STUDIES ON THE NUTRITIONAL REQUIRE MENTS OF CHRYSANTHEMUMS

Size: px
Start display at page:

Download "STUDIES ON THE NUTRITIONAL REQUIRE MENTS OF CHRYSANTHEMUMS"

Transcription

1 FLORIDA STATE HORTICULTURAL SOCIETY, STUDIES ON THE NUTRITIONAL REQUIRE MENTS OF CHRYSANTHEMUMS S. S. Woltz Gulf Coast Experiment Station radenton The chrysanthemum crop is becoming in creasingly important in Florida. The acreage planted to chrysanthemums in the state has increased rapidly from less than five acres in the season to more than acres in the season (). Most of the in formation available to growers on fertilizing chrysanthemums has come from areas outside the state of Florida. While this information, together with growers' experience and experi mentation, has allowed production of high yields of chrysanthemums of high quality, there is need for clarification of the effects of various methods of fertilization, irrigation and liming upon the yield and quality of this in tensively cultivated crop. This paper is a re port of preliminary sand culture experiments on effects of variations in nutrient levels upon the growth of chrysanthemums. Literature Review Hill, et al () in Canada favored a : nitrogen to potash ratio for chrysanthemums. Lack of bloom coloration was associated with low levels of potassium and high calcium, magnesium and phosphorus. ost and ell () found that excess sulfate of ammonia caused wilting of chrysanthemums on sunny days. Excess muriate of potash caused a slight stunting of plants. Excess nitrate of soda caused chlorotic areas to appear on the younger leaves. When high levels of muriate of potash and nitrate of soda were added to gether, plants became chlorotic and died due to excess fertilizer salts. Waygood () found, particularly in the early stages of growth in nutrient solutions, that tomatoes grew well at the highest concentration of nutrients em ployed while chrysanthemums grew best at the lowest level. rofanek, et al () reported, somewhat to the contrary, that chrysanthemums of the ramer variety were relatively tolerant to saline conditions due to excess fertilizer salts in sandy soil. High salt content decreased stem length but did not greatly decrease dry weight. When salinity was due to ammonium or magnesium salts, stem length was greatly reduced. High levels of ammonium reduced dry weight. High salt levels from balanced nutrients decreased keeping quality while high calcium in the soil increased keeping quality. Materials and Methods Two plants each of Fortyniner and Gold smith varieties* were set out in gallon glazed ceramic pots containing washed quartz sand, December,. Artificial lighting was not employed. lants were pinched De cember. From December until January, plants were watered every other day with ml. per pot of a dilute nutrient solution containing nitrogen from ammonium nitrate and potassium and phosphorus, both from potassium dihydrogen phosphate. On January, application of dif ferential solutions was begun, gradually in creasing the amount applied per pot to ml. per day. The standard nutrient solution is shown below Element N Ca Mg Mo Zn Source % NaN, % NHJNfO NaHO % C, % SO CaCl MgSCX HO SO Versenol SO Na MoO, ZnSO Variations were made in each nutrient series over a wide range, using single pot cultures and the same nutrient sources as for the standard solution. lant measurement data are presented in Table. An inspection of the data for the Rooted cuttings were furnished by Yoder ros., Inc., of arberton, Ohio.

2 WOLTZ: CHRYSANTHEMUMS four control cultures indicates that the weight measurement is the most uniform criterion for the evaluation of the effects of various levels of nutrients. Although this experiment is nonreplicated and observational it is considered, owing to the uniformity of growth of chrysan themum plants and also to the wide differ ence between treatments in a series, that the data provide preliminary, useful information on the approximate levels of nutrients desir able for optimum growth. The nutrient con tents of the plant tissues can thus be correlated with major responses to changes in nutrient levels in solutions. All data in this paper repre sent averages or totals for two chrysanthemum varieties. lant tissue analytical data, averages for Fortyniner and Goldsmith, are shown in Figs. to for the elements varied in the experiment and are to be correlated in an ap proximate manner with the yield data in Table to obtain an indication of the levels of each nutrient required for optimum growth and also the levels at which adverse effects result. The data on desirable levels of nutrients in plant tissue will be considered only as ap proximate guides until better criteria are available. The correlation is aided by visible differences that existed in the plants over the very wide range of levels employed. In the nitrogen series (Table and Fig. ), the lower levels at which maximum growth occurred appeared to be between and. Leaf analysis indicated the need for about. to. percent nitrogen for the maximum production. Quality was slightly affected by nitrogen. It is concluded, therefore, that the nitrate to ammonia ratio employed, :, was quite satisfactory. Other experiments () have shown chrysanthemums to be severely damaged by an unbalance in terms of excess ammonia and, less so, in the case of excess nitrate. Nitrogen content was highest in leaves, next in buds and lowest in stems. The optimum level for phosphorus (Table ) was near the level. The next lower level,, did not yield as well while the higher level of produced a mild yel lowing of leaves that may have been due to an interference with iron nutrition. It is in teresting to note that the number of buds in bloom at harvest appeared to be increased stepwise up to the highest level of phosphorus. Corresponding to phosphorus in the solution is about. percent phosphorus in the leaves (Fig. ). It is considered, therefore, that leaf analysis near. percent phos phorus indicates ample availability of the ele ment at the time of sampling. At lower levels of phosphorus supply, the order of decreasing phosphorus content is buds, leaves and stems while at higher levels the leaves accumulate more than the buds. The lowest level of potassium (Table ) producing satisfactory plant response is be tween and. At lower levels potas sium deficiency was evidenced by dying of older leaves or in less severe cases by mar ginal necrosis of older leaves. Numbers of buds in bloom at harvest time was reduced by low levels of potassium as well as by low levels of nitrogen and phosphorus. lant analy sis (Fig. ) brings out an interesting point in that buds appear able to accumulate consid erable potassium at the low levels in the solu tion, at the expense of the leaves. At the level in the nutrient solution, the leaves contained more potassium than the buds. It

3 FLORIDA STATE HORTICULTURAL SOCIETY, magnesium (Fig. ) in the leaves. Leaves contained more magnesium than buds which in turn had more than stems. appears that the leaves of chrysanthemums should contain to percent potassium. Calcium deficiency was not produced (Table ) due to the presence of calcium in the cuttings and impurities in nutrient salts and water. The failure to produce severe cal cium deficiency is not considered as neces sarily indicating a low requirement for the ele ment although a similar experiment with gladiolus produced severe calcium deficiency. This portion of the experiment will be repeated with increased attention to possible sources of contamination. lant analysis (Fig. ) in " fcii* > XQ The most noteworthy fact about the boron series (Table ) is the toxic effect,of this element. oron toxicity, first marginal and then total necrosis, developed in the older leaves of the plants at the. level. There was boron (Fig. ) in the \ks SO &Q ttt S p fat dicated. percent in leaves at the nocalcium level. Calcium was accumulated decreasingly, in order, by leaves, buds and stems. Magnesium deficiency produced the cus tomary symptoms of interveinal chlorosis in the older leaves. lant response (Table ) was not greatly different, however, over the wide range of treatments employed. There was a trend toward greatest yield by weight at the and levels with about. percent leaves at this level. At the higher boron levels leaves were necrotic to the top of the stem and buds also showed injury. oron content of the foliage rose very rapidly with increasing levels in solutions. Chrysanthemums appear to be very effective in taking up boron from the substrate. Impurities contributed by pyrex glass, chemicals and water no doubt played a part. Copper at. (Table ) appeared adequate while apparently reduced yield by weight. The higher levels of and

4 WOLTZ: CHRYSANTHEMUMS were definitely toxic, producing a chlorotic condition in the foliage. Leaves at the level contained copper (Fig. ) which is a value higher than is normally found in plant tissue not contaminated with spray residues. * contained more than stems. It should be pointed out that total iron content is not gen erally accepted as a guide to the existence of a deficiency. Manganese (Table ) reduced yield when the level was raised to. In addition to a reduction in growth, it was noted that high levels of manganese, especially and produced a chlorotic condition, especially pro nounced in the younger leaves somewhat sim ilar to iron deficiency. It is well known that excesses of manganese and other heavy metals interfere with iron nutrition. The manganese content of leaves rose steadily (Fig. ) from to, the uptake of applied man ganese being very efficient. Goldsmith variety in the irondeficient cul ture as well as in the. iron treatment developed interveinal chlorosis indicating iron deficiency. This variety generally exhibits an interveinal chlorosis in plantings in Florida and also in other areas. It is concluded, there fore, that the physiology of this variety must be such as to result in a predisposition to iron deficiency that can be corrected by the ap plication of higher levels of chelated iron to the substrate than are required to prevent de ficiency in other varieties. Versenol toxicity (Table ) began at about iron as Ver senol and was expressed as a blackening of foliage together with reduced growth. Leaves (Fig. ) contained more iron than buds which The adverse effect from zinc took place (Table ) between and in the solu tions. Sixteen, however, had a greater de pressive effect on yield than did the same amount of manganese. There is a suggestion that yield was benefited by the lower levels of zinc. Zinc content of plants increased consid erably (Fig. ) with increasing zinc levels in the solution. Sixteen zinc was apparent ly so toxic that roots were damaged early and the zinc content of plant tops did not reach high levels due to inefficient uptake. Summary This observational experiment was carried out with single replications to obtain prelim inary indications of the nutritional require ment and tolerances of chrysanthemums. Nu trient levels were varied over wide ranges. Yield data and appearance of the growing

5 FLORIDA STATE HORTICULTURAL SOCIETY, Table. Treatments applied to Fortyniner and Goldsmith and data on sterna (total fresh weight, total number and average length) and number of buds in bloom at harvest. Treatment or ^nrinnt?resh vt. (grams) Number Avg.Length No. ads (laches) in bloom T j. '* *T I "J "T F p.. plants were used to select approximate opti mum levels for future sand culture experi ments, together with approximate levels or nutrients considered desirable in foliage, as shown below: Element g In Approximate eal arable Level Nutrient Solution (Snnd lture).... Leaves % The minor element contents of leaves cited above are considered ample and below the level of toxicity but are not considered to be critical levels. LITERATURE CITED. Hill, H., M.. Davis and F.. Johnson.. Nutritional studies with Chrysanthemums. Sci. Agri. :.. ofranek. A. M., O. R. Lunt and S. A. Hart.. Tolerance of Chrysanthemum morifolium varie ty ramer to saline conditions. roc. Am. Soc. Hort. Sci. :.. ost,. and R. S. ell.. Effect of excess fertilizers on roses, snapdragons and chrysanthe mums. roc. Am. Soc. Hort. Sci. :.. Smith, C. N. and D. L. rooke.. The Flori da chrysanthemum industry. Univ. of Fla. Ag. Econ. Mimeo. Rpt... Waygood, E. R.. A comparison of the nu trient requirements of tomato seedlings and mums. Canadian Florist :. Cr> "T'g Mg ' '? '«g?v Ou CU?e Mi Vn Mh a a Za a n.in q Zn. ^ ? S e R

Animal, Plant & Soil Science. D3-7 Characteristics and Sources of Secondary Nutrients and Micronutrients

Animal, Plant & Soil Science. D3-7 Characteristics and Sources of Secondary Nutrients and Micronutrients Animal, Plant & Soil Science D3-7 Characteristics and Sources of Secondary Nutrients and Micronutrients Interest Approach Obtain samples of minerals that serve as sources of calcium, magnesium, and sulfur

More information

SOME EFFECTS OF NITROGEN, PHOSPHORUS GROWTH, YIELD AND FRUIT QUALITY

SOME EFFECTS OF NITROGEN, PHOSPHORUS GROWTH, YIELD AND FRUIT QUALITY 328 FLORIDA STATE HORTICULTURAL SOCIETY, 1956 SOME EFFECTS OF NITROGEN, PHOSPHORUS AND POTASSIUM FERTILIZATION ON THE GROWTH, YIELD AND FRUIT QUALITY OF PERSIAN LIMES Seymour Goldweber, Manley Boss, and

More information

Supplying Nutrients to Crops

Supplying Nutrients to Crops Supplying Nutrients to Crops What is Plant Nutrition? Plants need nutrients for healthy growth and development. Plant nutrition involves the absorption of nutrients for plant growth and is dependent on

More information

BOTANY AND PLANT GROWTH Lesson 9: PLANT NUTRITION. MACRONUTRIENTS Found in air and water carbon C oxygen hydrogen

BOTANY AND PLANT GROWTH Lesson 9: PLANT NUTRITION. MACRONUTRIENTS Found in air and water carbon C oxygen hydrogen BOTANY AND PLANT GROWTH Lesson 9: PLANT NUTRITION Segment One Nutrient Listing Plants need 17 elements for normal growth. Carbon, oxygen, and hydrogen are found in air and water. Nitrogen, phosphorus,

More information

IRON CHLOROSIS IN AVOCADOS

IRON CHLOROSIS IN AVOCADOS Proc. Fla. State Hort. Soc. 70:297-300. 1957. IRON CHLOROSIS IN AVOCADOS Roy W. Harkness and J. L. Malcolm Sub-Tropical Experiment Station, Homestead In recent years, yellowing of avocado trees has become

More information

Fertilization Programming

Fertilization Programming Fertilization Plant Composition Water composes 90% of plant weight (fresh weight) Dry weight is composed of 17 essential elements: Non-fertilizer elements: Carbon (C) -- 41% of dry weight (DW) Hydrogen

More information

Plant Food. Nitrogen (N)

Plant Food. Nitrogen (N) Plant Food Nitrogen (N) Functions: Promote plant growth Increase protein content of crops Improves quality of crop Makes plant more efficient with water Helps for stay green and dry down Plants take up

More information

Nutrient level (EC) in a pot is like a bank

Nutrient level (EC) in a pot is like a bank Dirt, Fert and Squirt (1) Supplying Essential Nutrients What are the most common nutritional problems? Too much fertilizer Not enough fertilizer Paul Fisher pfisher@ufl.edu 1 ph too high ph too low 2 Nutrient

More information

Terry Richmond s Fertilizer Package mentioned in the panel discussion March 14, 2013.

Terry Richmond s Fertilizer Package mentioned in the panel discussion March 14, 2013. Terry Richmond s Fertilizer Package mentioned in the panel discussion March 14, 2013. Roles of the 16 essential nutrients in plant development Sixteen plant food nutrients are essential for proper crop

More information

MEASURE AND MANAGE. Soiless Mixes, Testing and Nutrition Guidelines

MEASURE AND MANAGE. Soiless Mixes, Testing and Nutrition Guidelines MEASURE AND MANAGE Soiless Mixes, Testing and Nutrition Guidelines By Dale Cowan dcowan@agtest.com Agri-Food Laboratories CCA.On Greenhouse growth media, or soiless mixes, have chemical and physical properties

More information

Essential Soil Nutrients for Plant Growth and Development

Essential Soil Nutrients for Plant Growth and Development Essential Soil Nutrients for Plant Growth and Development Essential nutrients required by plants Role of nutrients within the plant Symptoms of deficiencies/toxicities 2 The basic soil components are:

More information

FERTILIZER EFFECTS UPON MICRONUTRIENT NUTRITION OF THE AVOCADO

FERTILIZER EFFECTS UPON MICRONUTRIENT NUTRITION OF THE AVOCADO California Avocado Society 1959 Yearbook 43: 96-99 FERTILIZER EFFECTS UPON MICRONUTRIENT NUTRITION OF THE AVOCADO C. K. Labanauskas, T. W. Embleton, and W. W. Jones Assistant Horticulturist, Associate

More information

Limitations to Plant Analysis. John Peters & Carrie Laboski Department of Soil Science University of Wisconsin-Madison

Limitations to Plant Analysis. John Peters & Carrie Laboski Department of Soil Science University of Wisconsin-Madison Limitations to Plant Analysis John Peters & Carrie Laboski Department of Soil Science University of Wisconsin-Madison What is an essential plant nutrient omission of the element will result in abnormal

More information

12. ZINC - The Major Minor

12. ZINC - The Major Minor 12. ZINC - The Major Minor It is the opinion of many that after nitrogen, zinc is the most limiting nutrient toward achieving maximum crop yields. More and more zinc deficiencies are being reported - many

More information

3.0 Supplying Nutrients to Crops

3.0 Supplying Nutrients to Crops 3.0 Supplying Nutrients to Crops Plants need for healthy growth and development. Plant nutrition involves the absorption of nutrients for plant growth and is dependent on, often referred to as nutrients.

More information

Soil Composition. Air

Soil Composition. Air Soil Composition Air Soil Included Air Approximately 40 to 60% of the volume of a soil is actually empty space between the solid particles (voids). These voids are filled with air and/or water. The air

More information

Lime Fertilizer Interactions Affecting Vegetable Crop Production' Delbert D. Hemphill, Jr., and T. L. ABSTRACT

Lime Fertilizer Interactions Affecting Vegetable Crop Production' Delbert D. Hemphill, Jr., and T. L. ABSTRACT 109 Lime Fertilizer Interactions Affecting Vegetable Crop Production' Delbert D. Hemphill, Jr., and T. L. Jackson2 ABSTRACT Experiments at the North Willamette Experiment Station have evaluated response

More information

Soil Nutrients and Fertilizers. Essential Standard Explain the role of nutrients and fertilizers.

Soil Nutrients and Fertilizers. Essential Standard Explain the role of nutrients and fertilizers. Soil Nutrients and Fertilizers Essential Standard 6.00- Explain the role of nutrients and fertilizers. Objective 6.01 Discuss macro and micro nutrients and the role they play in plant deficiencies. Macro

More information

Barley and Sugarbeet Symposium

Barley and Sugarbeet Symposium MICRONUTRIENT TESTING & MANAGEMENT IN BARLEY, CORN & PULSES Barley and Sugarbeet Symposium Billings, MT January 10, 2017 Clain Jones clainj@montana.edu 994-6076 MSU Soil Fertility Extension Goals Today

More information

Research Update. In hydroponic production, the fertilizer solution must provide all plant essential

Research Update. In hydroponic production, the fertilizer solution must provide all plant essential January 2016, #2016.04 Research Update Symptoms of ommon Nutrient Deficiencies in Hydroponic asil by Neil Mattson and Tanya Merrill In hydroponic production, the fertilizer solution must provide all plant

More information

Raymond C. Ward Ward Laboratories, Inc Kearney, NE

Raymond C. Ward Ward Laboratories, Inc Kearney, NE Raymond C. Ward Ward Laboratories, Inc Kearney, NE www.wardlab.com There is More Than N P K Major Nutrients N, P, and K Secondary Nutrients Calcium, Magnesium, and Sulfur Micro-Nutrients Zinc, Iron, Manganese,

More information

Plants Essential Elements. Macro and Micronutrients

Plants Essential Elements. Macro and Micronutrients Plants Essential Elements Macro and Micronutrients Nutrients Are elements needed by a plant to promote healthy tissue, processes, and growth. When plants are lacking in nutrients have a deficiency and

More information

Technical Guide on Nutritional recommendations for SWEETPEPPER For Open-field, Nethouse, Tunnels and Polyhouse

Technical Guide on Nutritional recommendations for SWEETPEPPER For Open-field, Nethouse, Tunnels and Polyhouse Technical Guide on Nutritional recommendations for SWEETPEPPER For Open-field, Nethouse, Tunnels and Polyhouse SWEETPEPPER: Botanical name: Capsicum annuum L. Synonyms: Capsicum, bell-pepper, paprika 1.

More information

Interpreting Soils Report. Beyond N P K

Interpreting Soils Report. Beyond N P K Interpreting Soils Report Beyond N P K What we will cover We will not discuss Macro Nutrients Nitrogen, Phosphorus, and Potassium. We will touch on Secondary Nutrients Magnesium, Calcium and Sulfur. We

More information

GREEN HOUSE FERTILIZER

GREEN HOUSE FERTILIZER P.O. BOX 11232, SHAWNEE MISSION, KANSAS 66207-1232 Phone # 913-677-4900 Fax # 913 677-4901 est@estchemicals.com www.estchemicals.com GREEN HOUSE FERTILIZER 16-4-16 16-4-16 WATER SOLUBLE ACID FORMULA GUARANTEED

More information

Nutrition. Grain Legume Handbook

Nutrition. Grain Legume Handbook Grain Legume Handbook Nutrition If the nutrients (phosphorus, nitrogen, zinc, etc.) removed as grain from the paddock are not replaced then crop yields and soil fertility will fall. This means that fertilizer

More information

Reading and Analyzing your Fertilizer Bag. Dr. Cari Peters Vice President

Reading and Analyzing your Fertilizer Bag. Dr. Cari Peters Vice President Reading and Analyzing your Fertilizer Bag Dr. Cari Peters Vice President caripeters@jrpeters.com Designer, Formulator, Producer and custom manufacturer of high quality fertilizer products. Hand s on Horticulture

More information

Correction of Zinc Deficiency in Avocado

Correction of Zinc Deficiency in Avocado 1997 California Avocado Research Symposium pages 9-12 California Avocado Society and University of California, Riverside Correction of Zinc Deficiency in Avocado Final Report for Project Year 4 of 4 Cooperating

More information

EFFECT OF NITROGEN AND POTASSIUM NUTRITION ON THE PHYTOPHTHORA LEAF SPOT OF PHILODENDRON

EFFECT OF NITROGEN AND POTASSIUM NUTRITION ON THE PHYTOPHTHORA LEAF SPOT OF PHILODENDRON HARKNESS AND REYNOLDS: PHYTOPHTHORA PHILODENDRON 47 EFFECT OF NITROGEN AND POTASSIUM NUTRITION ON THE PHYTOPHTHORA LEAF SPOT OF PHILODENDRON OXYCARDIUM Roy W. Harkness and J. E. Reynolds1 Sub-Tropical

More information

Plant Nutri+on: Sherlock Holmes Style Brian A. Krug; University of New Hampshire

Plant Nutri+on: Sherlock Holmes Style Brian A. Krug; University of New Hampshire Plant Nutri+on: Sherlock Holmes Style Brian A. Krug, Ph.D. University of New Hampshire Cooperative Extension PRACTICE PROCESS CAUSES SYMPTOMS SYMPTOMS Iden+fying Nutrient Deficiencies Recognizing nutrient

More information

2009 Elba Muck Soil Nutrient Survey Results Summary, Part III: Calcium, Magnesium and Micronutrients

2009 Elba Muck Soil Nutrient Survey Results Summary, Part III: Calcium, Magnesium and Micronutrients 29 Elba Muck Soil Nutrient Survey Results Summary, Part III: Calcium, Magnesium and Micronutrients Christy Hoepting, Cornell Cooperative Extension Vegetable Program Introduction This is the final part

More information

Mineral Nutrition of Fruit & Nut Trees. Fruit & Nut Tree Nutrition 3/1/2013. Johnson - Nutrition 1

Mineral Nutrition of Fruit & Nut Trees. Fruit & Nut Tree Nutrition 3/1/2013. Johnson - Nutrition 1 Mineral Nutrition of Fruit & Nut Trees R. Scott Johnson Extension Pomologist UC Kearney Ag Center Fruit & Nut Tree Nutrition 1. Basic Principles 2. Sampling for Nutrients 3. Environmental Issues 4. BMPs

More information

Recommended Resources: The following resources may be useful in teaching this lesson:

Recommended Resources: The following resources may be useful in teaching this lesson: Unit B: Establishing a Fruit Garden Lesson 5: Fertilizing Fruit and Nut Crops Student Learning Objectives: Instruction in this lesson should result in students achieving the following objectives: 1. Identify

More information

Micronutrient Management. Dorivar Ruiz Diaz Soil Fertility and Nutrient Management

Micronutrient Management. Dorivar Ruiz Diaz Soil Fertility and Nutrient Management Micronutrient Management Dorivar Ruiz Diaz Soil Fertility and Nutrient Management Essential Nutrients Thirteen essential nutrients Nitrogen, phosphorus, potassium, calcium, magnesium, sulfur Iron, manganese,

More information

Enclosed are the tissue analysis results for the samples from the greens at Golf Club.

Enclosed are the tissue analysis results for the samples from the greens at Golf Club. Enclosed are the tissue analysis results for the samples from the greens at Golf Club. The results for nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, and sodium are reported on a percent

More information

Apples and Pears. Above 2.7. Above 2.4

Apples and Pears. Above 2.7. Above 2.4 Apples and Pears Leaf Analysis Interpretation Apples and Pears Nitrogen (N) Below 1.9 1 Below 1.7 2 1.7 to 2.4 Above 2.4 1.9 to 2.7 Above 2.7 Potassium (K) Below 1.2 1.3 to 1.9 Above 2.0 Calcium (Ca) Below

More information

Seasonal Trends in Nutrient Composition of Hass Avocado Leaves 1

Seasonal Trends in Nutrient Composition of Hass Avocado Leaves 1 Proceedings of the AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE 1961 78:149-160 Seasonal Trends in Nutrient Composition of Hass Avocado Leaves 1 FRANK T. BINGHAM University of California Citrus Experiment

More information

AgriCal by. Healthier Soils Stronger Plants Higher Yields

AgriCal by. Healthier Soils Stronger Plants Higher Yields Healthier Soils Stronger Plants Higher Yields does your soil really need LIME? The importance of calcium as an essential plant nutrient in the soil is often overlooked. Too many times, when soil tests

More information

How to Develop a Balanced Program for Pecan and Chili. Robert R Smith

How to Develop a Balanced Program for Pecan and Chili. Robert R Smith Essential Plant Nutrients How to Develop a Balanced Program for Pecan and Chili Robert R Smith Nutrition Management Involves Knowledge of: Site/Soil characteristics and chemistry Plant requirements Cropping

More information

Nutrient Deficiency in Anthuriums

Nutrient Deficiency in Anthuriums 630 US ISSN 0271-9916 August 1984 RESEARCH EXTENSION SERIES 047 Nutrient Deficiency in Anthuriums Joanne S. Imamura and Tadashi Higaki HITAHR. COLLEGE OF TROPICAL AGRICULTURE AND HUMAN RESOURCES. UNIVERSITY

More information

Understanding a Soil Report

Understanding a Soil Report Understanding a Soil Report AGRONOMY SOIL ANALYSIS 1. Soil ph Soil ph is a measure of the acidity in the soil. An acidic soil has a greater amount of hydrogen (H+) ions and a ph below 7.0. Values above

More information

Vineyard Nutrition. Grape Camp Michael Cook

Vineyard Nutrition. Grape Camp Michael Cook Vineyard Nutrition Grape Camp Michael Cook Objectives What is a Vineyard Fertility Plan? Importance Principles of Vine Fertility Methods of Fertility Assessment Prevention & Correction of Fertility Issues

More information

Pomegranate Irrigation and Nutrient Management

Pomegranate Irrigation and Nutrient Management Florida Pomegranate Association 2018 Growers Meeting (GCREC Feb 9, 2018) Pomegranate Irrigation and Nutrient Management Shinsuke Agehara Assistant Professor, Plant Physiology Gulf Coast Research and Education

More information

6/28/2016. Visual diagnosis of nutrient deficiencies in plants Botany 453/553: Summer Nutrient deficiencies are not easy to diagnose

6/28/2016. Visual diagnosis of nutrient deficiencies in plants Botany 453/553: Summer Nutrient deficiencies are not easy to diagnose Visual diagnosis of nutrient deficiencies in plants Botany 453/553: Summer 2016 Nutrient deficiencies are not easy to diagnose Various deficiencies can mimic one another Symptom location and pattern assists

More information

Soil 4234 Guest Lecture

Soil 4234 Guest Lecture Soil 4234 Guest Lecture Soil Fertility in Potted Horticulture Crops Dr. Bruce Dunn Determine Water Quality Prior to selecting a site for a new business and periodically thereafter, test water Seasonally

More information

CORRECTION OF IRON CHLOROSIS IN CITRUS WITH CHELATED IRON

CORRECTION OF IRON CHLOROSIS IN CITRUS WITH CHELATED IRON 20 FLORIDA STATE HORTICULTURAL SOCIETY, 1952 Thank you. Do processed citrus juices and frozen concentrates produced from parathion sprayed fruit become contaminated with parathion Beckenbach? Beckenbach:

More information

Managing Micronutrients with Soil (Plant) Testing and Fertilizer

Managing Micronutrients with Soil (Plant) Testing and Fertilizer Managing Micronutrients with Soil (Plant) Testing and Fertilizer What Is Plant Analysis? A tool to monitor or make decisions Identify nutrient deficiencies and determine nutrient shortages Determining

More information

Specialists In Soil Fertility, Plant Nutrition and Irrigation Water Quality Management.

Specialists In Soil Fertility, Plant Nutrition and Irrigation Water Quality Management. Specialists In Soil Fertility, Plant Nutrition and Irrigation Water Quality Management. TOMATOES T PLANT NUTRITION & SAMPLING NOTES - 1 Noel Garcia, CCA he most important aspect of tomato production (field,

More information

FERTILIZATION. Roland D. Meyer, Daniel B. Marcum, and Steve B. Orloff ESSENTIAL PLANT NUTRIENTS

FERTILIZATION. Roland D. Meyer, Daniel B. Marcum, and Steve B. Orloff ESSENTIAL PLANT NUTRIENTS CHAPTER FIVE FERTILIZATION Roland D. Meyer, Daniel B. Marcum, and Steve B. Orloff P roviding an adequate supply of nutrients is important for alfalfa production and is essential to maintain high and profitable

More information

ANIMAL, PLANT & SOIL SCIENCE D3-6 CHARACTERISTICS AND SOURCES OF PHOSPHORUS AND POTASSIUM

ANIMAL, PLANT & SOIL SCIENCE D3-6 CHARACTERISTICS AND SOURCES OF PHOSPHORUS AND POTASSIUM ANIMAL, PLANT & SOIL SCIENCE D3-6 CHARACTERISTICS AND SOURCES OF PHOSPHORUS AND POTASSIUM INTEREST APPROACH Show images of plants suffering from phosphorus and potassium deficiencies. Ask students if they

More information

INVESTIGATIONS ON THE OF BLACK PEPPER [Piper nigrum L.]

INVESTIGATIONS ON THE OF BLACK PEPPER [Piper nigrum L.] INVESTIGATIONS ON THE NUTRITION OF BLACK PEPPER [Piper nigrum L.] By E. V. NYBE THESIS Submitted In partial fulfilment of the requirements for the degree of Doctor of Philosophy in Horticulture Faculty

More information

Nutrients. Carbon, Hydrogen, and Oxygen 1/18/2012. Soils, Nutrients and Fertilizers Part I I. 17 elements essential for plant growth

Nutrients. Carbon, Hydrogen, and Oxygen 1/18/2012. Soils, Nutrients and Fertilizers Part I I. 17 elements essential for plant growth Soils, Nutrients and Fertilizers Part I I Handouts: Home Garden Soil Testing and Fertilizer Guidelines MontGuide Nutrients 17 elements essential for plant growth Oxygen Carbon Hydrogen Nitrogen Phosphorus

More information

Interpretation of leaf nutrient analysis

Interpretation of leaf nutrient analysis Factsheet 22/05 Alliums (bulb onions, salad onions and leeks) Horticultural Development Council Bradbourne House East Malling Kent ME19 6DZ T: 01732 848383 F: 01732 848498 E: hdc@hdc.org.uk Interpretation

More information

Nutrient Deficiencies and Application Injuries in Field Crops

Nutrient Deficiencies and Application Injuries in Field Crops Extension and Outreach Publications Extension and Outreach 4-2010 Nutrient Deficiencies and Application Injuries in Field Crops John E. Sawyer Iowa State University, jsawyer@iastate.edu Follow this and

More information

What s new with micronutrients in our part of the world?

What s new with micronutrients in our part of the world? 2006 Integrated Crop Management Conference - Iowa State University 181 What s new with micronutrients in our part of the world? George Rehm, Professor, Soil, Water and Climate, University of Minnesota

More information

Micronutrient Disorders

Micronutrient Disorders Micronutrient Disorders by Claudio C. Pasian Department of Horticulture and Crop Science The Ohio State University Micronutrient disorders are the fertility problems that I see most often while visiting

More information

Interpretation of Soil Tests for Environmental Considerations

Interpretation of Soil Tests for Environmental Considerations Interpretation of Soil Tests for Environmental Considerations Ray Ward Ward Laboratories, Inc Kearney, NE www.wardlab.com Guiding Producers Today to Feed the World Tomorrow www.wardlab.com Saline County

More information

REMEMBER as we go through this exercise: Science is the art of making simple things complicated!

REMEMBER as we go through this exercise: Science is the art of making simple things complicated! REMEMBER as we go through this exercise: Science is the art of making simple things complicated! Fertilization of Hops Ron Godin, Ph.D., Colorado State University Extension Fertilization of Hops - Care

More information

Controlled Release Fertilizer Evaluations 1998

Controlled Release Fertilizer Evaluations 1998 Controlled Release Fertilizer Evaluations 1998 James T. Midcap, Extension Horticulture-Athens, UGA Nature of Work: On March 20, 1998 three-inch Rhododendron Hinodegiri and Ilex crenata Compacta liners

More information

Importance of Water Quality: ph, buffering, and effects on nutrient availability

Importance of Water Quality: ph, buffering, and effects on nutrient availability Importance of Water Quality: ph, buffering, and effects on nutrient availability Andrew G. Ristvey The University of Maryland Extension programs are open to any person and will not discriminate against

More information

Use of Soil and Tissue Testing for Sustainable Crop Nutrient Programs

Use of Soil and Tissue Testing for Sustainable Crop Nutrient Programs Use of Soil and Tissue Testing for Sustainable Crop Nutrient Programs Kelly T. Morgan Soil and Water Science Department Southwest Florida Research and Education Center Immokalee 239 658 3400 conserv@ufl.edu

More information

Nutrient Recommendations Agronomic Crops Last Updated 12/1/16. Grain Corn. Crop Highlights Target ph: 6.0

Nutrient Recommendations Agronomic Crops Last Updated 12/1/16. Grain Corn. Crop Highlights Target ph: 6.0 Nutrient Recommendations Agronomic Crops Last Updated 12/1/16 Crop Highlights Target ph: 6.0 Grain Corn Split N applications to increase N-use efficiency in corn. Apply a small amount (20-25%) at planting

More information

WATERMELON RESPONSE TO COPPER AND A COMPLETE MICRONUTRIENT SOURCE1

WATERMELON RESPONSE TO COPPER AND A COMPLETE MICRONUTRIENT SOURCE1 0 FLORIDA STATE HORTICULTURAL SOCIETY, 966 WATERMELON RESPONSE TO COPPER AND A COMPLETE MICRONUTRIENT SOURCE S. J. Locascio, J. G. A. Fiskell, P. H. Everett, and j. m. crall Abstract On a virgin Lakeland

More information

Nutrient Management in Subtropical Tree Crops. The avocado model

Nutrient Management in Subtropical Tree Crops. The avocado model Nutrient Management in Subtropical Tree Crops The avocado model Avocado Fertilization Tissue %Dry Wt New shoots 36 Leaves 40 Fruit 33 Small branches 38 < 1 in Small branches 55 1-2 in Scion trunk 48 Rootstock

More information

MINERAL CONTENT OF ORANGES IN RELATION TO FRUIT AGE AND SOME FERTILIZATION PRACTICES

MINERAL CONTENT OF ORANGES IN RELATION TO FRUIT AGE AND SOME FERTILIZATION PRACTICES 80 FLORIDA STATE HORTICULTURAL SOCIETY, 1953 ment caused by additions of toxic amounts of copper to the soil. This indicates that promi nent iron chlorosis symptoms are not always associated with copper

More information

Early Detection of Nutrient Deficiencies and Toxicities

Early Detection of Nutrient Deficiencies and Toxicities Early Detection of Nutrient Deficiencies and Toxicities IPM Scout Training Program Andrew G. Ristvey Wye Research and Education Center University of Maryland Extension College of Agriculture and Natural

More information

Roses with Vitazyme application

Roses with Vitazyme application Vitazyme Field Tests for 2018 Roses with Vitazyme application Researcher: Jan Ties Malda Research organization: Cebeco Mertstoffen B. V. and SPNA Kollumerwaard, the Netherlands Location: SPNA Kollumerwaard,

More information

Monitoring & Maintaining the ph and EC of the Root Environment. Bill Fonteno Horticultural Substrates Laboratory NC State University

Monitoring & Maintaining the ph and EC of the Root Environment. Bill Fonteno Horticultural Substrates Laboratory NC State University Monitoring & Maintaining the ph and EC of the Root Environment Bill Fonteno Horticultural Substrates Laboratory NC State University Substrate ph Maintaining proper substrate ph will PREVENT most nutrient

More information

In This Issue. Introduciton

In This Issue. Introduciton Viticulture Newsletter May 2002 From the Viticulture Staff at Oregon State University Contributors: Jessica Howe, Jessica Cortell, Anne Connelly, and Carmo Vasconcelos In This Issue Mineral Nutrients:

More information

Plant Nutrients in Mineral Soils

Plant Nutrients in Mineral Soils The Supply and Availability of Plant Nutrients in Mineral Soils Plant Nutrients in Mineral Soils Factors Controlling the Growth of Higher Plants 1. Light 2. Mechanical Support. Heat. Air 5. Water 6. Nutrients

More information

Investigating the probable cause of crop decline in central Oahu A.P. Pant, N.V. Hue, J. Uyeda, J. Sugano, and T. Radovich

Investigating the probable cause of crop decline in central Oahu A.P. Pant, N.V. Hue, J. Uyeda, J. Sugano, and T. Radovich HanaiʻAi/The Food Provider June July August 2013 Investigating the probable cause of crop decline in central Oahu A.P. Pant, N.V. Hue, J. Uyeda, J. Sugano, and T. Radovich Summary Extension agents brought

More information

Terms used to describe levels of nutrient elements in plants

Terms used to describe levels of nutrient elements in plants 1 NUTRITION 2 Terms used to describe levels of nutrient elements in plants 3 Deficient: when an essential element is at low concentration that severely limits yield and produces more or less distinct deficiency

More information

Upper Tolerances for Micronutrients in Fertilizers

Upper Tolerances for Micronutrients in Fertilizers 2017 Her Majesty the Queen in Right of Canada (Canadian Food Inspection Agency), all rights reserved. Use without permission is prohibited. Upper Tolerances for Micronutrients in Fertilizers Program Objectives

More information

TOTAL SULPHUR CONTENT AND ITS EFFECT ON AVOCADO LEAVES

TOTAL SULPHUR CONTENT AND ITS EFFECT ON AVOCADO LEAVES California Avocado Society 1953-54 Yearbook 38: 171-176 TOTAL SULPHUR CONTENT AND ITS EFFECT ON AVOCADO LEAVES A. R. C. Haas Plant Physiologist, University of California, Citrus Experiment Station, Riverside

More information

1101 S Winchester Blvd., Ste. G 173 San Jose, CA (408) (408) fax Page 1 of 2

1101 S Winchester Blvd., Ste. G 173 San Jose, CA (408) (408) fax   Page 1 of 2 San Jose Office September 28, 2018 Report 18-262-0106 Zanker Landscape Mateirals 675 Los Esteros Road San Jose, CA 95134 Attn: Beto Ochoa RE: ZB-PPM Reaction at 7.5 is slightly alkaline and with lime absent

More information

STUDIES ON THE NUTRITIONAL REQUIREMENTS OF GLADIOLUS

STUDIES ON THE NUTRITIONAL REQUIREMENTS OF GLADIOLUS 0 FLORIDA STATE HORTICULTURAL SOCIETY, 1 However, Pensacola will come back to a solid stand by the end of the first growing season. It makes a tighter sod than Pangola but the Pangola grows taller. Both

More information

Minnesota State Florists Bulletin

Minnesota State Florists Bulletin AGRICULTURAL EXTENSION SERVICE, UNIVERSITY OF MINNESOTA Minnesota State Florists Bulletin University of Minnesota Institute of Agriculture St. Paul, Minnesota Co-editors, R.E. Widmer, H.F. Wilkins Department

More information

Water Quality and Treatments

Water Quality and Treatments Water Quality and Treatments Image credit: subbotina / 123RF.com While many challenges in greenhouse production are beyond our control, poor water quality should not be one of them. By John M. Dole Growing

More information

UNDERSTANDING NUTRITION

UNDERSTANDING NUTRITION UNDERSTANDING NUTRITION John Adlam Dove Associates john@dovebugs.co.uk www.dovebugs.co.uk Major Nitrogen Phosphorus Magnesium Calcium NUTRIENTS Minor Iron Manganese Zinc Copper Boron Sulphur Molybdenum

More information

EconovaPlus Fertiliser

EconovaPlus Fertiliser EconovaPlus Fertiliser The complete plant growth fertiliser, bio-stimulater & carbon control solution. A bio-fertiliser based on the need for organic mineral complexes in the soil. Manufactured by building

More information

How to Select the Right Fertilizer for Hydroponics

How to Select the Right Fertilizer for Hydroponics How to Select the Right Fertilizer for Hydroponics Petrus Langenhoven, Ph.D. Horticulture and Hydroponics Crops Specialist Greenhouse and Indoor Hydroponics Workshop, West Lafayette IN, September 5, 2018

More information

AGRY 515: What do you know? In 10 minutes, fill out what you can. Educated guesses are strongly encouraged.

AGRY 515: What do you know? In 10 minutes, fill out what you can. Educated guesses are strongly encouraged. AGRY 515: What do you know? In 10 minutes, fill out what you can. Educated guesses are strongly encouraged. Criteria for Essential Elements A. B. C. Essential Elements (17): Nonmineral (3): Mineral (14):

More information

Nutrient management irrigated corn. Jim Camberato

Nutrient management irrigated corn. Jim Camberato Nutrient management irrigated corn Jim Camberato jcambera@purdue.edu Irrigated corn response to N Indiana Michigan 300 2008CS 2008CC 2008CC2 2013CS 2014CC 2014CW 2015CS Grain yield, bu/ac 250 200 150

More information

COPPER TOXICITY IN WOODY ORNAMENTALS

COPPER TOXICITY IN WOODY ORNAMENTALS 6 COPPER TOICITY IN WOODY ORNAMENTALS by Larry J. Kuhns and T. Davis Sydnor Abstract. Rhododendron obtusum Planch. 'Delaware Valley' (Delaware Valley Azalea), Buxus sempervirens L. (common boxwood) and

More information

WHAT ARE FERTILIZERS

WHAT ARE FERTILIZERS FERTILIZER INDUSTRY WHAT ARE FERTILIZERS FERTILIZERS ARE COMPOUNDS GIVEN TO PLANTS WITH THE INTENTION OF PROMOTING GROWTH; THEY ARE USUALLY APPLIED EITHER VIA THE SOIL, FOR UPTAKE BY PLANT ROOTS, OR BY

More information

Interpreting Plant Tissue and Soil Sample Analysis

Interpreting Plant Tissue and Soil Sample Analysis Interpreting Plant Tissue and Soil Sample Analysis Dan Fromme Associate Professor-Cotton, Corn, & Grain Sorghum Specialist LSU AgCenter Dean Lee Research & Extension Center Alexandria, Louisiana Fertilization

More information

ABOUT TURF FORMULA. 36% Decrease in Brown Patch 35% Increase in Root Mass 33% Nematode Reduction 73% Salt Reduction in 90 Days

ABOUT TURF FORMULA. 36% Decrease in Brown Patch 35% Increase in Root Mass 33% Nematode Reduction 73% Salt Reduction in 90 Days ABOUT TURF FORMULA Superintendents and turfgrass managers routinely see the benefits of using Turf Formula and Super- Cal to achieve and maintain healthy greens and turf. The value of these products is

More information

Cranberry Nutrition: An A Z Guide. Joan R. Davenport Soil Scientist Washington State University

Cranberry Nutrition: An A Z Guide. Joan R. Davenport Soil Scientist Washington State University Cranberry Nutrition: An A Z Guide Joan R. Davenport Soil Scientist Washington State University Soil Derived Plant Essential Elements Macro Micro Nitrogen (N) Phosphorus (P) Sulfur (S) Potassium (K) Calcium

More information

Sugar solutions are frequently used to reduce

Sugar solutions are frequently used to reduce SUGAR SOIL TREATMENT Jay S. Koths Extension Floriculturist Sugar solutions are frequently used to reduce excessive soluble salt or nitrogen levels in green house soils. The situations where this practice

More information

A Guide to Citrus Nutritional Deficiency and Toxicity Identification 1

A Guide to Citrus Nutritional Deficiency and Toxicity Identification 1 HS-797 A Guide to Citrus Nutritional Deficiency and Toxicity Identification 1 Stephen H. Futch and David P. H. Tucker 2 Citrus trees in commercial and dooryard plantings can exhibit a host of symptoms

More information

Teff Compendium Nutrient deficiency symptoms SINCE

Teff Compendium Nutrient deficiency symptoms SINCE Teff Compendium Nutrient deficiency symptoms SINCE Experimental design The experiment was conducted in a green house in 3 liter pots, filled with perlite. Each nutrient was tested in three levels: zero,

More information

Chapter 7: Micronutrient Management

Chapter 7: Micronutrient Management Chapter 7: Micronutrient Management Agustin Pagani, John E. Sawyer, and Antonio P. Mallarino / Department of Agronomy, Iowa State University Developed in cooperation with Lara Moody, TFI; John Davis, NRCS;

More information

Plant-Prod is plant productivity. Plant-Prod is the world leader in soluble fertilizers and the partner for growers where high productivity is vital.

Plant-Prod is plant productivity. Plant-Prod is the world leader in soluble fertilizers and the partner for growers where high productivity is vital. TM Plant-Prod is plant productivity Plant-Prod is the world leader in soluble fertilizers and the partner for growers where high productivity is vital. Table of contents high productivity plant nutrition

More information

Controlled Release Fertilizers Evaluations B & 12 Month Products

Controlled Release Fertilizers Evaluations B & 12 Month Products Controlled Release Fertilizers Evaluations B 1999 9 & 12 Month Products Dr. James T. Midcap B Extension Horticulture B Athens, UGA Controlled release fertilizers are constantly being improved to meet the

More information

MAGIC RECIPES? Strawberry Fertigation in the UK. John Atwood Senior Horticultural Consultant.

MAGIC RECIPES? Strawberry Fertigation in the UK. John Atwood Senior Horticultural Consultant. MAGIC RECIPES? Strawberry Fertigation in the UK John Atwood Senior Horticultural Consultant www.adas.co.uk Strawberries in the UK Raised beds, polythene mulch, trickle line + fertigation Introduced 20

More information

YaraVita PROCOTE. The colors of yield.

YaraVita PROCOTE. The colors of yield. YaraVita PROCOTE The colors of yield. Micronutrient Coating YaraVita PROCOTE is an innovative liquid technology developed by Yara for coating prilled and granular fertilizers with micronutrients. It allows

More information

Plant-Prod is plant productivity. Plant-Prod is the world leader in soluble fertilizers and the partner for growers where high productivity is vital.

Plant-Prod is plant productivity. Plant-Prod is the world leader in soluble fertilizers and the partner for growers where high productivity is vital. TM Plant-Prod is plant productivity Plant-Prod is the world leader in soluble fertilizers and the partner for growers where high productivity is vital. Table of contents high productivity plant nutrition

More information

Nutrition of Horticultural Crops. Monica Ozores-Hampton University of Florida/IFAS/SWFREC Spring 2013

Nutrition of Horticultural Crops. Monica Ozores-Hampton University of Florida/IFAS/SWFREC Spring 2013 Nutrition of Horticultural Crops Monica Ozores-Hampton University of Florida/IFAS/SWFREC Spring 2013 Phosphorous Essential Nutrients - List MACRONUTRIENTS: MICRONUTRIENTS: Nitrogen Boron Phosphorus Chlorine

More information

FACTORS AFFECTING WATER QUALITY

FACTORS AFFECTING WATER QUALITY TECHNICAL PAPER WATER QUALITY PLANT HEALTH FACTORS Water quality is one of the most important factors affecting plant growth, as unwanted components in water can interfere with nutrient availability and

More information

RLF TECHNICAL NOTE WHY FEEDING NUTRIENTS BY OVERHEAD IRRIGATION IMPROVES CROP NUTRITION?

RLF TECHNICAL NOTE WHY FEEDING NUTRIENTS BY OVERHEAD IRRIGATION IMPROVES CROP NUTRITION? RLF TECHNICAL NOTE TECHNICAL NOTE 3 BENEFITS OF USING LIQUID FERTILISERS IN OVERHEAD IRRIGATION by Dr Hooshang Nassery, Head of Technical NOURISHING PLANTS BY OVERHEAD IRRIGATION Fertiliser application

More information