 2.0 ev was also broader than that of the undoped ZnO film 1.8 ev. For the Al N codoped ZnO film, the crystalline structure was inferior to that of the undoped ZnO film due to the introduced N and Al dopants, as shown in Fig. 4. As a result, the electrical cloud around the Zn atoms in the Al N codoped ZnO film were prone to be asymmetrical, resulting in the increase in the binding energy of the Zn 2p 3/2 core level. 14,18,30,36 In addition, the broad FWHM also suggested to be contributed by the Zn N bonds. However, since the Zn 2p 3/2 peak was almost completely dominated by the Zn O chemical bond, it was quite difficult to deconvolve the Zn N chemical bond. Therefore, the N 1s core level signal was a preferable tool to investigate the activation of N impurities. As can be seen in Fig. 6 b, no obvious peak corresponding to N was observed from the undoped ZnO film, whereas that of the Al N codoped film showed two peaks at around and ev. The peak at a binding energy of ev was in agreement with XPS spectra reported on Zn 3 N 2 thin films, 18,37 manifesting the crystalline structure shown in Fig. 4. In addition, the peak at a high binding energy of ev was broad and asymmetrical with a shoulder observed on the low binding energy side. This implied that this binding energy signal was composed of at least two chemical bonds. According to the previous works on nitrogen-doped and Al N codoped ZnO films, 5,14,30,38 40 the lower binding energy tail was attributed to the N ions substituted for O ions recognized as N Zn chemical bond indicated by N O at about ev in the ZnO lattice. The high binding energy side was denoted as the chemical state emerged from the neutrally charged N ions 400 ev. The appearance of the N Zn chemical bond was directly related to the activation of N acceptors and a consequence of achieving p-type ZnO conductive behavior. IV. CONCLUSIONS FIG. 6. Typical XPS spectra of a Zn 2p 3/2 and b N1s core level for the Al N codoped and undoped ZnO films deposited on silicon substrates annealed at a temperature of 400 C under nitrogen ambient for 30 min. In summary, Al N codoped ZnO films had been successfully prepared using an rf magnetron cosputtering system at room temperature with AlN and ZnO targets. Because of the oxygen atoms deficiency in the ZnO films, the nitrogen atomic concentrations were in excess of the Al contents in the as-deposited cosputtered films, especially at low Al doping levels. The conductive behavior of these as-deposited codoped Al N films all showed n-type conduction. Regarding the crystalline structure evolutions, the preferred ZnO 002 c-axis diffraction peak appeared in the x-ray diffraction pattern of the undoped ZnO film and gradually vanished due to AlN content introduction and domination by the ZnO 100 crystalline phase with increasing the Al doping impurities. As the theoretical Al doping level Al/ Al +Zn at. % reached 60%, the crystalline structure of the cosputtered film evolved into an amorphous structure. The N-related acceptors in the Al N codoped ZnO film at a theoretical Al atomic ratio of 10% were found to be sufficiently activated with an adequate postannealing treatment. A hole carrier concentration of cm 3, Hall mobility of 2.35 cm 2 V 1 s 1, and film resistivity of cm was

6 Liu, Sheu, and Lee J. Appl. Phys. 102, achieved for the Al N codoped ZnO films annealed at a temperature of 400 C under nitrogen ambient for 30 min. The Zn 3 N 2 phase that appeared in the x-ray diffraction pattern was attributed to the nitrification of the excess zinc ions in the codoped films after thermal annealing. In addition, the redshift of the shallow level transition and oxygen-related deep level emission suppression in PL spectrum were related to the activated N-related acceptors. The chemical bond ascribed to O atoms replaced by N impurities and the chemical nature recognized as the Zn 3 N 2 crystalline structure observed from the N 1s core level in the XPS spectra of the annealed Al N codoped ZnO film also provided a direct evidence of the N dopant activation of and sequentially performed p-type ZnO conductive behavior. The controllable Al N codoped ZnO film obtained from this rf magnetron cosputtering system using AlN and ZnO targets at room temperature and the conversion of p-type ZnO conductive behavior with an additive postannealing treatment will greatly benefit the development of ZnO-based homostructural optoelectronic devices. ACKNOWLEDGMENT This work was supported by the National Science Council of the Republic of China under NSC E Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, A. Mitra and R. K. Thareja, J. Appl. Phys. 89, Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev, and D. M. Bagnall, Appl. Phys. Lett. 83, W. Liu et al., Appl. Phys. Lett. 88, B. S. Li et al., J. Mater. Res. 18, C. C. Lin, S. Y. Chen, S. Y. Cheng, and H. Y. Lee, Appl. Phys. Lett. 84, D. C. Look, G. M. Renlund, R. H. Burgener II, and J. R. Sizelove, Appl. Phys. Lett. 85, V. Vaithianathan, B. T. Lee, and S. S. Kim, J. Appl. Phys. 98, Y. Nakano, T. Morikawa, T. Ohwaki, and Y. Taga, Appl. Phys. Lett. 88, F. X. Xiu, Z. Yang, L. J. Mandalapu, J. L. Liu, and W. P. Beyermann, Appl. Phys. Lett. 88, Y. J. Zeng et al., Appl. Phys. Lett. 88, G. Du, Y. Ma, Y. Zhang, and T. Yang, Appl. Phys. Lett. 87, J. L. Zhao, X. M. Li, J. M. Bian, W. D. Yu, and C. Y. Zhang, J. Cryst. Growth 280, Z. Xiao, Y. Liu, J. Zhang, D. Zhao, Y. Lu, D. Shen, and X. Fan, Semicond. Sci. Technol. 20, J. G. Lu, Y. Z. Zhang, Z. Z. Ye, L. P. Zhu, L. Wang, B. H. Zhao, and Q. L. Liang, Appl. Phys. Lett. 88, C. Wang, Z. Ji, K. Liu, Y. Xiang, and Z. Ye, J. Cryst. Growth 259, M. L. Tu, Y. K. Su, and C. Y. Ma, J. Appl. Phys. 100, M. Futsuhara, K. Yoshioka, and O. Takai, Thin Solid Films 322, E. Kaminska et al., Phys. Status Solidi C 2, A. V. Singh, R. M. Mehra, A. Wakahara, and A. Yoshida, J. Appl. Phys. 93, J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, and L. D. Chen, Appl. Phys. Lett. 84, F. Zhuge et al., J. Cryst. Growth 268, F. Zhuge et al., Appl. Phys. Lett. 87, D. S. Liu, C. C. Wu, and C. T. Lee, Jpn. J. Appl. Phys., Part 1 44, D. S. Liu, C. H. Lin, F. C. Tsai, and C. C. Wu, J. Vac. Sci. Technol. A 24, C. R. Aita, R. J. Lad, and T. C. Tisone, J. Appl. Phys. 51, T. Yamamoto and H. K. Yoshida, Jpn. J. Appl. Phys., Part 2 38, L G. W. Cong et al., Appl. Phys. Lett. 88, Y. M. Lu, W. S. Hwang, W. Y. Liu, and J. S. Yang, Mater. Chem. Phys. 72, E. C. Lee, Y. S. Kim, Y. G. Jin, and K. J. Chang, Phys. Rev. B 64, X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Appl. Phys. Lett. 78, B. Lin, Z. Fu, Y. Jia, and G. Liao, J. Electrochem. Soc. 148, G Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hng, J. Appl. Phys. 94, J. G. Lu, L. P. Zhu, Z. Z. Ye, F. Zhuge, B. H. Zhao, J. Y. Huang, L. Wang, and J. Yuan, J. Cryst. Growth 283, U. Ozgur et al., J. Appl. Phys. 98, Y. M. Chung, C. S. Moon, M. J. Jung, and J. G. Han, Surf. Coat. Technol. 200, F. Zong, H. Ma, C. Xue, H. Zhuang, X. Zhang, H. Xiao, J. Ma, and F. Ji, Solid State Commun. 132, H. Maki, I. Sakaguchi, N. Ohashi, S. Sekiguchi, H. Haneda, J. Tanaka, and N. Ichinose, Jpn. J. Appl. Phys., Part 1 42, Y. F. Mei, R. K. Y. Fu, G. G. Siu, K. W. Wong, P. K. Chu, R. S. Wang, and H. C. Ong, Appl. Surf. Sci. 252, S. U. Yuldashev, G. N. Panin, T. W. Kang, R. A. Nusretov, and I. V. Khvan, J. Appl. Phys. 100,

Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their surface characteristics

Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their surface characteristics Surface and Coatings Technology 174 175 (2003) 187 192 Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their surface characteristics a b b a a, S.H. Jeong, S. Kho,

More information

THE EFFECTS OF DOPING CONCENTRATION ON THE ELECTRICAL PERFORMANCE OF DC-SPUTTERED p-zno/n-si HETEROJUNCTION

THE EFFECTS OF DOPING CONCENTRATION ON THE ELECTRICAL PERFORMANCE OF DC-SPUTTERED p-zno/n-si HETEROJUNCTION THE EFFECTS OF DOPING CONCENTRATION ON THE ELECTRICAL PERFORMANCE OF DC-SPUTTERED p-zno/n-si HETEROJUNCTION Dao Anh Tuan, Bui Khac Hoang, Nguyen Van Hieu, Le Vu Tuan Hung Department of Applied Physics,

More information

CHAPTER 6. BLUE GREEN AND UV EMITTING ZnO NANOPARTICLES SYNTHESIZED THROUGH A NON AQUEOUS ROUTE

CHAPTER 6. BLUE GREEN AND UV EMITTING ZnO NANOPARTICLES SYNTHESIZED THROUGH A NON AQUEOUS ROUTE 71 CHAPTER 6 BLUE GREEN AND UV EMITTING ZnO NANOPARTICLES SYNTHESIZED THROUGH A NON AQUEOUS ROUTE 6.1 INTRODUCTION Several techniques such as chemical vapour deposition, electrochemical deposition, thermal

More information

ULTRA THIN INDIUM TIN OXIDE FILMS ON VARIOUS SUBSTRATES BY PULSED LASER DEPOSITION

ULTRA THIN INDIUM TIN OXIDE FILMS ON VARIOUS SUBSTRATES BY PULSED LASER DEPOSITION ULTRA THIN INDIUM TIN OXIDE FILMS ON VARIOUS SUBSTRATES BY PULSED LASER DEPOSITION X. W. Sun 1, D. H. Kim 2, and H. S. Kwok 1 1 Department of Electrical & Electronic Engineering, Hong Kong University of

More information

The structural and optical properties of ZnO thin films prepared at different RF sputtering power

The structural and optical properties of ZnO thin films prepared at different RF sputtering power Journal of King Saud University Science (2013) 25, 209 215 King Saud University Journal of King Saud University Science www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE The structural and optical

More information

Structural Properties of ZnO Nanowires Grown by Chemical Vapor Deposition on GaN/sapphire (0001)

Structural Properties of ZnO Nanowires Grown by Chemical Vapor Deposition on GaN/sapphire (0001) Structural Properties of ZnO Nanowires Grown by Chemical Vapor Deposition on GaN/sapphire (0001) F. C. Tsao 1, P. J. Huang 1, J. Y. Chen 2, C. J. Pan 3, C. J. Tun 4, C. H. Kuo 2, B. J. Pong 5, T. H. Hsueh

More information

Study of Structural and Optical Properties of ZnO Thin Films Produced by Sol Gel Methods

Study of Structural and Optical Properties of ZnO Thin Films Produced by Sol Gel Methods Sensors and Materials, Vol. 28, No. 5 (2016) 523 530 MYU Tokyo 523 S & M 1205 Study of Structural and Optical Properties of ZnO Thin Films Produced by Sol Gel Methods Huai-Shan Chin, Long-Sun Chao, * and

More information

Abstract. Keywords: Zinc Oxide, Eu doped ZnO, Dy doped ZnO, Thin film INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTING SCIENCE ISSN NO:

Abstract. Keywords: Zinc Oxide, Eu doped ZnO, Dy doped ZnO, Thin film INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTING SCIENCE ISSN NO: Synthesis and Structural study of Rare Earth activated ZnO Thin film Pawan Kumar Department of Physics, University Institute of Sciences, Chandigarh University, Gharuan (Mohali), Punjab (India) e-mail-pawan.uis@cumail.in

More information

CHAPTER 8 SUMMARY AND FUTURE SCOPE

CHAPTER 8 SUMMARY AND FUTURE SCOPE CHAPTER 8 SUMMARY AND FUTURE SCOPE The potential of room temperature ferromagnetism in many diluted magnetic semiconductors has opened up a new route for realization of spintronic devices. Based on the

More information

A Solution Processed ZnO Thin Film

A Solution Processed ZnO Thin Film Applied Mechanics and Materials Vols. 239-240 (2013) pp 1585-1588 Online available since 2012/Dec/13 at www.scientific.net (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm.239-240.1585

More information

Integrated Sci-Tech : The Interdisciplinary Research Approach

Integrated Sci-Tech : The Interdisciplinary Research Approach Chapter 32 Influence of the Concentration of Ga-doped on the Structural and Optical Properties of ZnO Thin Films Putut Marwoto 1,a, Dwi Suprayogi 1, Edy Wibowo 2, Didik Aryanto 3, Sulhadi 1, Sugiyanto

More information

Study of ZnO:Zn Phosphors Prepared by Sol-gel and Ionimplantation

Study of ZnO:Zn Phosphors Prepared by Sol-gel and Ionimplantation Available online at www.sciencedirect.com Physics Procedia 25 (212 ) 35 354 212 International Conference on Solid State Devices and Materials Science Study of ZnO:Zn Phosphors Prepared by Sol-gel and Ionimplantation

More information

Keywords: Thin films, Zinc Oxide, Sol-gel, XRD, Optical properties

Keywords: Thin films, Zinc Oxide, Sol-gel, XRD, Optical properties Advanced Materials Research Vol. 895 (2014) pp 250-253 Online available since 2014/Feb/13 at www.scientific.net (2014) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.895.250 Structural

More information

Effects of As Doping on Properties of ZnO Films

Effects of As Doping on Properties of ZnO Films Mat. Res. Soc. Symp. Proc. Vol. 692 2002 Materials Research Society H11.8 Effects of As Doping on Properties of ZnO Films K.S. Huh, D.K. Hwang, K.H. Bang, M.K. Hong, D. H. Lee, J.M. Myoung Information

More information

XPS Depth Profile Analysis of Zn 3 N 2 Thin Films Grown at Different N 2 /Ar Gas Flow Rates by RF Magnetron Sputtering

XPS Depth Profile Analysis of Zn 3 N 2 Thin Films Grown at Different N 2 /Ar Gas Flow Rates by RF Magnetron Sputtering Haider Nanoscale Research Letters (2017) 12:5 DOI 10.1186/s11671-016-1769-y NANO EXPRESS XPS Depth Profile Analysis of Zn 3 N 2 Thin Films Grown at Different N 2 /Ar Gas Flow Rates by RF Magnetron Sputtering

More information

Analysis of Li-related defects in ZnO thin films influenced by annealing ambient

Analysis of Li-related defects in ZnO thin films influenced by annealing ambient Bull. Mater. Sci., Vol. 37, No. 1, February 2014, pp. 35 39. c Indian Academy of Sciences. Analysis of Li-related defects in ZnO thin films influenced by annealing ambient BING WANG and LIDAN TANG Department

More information

Dependence of the Optical Anisotropy of ZnO Thin Films on the Structural Properties

Dependence of the Optical Anisotropy of ZnO Thin Films on the Structural Properties Journal of the Korean Physical Society, Vol. 57, No. 2, August 2010, pp. 389 394 Dependence of the Optical Anisotropy of ZnO Thin Films on the Structural Properties Man-Il Kang and Sok Won Kim Department

More information

GaN/ZnO and AlGaN/ZnO heterostructure LEDs: growth, fabrication, optical and electrical characterization

GaN/ZnO and AlGaN/ZnO heterostructure LEDs: growth, fabrication, optical and electrical characterization Mater. Res. Soc. Symp. Proc. Vol. 1201 2010 Materials Research Society 1201-H01-08 GaN/ZnO and AlGaN/ZnO heterostructure LEDs: growth, fabrication, optical and electrical characterization J. Benz1, S.

More information

ZnO nanostructures epitaxially grown on ZnO seeded Si (100) substrates by chemical vapor deposition

ZnO nanostructures epitaxially grown on ZnO seeded Si (100) substrates by chemical vapor deposition ZnO nanostructures epitaxially grown on ZnO seeded Si (100) substrates by chemical vapor deposition Zhuo Chen 1, T. Salagaj 2, C. Jensen 2, K. Strobl 2, Mim Nakarmi 1, and Kai Shum 1, a 1 Physics Department,

More information

The electrical properties of ZnO MSM Photodetector with Pt Contact Electrodes on PPC Plastic

The electrical properties of ZnO MSM Photodetector with Pt Contact Electrodes on PPC Plastic Journal of Electron Devices, Vol. 7, 21, pp. 225-229 JED [ISSN: 1682-3427 ] Journal of Electron Devices www.jeldev.org The electrical properties of ZnO MSM Photodetector with Pt Contact Electrodes on PPC

More information

Metal-organic vapor phase epitaxial growth of high-quality ZnO films on Al 2 O 3 (00 1)

Metal-organic vapor phase epitaxial growth of high-quality ZnO films on Al 2 O 3 (00 1) Metal-organic vapor phase epitaxial growth of high-quality ZnO films on Al 2 O 3 (00 1) W.I. Park, S-J. An, Gyu-Chul Yi, a) and Hyun M. Jang Department of Materials Science and Engineering, Pohang University

More information

Structural, Optical & Surface Morphology of Zinc Oxide (ZnO) Nanorods in Molten Solution

Structural, Optical & Surface Morphology of Zinc Oxide (ZnO) Nanorods in Molten Solution Journal of Materials Science and Engineering B 6 (3-4) (2016) 68-73 doi: 10.17265/2161-6221/2016.3-4.002 D DAVID PUBLISHING Structural, Optical & Surface Morphology of Zinc Oxide (ZnO) Nanorods in Molten

More information

Al/Ti contacts to Sb-doped p-type ZnO

Al/Ti contacts to Sb-doped p-type ZnO JOURNAL OF APPLIED PHYSICS 102, 023716 2007 Al/Ti contacts to Sb-doped p-type ZnO L. J. Mandalapu, F. X. Xiu, Z. Yang, and J. L. Liu a Quantum Structures Laboratory, Department of Electrical Engineering,

More information

Structural and Photoluminescence Study of Zinc Oxide Thin Films Grown by Laser Induced Plasma

Structural and Photoluminescence Study of Zinc Oxide Thin Films Grown by Laser Induced Plasma Structural and Photoluminescence Study of Zinc Oxide Thin Films Grown by Laser Induced Plasma Usman Ilyas 1,2, R. S. Rawat 1, G. Roshan 1, T.L. Tan 1, P. Lee 1, S.V.Springham 1, R. Chen 3, H. D. Sun 3,

More information

Influence of Growth Time on Zinc Oxide Nano Rods Prepared By Dip Coating Method

Influence of Growth Time on Zinc Oxide Nano Rods Prepared By Dip Coating Method Influence of Growth Time on Zinc Oxide Nano Rods Prepared By Dip Coating Method P.Thamarai selvan 1, M.Venkatachalam 2, M.Saroja 2, P.Gowthaman 2, S.Ravikumar 3, S.Shankar 2 Department of Electronics &

More information

Influence of Indium doping on Zinc oxide thin film prepared by. Sol-gel Dip coating technique.

Influence of Indium doping on Zinc oxide thin film prepared by. Sol-gel Dip coating technique. Influence of Indium doping on Zinc oxide thin film prepared by Sol-gel Dip coating technique. Shazia Umar & Mahendra Kumar Department of Physics, University of Lucknow, Lucknow 226007 Abstract Dip coating

More information

Fabrication of ZnO nanotubes using AAO template and sol-gel method

Fabrication of ZnO nanotubes using AAO template and sol-gel method Journal of Optoelectronic and Biomedical Materials Volume 1, Issue 1, March 2009, p. 15-19 Fabrication of ZnO nanotubes using AAO template and sol-gel method S. Öztürk a, N. Taşaltin a, n. Kilinç a, Z.

More information

Characterization of Zinc Oxide Nanolaminate Films. B. J. Oleson, L. M. Bilke, J. S. Krueger, S. T. King

Characterization of Zinc Oxide Nanolaminate Films. B. J. Oleson, L. M. Bilke, J. S. Krueger, S. T. King Introduction Characterization of Zinc Oxide Nanolaminate Films B. J. Oleson, L. M. Bilke, J. S. Krueger, S. T. King Department of Physics, University of Wisconsin La Crosse Abstract: This project sought

More information

Hydrogen-Sensing Characteristics of Palladium-Doped Zinc-Oxide Nanostructures

Hydrogen-Sensing Characteristics of Palladium-Doped Zinc-Oxide Nanostructures Hydrogen-Sensing Characteristics of Palladium-Doped Zinc-Oxide Nanostructures Undergraduate Researcher Saranya Sathananthan University of Tennessee, Knoxville Faculty Mentor Vinayak P. Dravid Department

More information

Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering

Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering Thin Solid Films 515 (2007) 6562 6566 www.elsevier.com/locate/tsf Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering M. Suchea

More information

Nanostructured ZnO as a solution-processable transparent electrode material for low-cost photovoltaics

Nanostructured ZnO as a solution-processable transparent electrode material for low-cost photovoltaics Nanostructured ZnO as a solution-processable transparent electrode material for low-cost photovoltaics Investigators P.I: Alberto Salleo, Assistant Professor, Materials Science and Engineering Dr. Ludwig

More information

NANOSTRUCTURAL ZnO FABRICATION BY VAPOR-PHASE TRANSPORT IN AIR

NANOSTRUCTURAL ZnO FABRICATION BY VAPOR-PHASE TRANSPORT IN AIR International Journal of Modern Physics B Vol. 18, No. 0 (2004) 1 8 c World Scientific Publishing Company NANOSTRUCTURAL ZnO FABRICATION BY VAPOR-PHASE TRANSPORT IN AIR C. X. XU, X. W. SUN, B. J. CHEN,

More information

The Impact of Cu Doping Ratio on Electrical Properties for Thin ZnO Films Prepared by PLD

The Impact of Cu Doping Ratio on Electrical Properties for Thin ZnO Films Prepared by PLD The Impact of Cu Doping Ratio on Electrical Properties for Thin ZnO Films Prepared by PLD Kh. M. Rashid 1 and M.F.A.Alias 2 1 Department of Physics, College of Science, University of Baghdad,, Baghdad,

More information

INFLUENCE OF POINT DEFECTS' CONCENTRATION ON THE ZnO MATRIX A SIMULATION STUDY

INFLUENCE OF POINT DEFECTS' CONCENTRATION ON THE ZnO MATRIX A SIMULATION STUDY Ife Journal of Science vol. 16, no. 3 (2014) INFLUENCE OF POINT DEFECTS' CONCENTRATION ON THE ZnO MATRIX A SIMULATION STUDY 335 Akinnifesi, J.O. Department of Physics and Engineering Physics, Obafemi Awolowo

More information

UV Photoluminescence of ZnO Nanostructures Based Thin films synthesized by Sol Gel method

UV Photoluminescence of ZnO Nanostructures Based Thin films synthesized by Sol Gel method UV Photoluminescence of ZnO Nanostructures Based Thin films synthesized by Sol Gel method S Sajjad Hussain 1), Hadia Noor 2), Saira Riaz 3), Asghar Hashmi 4) and *Shahzad Naseem 5) 1), 2), 3), 5) Centre

More information

Preparation of ZnO Nanowire Arrays Growth on Sol-Gel ZnO-Seed-Coated Substrates and Studying Its Structure and Optical Properties

Preparation of ZnO Nanowire Arrays Growth on Sol-Gel ZnO-Seed-Coated Substrates and Studying Its Structure and Optical Properties Advances in Nanomaterials 2017; 1(1): 1-5 http://www.sciencepublishinggroup.com/j/an doi: 10.11648/j.an.20170101.11 Preparation of ZnO Nanowire Arrays Growth on Sol-Gel ZnO-Seed-Coated Substrates and Studying

More information

Studies on Zinc Oxide Nanorods Grown by Electron Beam Evaporation Technique

Studies on Zinc Oxide Nanorods Grown by Electron Beam Evaporation Technique Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 37:437 441, 2007 Copyright # 2007 Taylor & Francis Group, LLC ISSN: 1553-3174 print/1553-3182 online DOI: 10.1080/15533170701466018

More information

Supporting Information

Supporting Information This journal is The Royal Society of Chemistry 011 Supporting Information Vertically-Aligned ZnO Nanorods Doped with Lithium for Polymer Solar Cells: Defect Related Photovoltaic Properties Pipat Ruankham,

More information

CHAPTER 8 SYNTHESIS, STRUCTURAL, OPTICAL AND ELECTRICAL PROPERTIES OF. TRANSITION METAL (TM) DOPED ZnO NANORODS. (TM=Mn, Co, Ni AND Fe).

CHAPTER 8 SYNTHESIS, STRUCTURAL, OPTICAL AND ELECTRICAL PROPERTIES OF. TRANSITION METAL (TM) DOPED ZnO NANORODS. (TM=Mn, Co, Ni AND Fe). 190 CHAPTER 8 SYNTHESIS, STRUCTURAL, OPTICAL AND ELECTRICAL PROPERTIES OF TRANSITION METAL (TM) DOPED ZnO NANORODS (TM=Mn, Co, Ni AND Fe). 8.1 Introduction The important and fundamental work for developing

More information

Fe-doped ZnO synthesized by parallel flow precipitation process for improving photocatalytic activity

Fe-doped ZnO synthesized by parallel flow precipitation process for improving photocatalytic activity IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Fe-doped ZnO synthesized by parallel flow precipitation process for improving photocatalytic activity To cite this article: Q

More information

Characterization of ZnO Nanotip Array by Aqueous Solution Deposition under UV Illumination

Characterization of ZnO Nanotip Array by Aqueous Solution Deposition under UV Illumination Proceedings of the 5 th International Conference on Nanotechnology: Fundamentals and Applications Prague, Czech Republic, August 11-13, 2014 Paper No. 50 Characterization of ZnO Nanotip Array by Aqueous

More information

ZnO Thin Films Generated by Ex-Situ Thermal Oxidation of Metallic Zn for Photovoltaic Applications

ZnO Thin Films Generated by Ex-Situ Thermal Oxidation of Metallic Zn for Photovoltaic Applications Macalester Journal of Physics and Astronomy Volume 4 Issue 1 Spring 2016 Article 12 May 2016 ZnO Thin Films Generated by Ex-Situ Thermal Oxidation of Metallic Zn for Photovoltaic Applications Kovas Zygas

More information

Applied Surface Science

Applied Surface Science Applied Surface Science 255 (2008) 3375 3380 Contents lists available at ScienceDirect Applied Surface Science journal homepage: www.elsevier.com/locate/apsusc Study of the effect of plasma power on ZnO

More information

Tungston Doped ZnO Thin film Prepared by Spray Pyrolysis for enhanced Hydrogen Sensing

Tungston Doped ZnO Thin film Prepared by Spray Pyrolysis for enhanced Hydrogen Sensing International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.11 No.05, pp 467-471, 2018 Tungston Doped ZnO Thin film Prepared by Spray Pyrolysis for enhanced

More information

Journal of Crystal Growth

Journal of Crystal Growth Journal of Crystal Growth 319 (2011) 39 43 Contents lists available at ScienceDirect Journal of Crystal Growth journal homepage: www.elsevier.com/locate/jcrysgro Epitaxial growth of Cu 2 O and ZnO/Cu 2

More information

Technology and TEM characterization of Al doped ZnO nanomaterials

Technology and TEM characterization of Al doped ZnO nanomaterials Technology and TEM characterization of Al doped ZnO nanomaterials 國立成功大學 (NCKU) 材料科學及工程系 (MSE) 劉全璞 (Chuan-Pu Liu) Outline Introduction of ZnO Doping ZnO nanomaterials in CVD Al doped ZnO Nanowires Al doped

More information

CHAPTER 3. EFFECT OF PRASEODYMIUM DOPING ON THE STRUCTURAL AND OPTICAL PROPERTIES OF ZnO NANORODS

CHAPTER 3. EFFECT OF PRASEODYMIUM DOPING ON THE STRUCTURAL AND OPTICAL PROPERTIES OF ZnO NANORODS 46 CHAPTER 3 EFFECT OF PRASEODYMIUM DOPING ON THE STRUCTURAL AND OPTICAL PROPERTIES OF ZnO NANORODS 3.1 INTRODUCTION Zinc oxide, one of the most promising materials, has been demonstrated to be applicable

More information

Influence of Lead Substitution in Zinc Oxide Thin Films

Influence of Lead Substitution in Zinc Oxide Thin Films Chemical Science Transactions DOI:10.7598/cst2013.33 ISSN/E-ISSN: 2278-3458/2278-3318 RESEARCH ARTICLE Influence of Lead Substitution in Zinc Oxide Thin Films I. INIGO VALAN a, S. RAJA b, K. RAMAMURTHI

More information

Effects of oxygen plasma treatment on the on/off current ratio and stability of ZnO thin film transistors

Effects of oxygen plasma treatment on the on/off current ratio and stability of ZnO thin film transistors Academia Journal of Scientific Research 5(9): 412-418, September 2017 DOI: 10.15413/ajsr.2017.0221 ISSN 2315-7712 2017 Academia Publishing Research Paper Effects of oxygen plasma treatment on the on/off

More information

Theerapong Santhaveesuk, * Duangmanee Wongratanaphisan and Supab Choopun

Theerapong Santhaveesuk, * Duangmanee Wongratanaphisan and Supab Choopun NU Science Journal 2009; 6(S1): 43-50 Ethanol Sensing Property of Tetrapods Prepared by Thermal Oxidation of Zn and TiO 2 Mixture Theerapong Santhaveesuk, * Duangmanee Wongratanaphisan and Supab Choopun

More information

Research Article Stoichiometry Control of ZnO Thin Film by Adjusting Working Gas Ratio during Radio Frequency Magnetron Sputtering

Research Article Stoichiometry Control of ZnO Thin Film by Adjusting Working Gas Ratio during Radio Frequency Magnetron Sputtering Materials Volume 2013, Article ID 547271, 6 pages http://dx.doi.org/10.1155/2013/547271 Research Article Stoichiometry Control of ZnO Thin Film by Adjusting Working Gas Ratio during Radio Frequency Magnetron

More information

SYNTHESIS AND CHARACTERIZATION OF Al DOPED ZnO NANOPARTICLES

SYNTHESIS AND CHARACTERIZATION OF Al DOPED ZnO NANOPARTICLES International Conference on Ceramics, Bikaner, India International Journal of Modern Physics: Conference Series Vol. 22 (2013) 630 636 World Scientific Publishing Company DOI: 10.1142/S2010194513010775

More information

PREPARATION AND CHARACTERIZATION OF METAL OXIDE NANOPOWDERS BY MICROWAVE- ASSISTED COMBUSTION METHOD FOR GAS SENSING DEVICES

PREPARATION AND CHARACTERIZATION OF METAL OXIDE NANOPOWDERS BY MICROWAVE- ASSISTED COMBUSTION METHOD FOR GAS SENSING DEVICES i PREPARATION AND CHARACTERIZATION OF METAL OXIDE NANOPOWDERS BY MICROWAVE- ASSISTED COMBUSTION METHOD FOR GAS SENSING DEVICES THESIS SUBMITTED TO ALAGAPPA UNIVERSITY IN PARTIAL FULFILMENT FOR THE AWARD

More information

St udy of struct ure and optical properties of Cu2doped ZnO nanofilms prepared by RF magnetron sputtering

St udy of struct ure and optical properties of Cu2doped ZnO nanofilms prepared by RF magnetron sputtering 46 2010 1 ( ) Vol1 46 2010 No11 Journal of Northwest Normal University (Natural Science) 37 Cu ZnO 1, 1, 2, 1, 1, 1 (1., 730070 ; 2., 238000) : ( RF) Cu ZnO. X (XRD) (AFM) (SEM), ZnO. : (002), c ; 3, 400

More information

Ceramic Processing Research

Ceramic Processing Research Journal of Ceramic Processing Research. Vol. 14, No. 6, pp. 667~672 (2013) J O U R N A L O F Ceramic Processing Research Rapid-thermal post-annealing effect of room-temperature grown ZnO : Ga layers by

More information

Reagent-Free Electrophoretic Synthesis of Few-Atom- Thick Metal Oxide Nanosheets

Reagent-Free Electrophoretic Synthesis of Few-Atom- Thick Metal Oxide Nanosheets Supporting Information Reagent-Free Electrophoretic Synthesis of Few-Atom- Thick Metal Oxide Nanosheets Chengyi Hou,*,, Minwei Zhang, Lili Zhang, Yingying Tang, Hongzhi Wang, and Qijin Chi*, State Key

More information

Mechanochemical Doping of a Non-Metal Element into Zinc Oxide

Mechanochemical Doping of a Non-Metal Element into Zinc Oxide Chemistry for Sustainable Development 15 (2007) 249 253 249 Mechanochemical Doping of a Non-Metal Element into Zinc Oxide J. WANG, J. F. LU, Q. W. ZHANG, S. YIN, T. SATO and F. SAITO Institute of Multidisciplinary

More information

Engineering of efficiency limiting free carriers and interfacial energy. barrier for an enhancing piezoelectric generation

Engineering of efficiency limiting free carriers and interfacial energy. barrier for an enhancing piezoelectric generation SUPPLEMENTARY INFORMATION Engineering of efficiency limiting free carriers and interfacial energy barrier for an enhancing piezoelectric generation Jung Inn Sohn, ad SeungNam Cha, * ad Byong Gwon Song,

More information

Structural and luminescent properties of ZnO flower-like microstructures synthesized using the chemical bath deposition method

Structural and luminescent properties of ZnO flower-like microstructures synthesized using the chemical bath deposition method Structural and luminescent properties of ZnO flower-like microstructures synthesized using the chemical bath deposition method LF Koao 1, FB Dejene 1* and HC Swart 2 1 Department of Physics, University

More information

ZnO Thin Films Synthesized by Chemical Vapor Deposition

ZnO Thin Films Synthesized by Chemical Vapor Deposition ZnO Thin Films Synthesized by Chemical Vapor Deposition Zhuo Chen *1, Kai Shum *2, T. Salagaj #3, Wei Zhang #4, and K. Strobl #5 * Physics Department, Brooklyn College of the City University of New York

More information

Materials Chemistry C

Materials Chemistry C Journal of Materials Chemistry C Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted

More information

Characterization of ZnO:Cu Nanoparticles by Photoluminescence Technique

Characterization of ZnO:Cu Nanoparticles by Photoluminescence Technique Characterization of ZnO:Cu Nanoparticles by Photoluminescence Technique Binildev R 1, Hareesh P S 2, Shilpa Prasad 3, Saravana Kumar 4 1,2,3 Department of Physics, Sree Narayana College Chengannur 4 Department

More information

Vacuum 83 (2009) Contents lists available at ScienceDirect. Vacuum. journal homepage:

Vacuum 83 (2009) Contents lists available at ScienceDirect. Vacuum. journal homepage: Vacuum 83 (2009) 892 896 Contents lists available at ScienceDirect Vacuum journal homepage: www.elsevier.com/locate/vacuum Femtosecond laser deposited zinc oxide film and its optical properties Yifa Yang

More information

ISSN: [Koteeswari * et al., 7(4): April, 2018] Impact Factor: 5.164

ISSN: [Koteeswari * et al., 7(4): April, 2018] Impact Factor: 5.164 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY INVESTIGATIONS ON STRUCTURAL, DIELECTRIC AND OPTICAL PROPERTIES OF Cu- DOPED ZnO NANOPARTICLES P.Koteeswari*, T.Kavitha 1, S.Vanitha

More information

Annealing Influence on the Optical Properties of Nano ZnO

Annealing Influence on the Optical Properties of Nano ZnO Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2014, 1(1): 69-73 Research Article ISSN: 2394-658X Annealing Influence on the Optical Properties of Nano ZnO Saad

More information

X-RAY PHOTOELECTRON EMISSION, PHOTOLUMINESCENCE AND RAMAN ANALYSIS OF SOLID SOLUTIONS OF ALUMINIUM ZINC OXIDE

X-RAY PHOTOELECTRON EMISSION, PHOTOLUMINESCENCE AND RAMAN ANALYSIS OF SOLID SOLUTIONS OF ALUMINIUM ZINC OXIDE International Journal of Physics and Research (IJPR) Vol.1, Issue 1 Dec 2011 59-69 TJPRC Pvt. Ltd., X-RAY PHOTOELECTRON EMISSION, PHOTOLUMINESCENCE AND RAMAN ANALYSIS OF SOLID SOLUTIONS OF ALUMINIUM ZINC

More information

Some physical properties of ZnO thin films prepared by thermal oxidation of metallic Zn

Some physical properties of ZnO thin films prepared by thermal oxidation of metallic Zn OPTOELECTRONICS AND ADVANCED MATERIALS RAPID COMMUNICATIONS Vol. 6, No. 3-4, March - April 01, p. 389-393 Some physical properties of ZnO thin films prepared by thermal oxidation of metallic Zn H. A. MOHAMED

More information

Ceramic Processing Research

Ceramic Processing Research Journal of Ceramic Processing Research. Vol. 18, No. 6, pp. 435~439 (2017) J O U R N A L O F Ceramic Processing Research Enhancement of visible light emission from Tb-doped ZnO nanorods grown on silicon

More information

de la Technologie Houari Boumediène, USTHB B.P. 32 El Alia, Alger, Algérie 2 Laboratoire des Cellules Photovoltaïques,

de la Technologie Houari Boumediène, USTHB B.P. 32 El Alia, Alger, Algérie 2 Laboratoire des Cellules Photovoltaïques, Revue des Energies Renouvelables CICME 08 Sousse (2008) 201-207 Preparation and characteristic of low resistive zinc oxide thin films using chemical spray technique for solar cells application The effect

More information

ISSN International Journal of Luminescence and Applications Vol.1 (II)

ISSN International Journal of Luminescence and Applications Vol.1 (II) Influence of rare-earth doping on the photoluminescence of Zinc Oxide nanophosphors Partha P. Pal* and J. Manam Deptt. of Applied Physics Indian School of Mines, Dhanbad-826004 * Corresponding author email:

More information

RF Power Dependence of ZnO Thin Film Deposited by RF Powered Magnetron Sputtering System

RF Power Dependence of ZnO Thin Film Deposited by RF Powered Magnetron Sputtering System RF Power Dependence of ZnO Thin Film Deposited by RF Powered Magnetron Sputtering System K. Miandal *,1,a, M. L. Lam 1,b, F. L. Shain 1,c, A. Manie 1,d, K. A. Mohamad 2,d and A. Alias 1,f 1 Faculty of

More information

Conductivity enhancement and semiconductor metal transition in Ti-doped ZnO films

Conductivity enhancement and semiconductor metal transition in Ti-doped ZnO films Optical Materials 29 (2007) 1548 1552 www.elsevier.com/locate/optmat Conductivity enhancement and semiconductor metal transition in Ti-doped ZnO films J.J. Lu a, *, Y.M. Lu b, S.I. Tasi c, T.L. Hsiung

More information

Large Work Function Modulation of Monolayer MoS 2. by Ambient Gases

Large Work Function Modulation of Monolayer MoS 2. by Ambient Gases Supporting Information Large Work Function Modulation of Monolayer MoS 2 by Ambient Gases Si Young Lee, 1 Un Jeong Kim, 3,, * JaeGwan Chung, 4 Honggi Nam, 1,2 Hye Yun Jeong, 1,2 Gang Hee Han, 1 Hyun Kim,

More information

DISTRIBUTION A: Distribution approved for public release.

DISTRIBUTION A: Distribution approved for public release. AFRL-OSR-VA-TR-2015-0044 Review of Zinc Oxide Thin Films Tom Otiti COLLEGE OF COMPUTING AND INFORMATION SCIENCE MAKERERE U 12/23/2014 Final Report DISTRIBUTION A: Distribution approved for public release.

More information

Electric field induced reversible control of visible. photoluminescence from ZnO nanoparticles

Electric field induced reversible control of visible. photoluminescence from ZnO nanoparticles Electric field induced reversible control of visible photoluminescence from ZnO nanoparticles Manoranjan Ghosh,# and A. K. Raychaudhuri $ DST Unit for Nanoscience, S. N. Bose National Centre for Basic

More information

Synthesis and Characterization of Mn 2+ Doped Zn 2. Phosphor Films by Combustion CVD Method

Synthesis and Characterization of Mn 2+ Doped Zn 2. Phosphor Films by Combustion CVD Method Synthesis and Characterization of Mn 2+ Doped Zn 2 Phosphor Films by Combustion CVD Method Z. T. Kang a, Y. Liu b, B. K. Wagner a, R. Gilstrap a, M. Liu b, and C. J. Summers a a Phosphor Technology Center

More information

Applied Surface Science 256 (2010) Contents lists available at ScienceDirect. Applied Surface Science

Applied Surface Science 256 (2010) Contents lists available at ScienceDirect. Applied Surface Science Applied Surface Science 256 (2010) 4543 4547 Contents lists available at ScienceDirect Applied Surface Science journal homepage: www.elsevier.com/locate/apsusc Effect of aging time of ZnO sol on the structural

More information

Zoltán Szabó. Synthesis and characterisation of zinc-oxide thin films and nanostructures for optoelectronical purposes

Zoltán Szabó. Synthesis and characterisation of zinc-oxide thin films and nanostructures for optoelectronical purposes PHD theses Synthesis and characterisation of zinc-oxide thin films and nanostructures for optoelectronical purposes Zoltán Szabó Supervison: Dr. János Volk Consultant: Dr. György Hárs HAS Centre for Energy

More information

Room-temperature electrosynthesized ZnO thin film with strong (0 0 2) orientation and its optical properties

Room-temperature electrosynthesized ZnO thin film with strong (0 0 2) orientation and its optical properties Applied Surface Science 252 (2006) 2973 2977 www.elsevier.com/locate/apsusc Room-temperature electrosynthesized ZnO thin film with strong (0 0 2) orientation and its optical properties Y.F. Mei a, *, G.G.

More information

Changes of structural, optical and electrical properties of sol-gel derived ZnO films with their thickness

Changes of structural, optical and electrical properties of sol-gel derived ZnO films with their thickness Materials Science-Poland, Vol. 25, No. 1, 2007 Changes of structural, optical and electrical properties of sol-gel derived ZnO films with their thickness A. JAIN, P. SAGAR, R. M. MEHRA * Department of

More information

Codoping Method for Solutions of Doping Problems in Wide-Band-Gap Semiconductors

Codoping Method for Solutions of Doping Problems in Wide-Band-Gap Semiconductors phys. stat. sol. (a) 193, No. 3, 423 433 (2002) Codoping Method for Solutions of Doping Problems in Wide-Band-Gap Semiconductors T. Yamamoto 1 ) Department of Electronic and Photonic System Engineering,

More information

CHAPTER 1 GENERAL INTRODUCTION OF ZINC OXIDE AND IT S PROPERTIES. In recent years, scientists have made rapid and significant advances in the field of

CHAPTER 1 GENERAL INTRODUCTION OF ZINC OXIDE AND IT S PROPERTIES. In recent years, scientists have made rapid and significant advances in the field of CHAPTER 1 GENERAL INTRODUCTION OF ZINC OXIDE AND IT S PROPERTIES 1.1 Introduction In recent years, scientists have made rapid and significant advances in the field of materials science, especially in semiconductor

More information

Exploring Physical And Optical Behavior Of Co:Zno Nanostructures

Exploring Physical And Optical Behavior Of Co:Zno Nanostructures Exploring Physical And Optical Behavior Of Co:Zno Nanostructures Durga Prasad Gogoi 1 1 Associate Professor, Dept. of Physics, Namrup college, Dist: Dibrugarh, Assam: 786623, India Abstract- Zinc oxide

More information

UNIVERSITY OF CALIFORNIA RIVERSIDE. Doping in Zinc Oxide Thin Films

UNIVERSITY OF CALIFORNIA RIVERSIDE. Doping in Zinc Oxide Thin Films UNIVERSITY OF CALIFORNIA RIVERSIDE Doping in Zinc Oxide Thin Films A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Electrical Engineering

More information

Department of Electrical & Computer Engineering, The Ohio State University, 205 Dreese Lab, 2015

Department of Electrical & Computer Engineering, The Ohio State University, 205 Dreese Lab, 2015 Supplemental Information for Defect Manipulation to Control ZnO Micro-/Nanowire Metal Contacts Jonathan W. Cox, Geoffrey M. Foster, Alexander Jarjour, Holger von Wenckstern, Marius Grundmann, and Leonard

More information

Highly active oxide photocathode for. photoelectrochemical water reduction

Highly active oxide photocathode for. photoelectrochemical water reduction SUPPLEMENTARY INFORMATION Highly active oxide photocathode for photoelectrochemical water reduction Adriana Paracchino 1, Vincent Laporte 2, Kevin Sivula 1, Michael Grätzel 1 and Elijah Thimsen 1 1 Institute

More information

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 61, NO. 4, APRIL

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 61, NO. 4, APRIL IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 61, NO. 4, APRIL 2014 1077 The Resistivity of Zinc Oxide Under Different Annealing Configurations and Its Impact on the Leakage Characteristics of Zinc Oxide

More information

Surface Characteristics, Optical and Electrical Properties on Sol-Gel Synthesized Sn-Doped ZnO Thin Film

Surface Characteristics, Optical and Electrical Properties on Sol-Gel Synthesized Sn-Doped ZnO Thin Film Materials Transactions, Vol. 51, No. 7 (2010) pp. 1340 to 1345 #2010 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Surface Characteristics, Optical and Electrical Properties on Sol-Gel Synthesized

More information

Applied Surface Science 257 (2011) Contents lists available at ScienceDirect. Applied Surface Science

Applied Surface Science 257 (2011) Contents lists available at ScienceDirect. Applied Surface Science Applied Surface Science 257 (2011) 4031 4037 Contents lists available at ScienceDirect Applied Surface Science journal homepage: www.elsevier.com/locate/apsusc Structural and optical properties of ZnO

More information

Review Article Progress in ZnO Acceptor Doping: What Is the Best Strategy?

Review Article Progress in ZnO Acceptor Doping: What Is the Best Strategy? Advances in Condensed Matter Physics, Article ID 457058, 15 pages http://dx.doi.org/10.1155/2014/457058 Review Article Progress in ZnO Acceptor Doping: What Is the Best Strategy? Judith G. Reynolds 1 and

More information

First-principle study on the effect of high Ag 2N co-doping on the conductivity of ZnO

First-principle study on the effect of high Ag 2N co-doping on the conductivity of ZnO Bull. Mater. Sci., Vol. 38, No. 3, June 2015, pp. 747 751. c Indian Academy of Sciences. First-principle study on the effect of high Ag 2N co-doping on the conductivity of ZnO WENXUE ZHANG 1, YUXING BAI

More information

Title annealing processes at low temper. Citation Physica Status Solidi (C), 9(2):

Title annealing processes at low temper. Citation Physica Status Solidi (C), 9(2): Kochi University of Technology Aca Well-arrayed ZnO nanostructures f Title annealing processes at low temper Wang, Dapeng, Li, Zeming, Kawahar Author(s) i, Furuta, Mamoru, Narusawa, Tada ng Citation Physica

More information

Structural and optical properties of a radio frequency magnetron-sputtered ZnO thin film with different growth angles

Structural and optical properties of a radio frequency magnetron-sputtered ZnO thin film with different growth angles NANO EXPRESS Open Access Structural and optical properties of a radio frequency magnetron-sputtered ZnO thin film with different growth angles Ki-Han Ko 1, Yeun-Ho Joung 1, Won Seok Choi 1*, Mungi Park

More information

A Facile Method for Enhancing the Sensing Performance of Zinc Oxide. Nanofibers Gas Sensors

A Facile Method for Enhancing the Sensing Performance of Zinc Oxide. Nanofibers Gas Sensors Electronic Supplementary Information (ESI): A Facile Method for Enhancing the Sensing Performance of Zinc Oxide Nanofibers Gas Sensors Pei-Pei Wang a, Qi Qi a, Rui-Fei Xuan a,b, Jun Zhao a, Li-Jing Zhou

More information

The study of external electric field effect on the growth of ZnO crystal

The study of external electric field effect on the growth of ZnO crystal ISBN 978-979-18962-0-7 The study of external electric field effect on the growth of ZnO crystal Evi Maryanti 1, B. Prijamboedi 2 *, Ismunandar 2 1 Chemistry Departement, University of Bengkulu 2 Inorganic

More information

Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts

Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts J. Phys. Chem. B 2004, 108, 8773-8777 8773 Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts Xudong Wang, Yong Ding, Christopher J. Summers, and Zhong Lin Wang* School of Materials Science and

More information

ABHINAV NATIONAL MONTHLY REFEREED JOURNAL OF RESEARCH IN SCIENCE & TECHNOLOGY

ABHINAV NATIONAL MONTHLY REFEREED JOURNAL OF RESEARCH IN SCIENCE & TECHNOLOGY THE GROWTH OF AL-DOPED ZnO VIA SOLID-STATE CHEMICAL VAPOR DEPOSITION Dr. L.S. Chuah 1, S. S. Tneh 2 and Dr. Z. Hassan 3 1 Professor, Physics Section, School of Distance Education, University Sains Malaysia,

More information

Improved Luminescence Properties of Polycrystalline ZnO Annealed in Reduction Atmosphere

Improved Luminescence Properties of Polycrystalline ZnO Annealed in Reduction Atmosphere Journal of the Korean Ceramic Society Vol. 48, No. 3, pp. 251~256, 2011. DOI:10.4191/KCERS.2011.48.3.251 Review Improved Luminescence Properties of Polycrystalline ZnO Annealed in Reduction Atmosphere

More information

ZnO:Sn Thin Films Gas Sensor For Detection of Ethanol

ZnO:Sn Thin Films Gas Sensor For Detection of Ethanol ZnO:Sn Thin Films Gas Sensor For Detection of Ethanol Salah. Q. Hazaa*, Sabah. A. Salman**, Sura. J. Abbas** *Department of Physics, College of Education, Al- Mustansiriyah University **Department of Physics,

More information

Morphological and optical investigation of Sol-Gel ZnO films

Morphological and optical investigation of Sol-Gel ZnO films Journal of Physics: Conference Series PAPER OPEN ACCESS Morphological and optical investigation of Sol-Gel ZnO films To cite this article: T Ivanova et al 2016 J. Phys.: Conf. Ser. 700 012047 View the

More information