Modelling of stress-strain states in arteries as a pre-requisite for damage prediction

Size: px
Start display at page:

Download "Modelling of stress-strain states in arteries as a pre-requisite for damage prediction"

Transcription

1 2002 WT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved. Paper from: Damage and Fracture Mechanics V, CA Brebbia, & S Nishida (Editors). SBN Modelling of stress-strain states in arteries as a pre-requisite for damage prediction J. Bursa nstitute of Solid Mechanics, Brno University of Technology, Czech Republic. Abstract Damage to arteries can be caused by a number of different factors ranging fkom the influence of mechanical load of arterial walls on endothelial cells and, consequently, on the genesis of atheromatous plaques on the inner surface of the walls, to a global tissue rupture, To predict these states, it is necessary to know not only the limit conditions and limit values but also the most credible stress and strain states. These states were solved using FEA (ANSYS program system), namely in an intact artery and in various geometric shapes of joints (anastomoses) with a vascular graft. The computational model used the axisymmetrical geometry with up to two different homogeneous coaxial layers in the artery wall, The material was supposed to be non-linear elastic, isotropic, nearly incompressible, showing finite displacements and strains under physiologic load. The model considered three major load factors: blood pressure, axial prestretch and residual stresses, The influence of axial prestretch and residual stress on the stress (and strain) distribution in the arterial wall was quantified using the maximum to minimum stress (strain) ratio, These ratios tend to 1 at some physiological blood pressure values. Using the same type of model, the stress and strain distribution was computed for an anastomosis of the aorta with a vascular graft, Two basic types of anastomoses were modelled: a classical end-to-end anastomosis and a,japped anastomosis. Due to a very complex tissue structure that is considerably simplified in the model, the results do not filly meet real needs, however they enable us to compare various shapes and geometric parameters of anastomoses. n this way, risks of clinical complications related to specific limit states of tissues, such as ruptures or growth of aneurysms near the anastomosis, can be compared.

2 2002 WT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved. Paper from: Damage and Fracture Mechanics V, CA Brebbia, & S Nishida (Editors). SBN Damage and Fracture Mechanics V 1 ntroduction Blood vessels walls oflen succumb pathological changes connected with their stress and strain state which can endanger the person s life, Reduction of the artery inner diameter, together with changes in mechanical properties due to the atherosclerotic process are the most frequent pathological changes influenced by mechanical factors, A growth of aneurysms and their rupture risk or application of arterial stents and vascular grafts are examples of clinical problems requiring some knowledge about stress and strain states in arteries, as the fust step to create computational supports. 2 Objectives A solution to stress and strain states in soft tissues is too complex for detailed computational modelling because of the complicated structure with various wavy fibres and their non-elastic properties, However, models respecting global tissue properties, as hyperelasticity, anisotropy, viscoelasticity etc. can be usefi.d e.g. in comparing various surgical approaches, Our FE model of aorta created in program system ANSYS supposed axisymmetry of the aortic segment, ts cylindric wall was created by one or two coaxial layers. The material was modelled as isotropic, incompressible, non-linear elastic, showing large displacements and strains under physiologic conditions, The model was loaded by the blood pressure, axial prestretch and residual stresses. This model was used to evaluate the stress and strain states in an intact aorta and to assess the influence of axial prestretch and residual stress on the stress and strain states in the wall. A similar model evaluated stress and strain states in two types of anastomoses with vascular grafts J -+-no residus lstrese, sxlslstraln 0% -+-with reeidual stress, axislstrsin O A with residus lstreee, exisletra in 20% - -with residuslstrees, sx ial strain residual streas, axisl strain 40 /0 -O-with residusletress, sxislstrsin 50 /0 o 0,5 i 1,5 Diatsnce from the inner surface [mm] Fig,l: nfluence of axial prestretch on the circumferential stress distribution in homogeneous aortic wall (residual stress given by the opening angle 60 deg) T i

3 2002 WT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved. Paper from: Damage and Fracture Mechanics V, CA Brebbia, & S Nishida (Editors). SBN Results of intact aorta modelling Damage and Fracture Mechanics V 489 The created 3D computational model of stress and strain state in an aortic wall segment was loaded by residual stress (defined by the opening angle ~), axial prestretch (up to 50% axial strain) and inner pressure (up to 20 kpa). When computed separately, the residual stresses are relatively low (a few kpa according to the opening angle value and to the boundary conditions of the model used). However, the stress distribution in the aortic wall (see fig. 1) shows that the changes of extreme stresses in the wall induced by the additional load factors are much higher than the values of residual stress. The residual stress and axial prestretch do decrease the stress gradients in the wall or in the wall layer very significantly, This surprisingly high influence can be explained by the ma$erial non-linearity character typical of soil tissues. The stress non-uniformity across the aortic wall (or across a layer in the twolayer model) can be expressed by maximum to minimum circumferential stress ratio po. n the one-layer model, the additional load decreases this extreme stress ratio from 1.94 to 1.19 at blood pressure value of 20kPa. Consequently, a homogeneous stress state can be achieved at a certain value of the blood pressure (9 kpa for the presented model). This,,optimized pressure value may lie within the usual physiologic blood pressure range when either the opening :&-_&=J...f-,..._,,J uhuh --7,.,,. _,...,_~, o 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6!,8 Distance from the inner surface [mm],? Fig,2: Circumferential stress distribution in the aortic wall for various levels of the model

4 2002 WT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved. Paper from: Damage and Fracture Mechanics V, CA Brebbia, & S Nishida (Editors). SBN Damageand Fracture Mechanics V angle or the axial prestretch increases slightly. The importance of the influence of axial prestretch can be seen in fig. 1, presenting curves for the one-layer model loaded by the same pressure value, with the same residual stress (opening angle), but with different values of axial prestretch. With increasing axial prestretch, the maximum stress value and the stress gradient in the wall decrease significantly, For example, the stress ratio p. decreases from 1,29 (when there is no axial prestretch) to 1,08 (when axial strain equals 50Yo), A similar influence of residual stress and axial prestretch on the stress gradient can be found in the two-layer model but across each of the different layers, of course. The extreme stress ratio in the inner layer decreases from 1,84 to 1.17 under the same conditions (see fig. 2). The circumferential stress gradient in any layer is much lower at any pressure value, and at 8 kpa the stress state is nearly uniform in each of them. 3,1 Solution to inverse problems The inverse problem of solving the opening angle or blood pressure when the stress distribution is known (for example, searching of the opening angle and blood pressure corresponding to the homogeneous stress state), cannot be solved directly. To fmd these values, several various opening angles ~ were used as input values in the computations, The opening angle value which invokes the uniform stress distribution at a certain blood pressure value can be found by interpolation of the resulting extreme stress ratios, (The results do not correspond to the previous paragraph, because other material curves were used in the models), The opening angle determined in this way (~ = 510, gives a uniform stress distribution in each of the layer of the two-layer model under the blood pressure value of 12 kpa, This can be verified by the direct computation with this opening angle used as an input value, as presented in fig.3. Under these conditions, the stress distribution across the one-layer wall is uniform for the &l,l 1 1,2 i 1.- :1. to a) 3 0,9 -g ~ 0,8 d + extreme stress ratio - 1-layer model + etireme strain ratio - 1-layer model -k u-l (),7 extreme stress ratio - 2-layer model 0, Blood pre &re [kpa] Fig. 3: Extreme stress and strain ratio as a ti.mction of blood pressure (opening angle ~=51 deg, axial prestretch 30%)

5 2002 WT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved. Paper from: Damage and Fracture Mechanics V, CA Brebbia, & S Nishida (Editors). SBN Damage and Fracture Mechanics V 491 blood pressure of 11 kpa, The curves in fig, 3 present extreme strain ratio as well. They enable us to find the blood pressure value at which the strain distribution in the aorta or in the aortic layer is uniform, in accordance with the hypothesis presented by Hayashi and Li [1]. This blood pressure value for the one-layer model equals to 14 kpa, the two-layer model gives the blood pressure value of 17kPa. 4 Stress state modelling in artery-vascular graft joints The actual level of computational model enables us to model stress and strain states in anastomoses (joints) of arteries with vascular grafts. The models presented here are conformable to the models of the intact aorta but they do not consider residual stresses, yet. Two variants of anastomosis geometry have been modelled, a lapped anastomosis and a classical,,end-to-end anastomosis. The lapped anastomoses are not commonly used but the commercial tissue adhesives enable us to test their feasibility and to compare their properties with the classical anastomoses shapes. Additionally, the lapped anastomoses enable us to overcome another substantial problem of modelling. f the knitted grafts are modelled as a continuum, their show a nearly zero stiffness in compression. n the lapped anastomosis the tubes undergo no substantial bending and the load invokes biaxial tension in the graft (i.e. the principal membrane stress components are positive) so that the stress-strain curve in compression does not have to be used in the model. t can be expected that the extreme stresses in the lapped anastomosis will be lower than in the classical one on account of lower additional bending of the 1, / ~ 0,8 - ~ E. (n ; 0,6 < > % al E 0,4 0,2- o~ o 0,1 0,2 0,3 0,4 0,5 0,6 Natural atrain [-] Fig.4: Stress-strain curve of the knitted graft used in the model. Value &ois the strain value corresponding to the nominal graft diameter,

6 2002 WT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved. Paper from: Damage and Fracture Mechanics V, CA Brebbia, & S Nishida (Editors). SBN Damage and Fracture Mechanics V wall. Allthough we do not know any limit stress or strain values for arterial tissues, lower extreme stresses should ensure lower risk of clinical complications such as aneurysms or ruptures. And for such a comparison the actual level of computational model could be sufficient, 4.1 Lapped anastomosis of aorta with a knitted prosthesis There were two basic problems to solve in this computational model, The former is the nearly zero stiffhess of the knitted vascular grail in compression, the later is the diameter mismatch between aorta and vascular graft which is commonly used on behalf of the higher tension stiffness of the graft in comparison with the natural artery which can be one of the causes of neointimal thickening. The ariastomosis model is created by two lapped cylindrical tubes (see fig,5), The inner diameter of the vascular graft in the unloaded state is larger than the outer diameter of the aorta. Therefore, in the unloaded state, there is no contact between the aorta and graft models, the contact comes into existence in consequence of their deformation caused by the inner pressure and influenced by the stiffhess mismatch between the tubes. Therefore it is not possible to load the joint in axial direction if the inner pressure is not yet high enough to ensure the contact between the aorta and the graft models. n solving this problem, a nearly zero stiffness of the graft in compression was used. The initial shape of the model was in accordance with the expected NODAL SOLUTON STEP=l SUB =4 TME=l EXPANDED Sz (AVG) RSYS=O D!4X =2.865 SMN = SMX =, unloaded shape of - MAR :39:13 vascular ~ graft w gj _ aorta l-s3w~ Fig. 5: Circumferential stress (MPa) distribution in the lapped anastomosis of aorta and knitted vascular graft.

7 2002 WT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved. Paper from: Damage and Fracture Mechanics V, CA Brebbia, & S Nishida (Editors). SBN Damage and Fracture Mechanics V 493 reality, i.e. the aortic tube was unloaded and undeformed but the graft was deformed to achieve its inner diameter equal to the outer diameter of the aorta. As this range of deformation is accompanied by no relevant stress in the graft, the stress-strain curve with nearly zero modulus of elasticity was prescribed for this strain range. After the nominal graft diameter has been achieved, the real experimental non-linear stress-strain characteristic of the grail was used in the multilineal elastic material model (see fig,4). This model approximates the natural strain-true stress curve with several straight lines. An example of stress distribution achieved using this model is presented in fig Classical,,end-to-end anastomosis of two identical parts of aorta This type of anastomoses brings much more problems with the computation convergence because of much higher bending deformations. Our model presents another type of anastomosis, namely an anastomosis of two identical parts of natural aorta. This type of anastomosis is used in arterial surgery in the case of coarctation of aorta. The level of the model is the same as in par, 4.1. The undeformed and deformed shapes of the model and the resulting stress distribution can be seen in fig. 6, NODAL EQLUT ON STEP=3 SUB -25 TME-75 SNT DFX SN i t( x Fig. 6: Von Mises stress distribution (kpa) in the joint of two identical parts of aorta (coarctation)

8 2002 WT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved. Paper from: Damage and Fracture Mechanics V, CA Brebbia, & S Nishida (Editors). SBN A Damage and Fracture Mechanics V 5 Discussion The comparison of the models solved enables us to draw the following conclusions: The tissue remodeling in arterial wall gives a nearly uniform strain and stress distribution at a certain (mean) value of the blood pressure, Any of the investigated anastomoses causes some increase in the extreme stress values and is stiffer than the intact artery. A higher stress value brings not only a higher damage risk, but a higher wall stiflhess as the consequence of the material nonlinearity, as well. Finally, the higher wall stiffhess, together with the high graft stiflhess and with the stiffening effect of the joint shape, can contribute to the thickening of the intimal layer and, consequently, to the decrease of arterial lumen. The pulse wave propagation in the arteries can be also influenced by a partial pu~se wave reflection by the anastomosis or by the stiffer parts of the arterial tube, The comparison of the models shows that in both of these criteria, the lapped anastomosis is better than the classical shape of the joint. Fig. 6 shows the substantially limited deformation of classical anastomosis shape in comparison with the intact aorta. The length b of the collar in fig. 6 is one of the most important parameters influencing the above mentioned negative properties of these anastomoses. 6 Conclusion The created model enables us to consider all the substantial load factors, i.e. blood pressure, axial prestretch and residual stress in assessment of stress and strain states in arterial wall. Allthough the presented models of anastomoses of aorta with vascular graft are still more simple, they can be solved on the same level. The model is able to be easily enlarged for a 3D geomem. ts main disadvantage is the assumption of material isotropy. t could be overcome by using another program system (e.g. LS-DYNA) in which a special form of strain energy density fi.mction convenient for soft tissues is implemented. The level reached in this way could be sufficient for the surgeons to help them to make decisions, e.g. by comparing stress and strain states in anastomoses with various shapes or geometric parameters. Acknowledgments This work was supported by the MSMT of the Czech Republic, Research Project No, MSM References [1] Hayashi, K., Li, X,Y.: Histo-Dimensional Analysis of Strain Distribution in the Arterial Wall. Proceedings of the Third Conference on Biomechanics, JSME, Tokyo, pp , 1993.

9 2002 WT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved. Paper from: Damage and Fracture Mechanics V, CA Brebbia, & S Nishida (Editors). SBN Damage and Fracture Mechanics V 495 [2]Bur3a, J,: Computational Simulation of Stress State in Arteries. Proceedings of the 3st nternational Conference Modelling and Simulation of Systems MOSS 97, Hradec nad Moravici, CZ, pp , 1997, [3] Bur3a, J.: Computational modelling of residual stresses in arteries using fictive temperature (in Czech), Proceedings of the Conference Engineering Mechanics 99,, Svratka, CZ, Volume 2, pp , [4] Bur5a, J., Janifiek, P.: Computational modelling of stress and strain states in aorta. Proceedings of the 12 h Conference of the European Sociep of Biomechanics, Dublin, reland, p. 441,2000. [5] Bur3a, J.: Computational Modelling of Stress and Strain States in Artery Walls Using FEM, Zeszyty naukowe katedry mechaniki stosowanej, Nr. 6, pp , [6] Bur5ai J: Possibilities of using strain energy density fimctions to solve stress state in arteries. Proceedings of the V. Conference on Biomechanics, Olomouc, CZ, pp ,2000. [7] Bur3a, J,, Vajddk, M.: Stress-strain analysis of an overlapped connection of artery and vascular graft. Proceedings of the Conference Engineering Mechanics 2001, Svratka, CZ, pp ,2001. [8] Bur3a, J., Vajdtik, M.: Mechanical Optimization of Geometry of the System Artery-Vascular Graft, Proceedings of the 3r~nternational Conference on A4echatronics, Robotics and Biomechanics, Trest, CZ, pp.45-50, 2001.

Mechanical Properties and Active Remodeling of Blood Vessels. Blood Vessels

Mechanical Properties and Active Remodeling of Blood Vessels. Blood Vessels Mechanical Properties and Active Remodeling of Blood Vessels Gross anatomy of systemic and pulmonary circulation Microscopic structure Mechanical properties and testing Residual stress Remodeling Blood

More information

Mechanical Properties and Active Remodeling of Blood Vessels. Systemic Arterial Tree. Elastic Artery Structure

Mechanical Properties and Active Remodeling of Blood Vessels. Systemic Arterial Tree. Elastic Artery Structure Mechanical Properties and Active Remodeling of Blood Vessels Gross anatomy of systemic and pulmonary circulation Microscopic structure Mechanical properties and testing Residual stress Remodeling Systemic

More information

Keywords: Angioplasty, Explicit finite elements method, Tube hidroforming, Stents.

Keywords: Angioplasty, Explicit finite elements method, Tube hidroforming, Stents. Blucher Mechanical Engineering Proceedings May 2014, vol. 1, num. 1 www.proceedings.blucher.com.br/evento/10wccm AN ANALYSIS OF THE CONTACT BETWEEN THE STENT AND THE ARTERY USING TUBE HIDROFORMING SIMULATION

More information

Vascular Mechanobiology: growth and remodeling in the aorta in health and disease

Vascular Mechanobiology: growth and remodeling in the aorta in health and disease Vascular Mechanobiology: growth and remodeling in the aorta in health and disease Dr.-Ing. Christian J. Cyron Technical University of Munich funded by the German Research Foundation (Emmy-Noether Grant

More information

Numerical Analysis of the Influence of Stent Parameters on the Fatigue Properties

Numerical Analysis of the Influence of Stent Parameters on the Fatigue Properties Numerical Analysis of the Influence of Stent Parameters on the Fatigue Properties Lin Chen, Shen Jingfeng & Chen Bing School of mechanical engineering, University of Shanghai for Science & Technology,

More information

Original. Stresses and Strains Distributions in Three-Dimension Three-Layer Abdominal Aortic Wall Based on in vivo Ultrasound Imaging

Original. Stresses and Strains Distributions in Three-Dimension Three-Layer Abdominal Aortic Wall Based on in vivo Ultrasound Imaging Original Stresses and Strains Distributions in Three-Dimension Three-Layer Abdominal Aortic Wall Based on in vivo Ultrasound Imaging P. Khamdaengyodtai 1, T. Khamdaeng 1, P. Sakulchangsatjatai 1, N. Kammuang-lue

More information

Finite Element Implementation of a Structurally-Motivated Constitutive Relation for the Human Abdominal Aortic Wall with and without Aneurysms

Finite Element Implementation of a Structurally-Motivated Constitutive Relation for the Human Abdominal Aortic Wall with and without Aneurysms Downloaded from orbit.dtu.dk on: Dec 18, 017 Finite Element Implementation of a Structurally-Motivated Constitutive Relation for the Human Abdominal Aortic Wall with and without Aneurysms Traberg, Marie

More information

Summer Workshop of Applied Mechanics. Theoretical Analysis of Total Hip Joint Replacement of Sandwich design by FEM

Summer Workshop of Applied Mechanics. Theoretical Analysis of Total Hip Joint Replacement of Sandwich design by FEM Summer Workshop of Applied Mechanics June 2002 Department of Mechanics Faculty of Mechanical Engineering Czech Technical University in Prague Theoretical Analysis of Total Hip Joint Replacement of Sandwich

More information

Introduction to soft tissues

Introduction to soft tissues Modelli Costitutivi dei Materiali Corso di Laurea in Ingegneria Biomedica Pavia, 2013 Introduction to soft tissues Ferdinando Auricchio 1 2 3 4 1 Dipartimento di Ingegneria Civile e Architettura, Università

More information

Summer Workshop of Applied Mechanics. Influence of residual stress in coronary arteries

Summer Workshop of Applied Mechanics. Influence of residual stress in coronary arteries Summer Workshop of Applied Mechanics June 2002 Department of Mechanics Faculty of Mechanical Engineering Czech Technical University in Prague Influence of residual stress in coronary arteries Ing.Lukáš

More information

An effort is made to analyse the stresses experienced by the human femur. In order

An effort is made to analyse the stresses experienced by the human femur. In order Finite Element Analysis of Human Femur Bone U N Mughal 1, H A Khawaja 2*, M Moatamedi 1, M Souli 3 1. Narvik University College, Norway 2. UiT-The Arctic University of Norway, Norway 3. University of Lille,

More information

Finite element modeling of the thoracic aorta: including aortic root motion to evaluate the risk of aortic dissection

Finite element modeling of the thoracic aorta: including aortic root motion to evaluate the risk of aortic dissection Journal of Medical Engineering & Technology, Vol. 32, No. 2, March/April 2008, 167 170 Short Communication Finite element modeling of the thoracic aorta: including aortic root motion to evaluate the risk

More information

Computer Aided Surgery (CAS) for Abdominal Aortic Aneurysm (AAA)

Computer Aided Surgery (CAS) for Abdominal Aortic Aneurysm (AAA) Computer Aided Surgery (CAS) for Abdominal Aortic Aneurysm (AAA) Aurélien Dumenil Pierre Louat Thierry Marchal Michel Rochette 2009 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Outline Clinical

More information

Dynamic Role of the Cardiac Jelly

Dynamic Role of the Cardiac Jelly 61 Chapter 6 Dynamic Role of the Cardiac Jelly Before looping, when the embryonic heart is still a straight tube, the cardiac jelly occupies the bulk of the heart tube walls. Despite its preeminence in

More information

4D model of hemodynamics in the abdominal aorta

4D model of hemodynamics in the abdominal aorta Bio-Medical Materials and Engineering 26 (2015) S257 S264 DOI 10.3233/BME-151312 IOS Press S257 4D model of hemodynamics in the abdominal aorta Ireneusz Zbicinski a,*, Natalia Veshkina a and Ludomir Stefa

More information

Using Computational Fluid Dynamics Model to Predict Changes in Velocity properties in Stented Carotid Artery

Using Computational Fluid Dynamics Model to Predict Changes in Velocity properties in Stented Carotid Artery Excerpt from the Proceedings of the COMSOL Conference 2010 Paris (COMSOL Conference) Using Computational Fluid Dynamics Model to Predict Changes in Velocity properties in Stented Carotid Artery Vaidehi

More information

aneurysm initiation and fully developed aneurysms

aneurysm initiation and fully developed aneurysms Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications Collection 2015 Investigation of material modeling in fluid structure interaction analysis

More information

Analysis of Plate Bone Construct Failure Following Tibial Tuberosity Advancment

Analysis of Plate Bone Construct Failure Following Tibial Tuberosity Advancment Analysis of Plate Bone Construct Failure Following Tibial Tuberosity Advancment W. T. McCartney 1,2 E. Galvin 2 B Mac Donald D Comiskey 3 1 Marie Louise Veterinary Hospital, Baldoyle, Dublin 13, Ireland

More information

Characterizing the Inhomogeneity of Aorta Mechanical Properties and its Effect on the Prediction of Injury

Characterizing the Inhomogeneity of Aorta Mechanical Properties and its Effect on the Prediction of Injury Characterizing the Inhomogeneity of Aorta Mechanical Properties and its Effect on the Prediction of Injury Golriz Kermani, Soroush Assari, Ali Hemmasizadeh, Kurosh Darvish Biomechanics Lab, Department

More information

STRESS ANALYSIS OF THE RADIAL HEAD REPLACEMENTS IN AN ELBOW ARTICULATION

STRESS ANALYSIS OF THE RADIAL HEAD REPLACEMENTS IN AN ELBOW ARTICULATION Engineering MECHANICS, Vol. 15, 2008, No. 5, p. 319 327 319 STRESS ANALYSIS OF THE RADIAL HEAD REPLACEMENTS IN AN ELBOW ARTICULATION Pavel Hlavoň*, Vladimír Fuis*, Zdeněk Florian** The paper is focused

More information

Three-dimensional finite element analysis of the human ACL

Three-dimensional finite element analysis of the human ACL Rhodes, Greece, August 0-, 008 Three-dimensional finite element analysis of the human ACL M.HAGHPANAHI, F.JALAYER Biomechanics Research Unit Iran University of Science and Technology Narmak, Tehran, 684634

More information

In-Silico approach on Offset placement of implant-supported bridges placed in bone of different density in Orthodontics.

In-Silico approach on Offset placement of implant-supported bridges placed in bone of different density in Orthodontics. In-Silico approach on Offset placement of implant-supported bridges placed in bone of different density in Orthodontics. Chandrasenan.P 1, Vishnu.G 2, Akshay K Nair 3 1M Tech student, Department of Mechanical

More information

INVESTIGATION OF MECHANICAL CHARACTERISTICS OF HUMAN ATHEROMATOUS PLAQUES BASED ON HISTOLOGY AND MEDICAL IMAGES

INVESTIGATION OF MECHANICAL CHARACTERISTICS OF HUMAN ATHEROMATOUS PLAQUES BASED ON HISTOLOGY AND MEDICAL IMAGES INVESTIGATION OF MECHANICAL CHARACTERISTICS OF HUMAN ATHEROMATOUS PLAQUES BASED ON HISTOLOGY AND MEDICAL IMAGES Hamed ESMAEILI MONIR GRADUATE SCHOOLE OF LIFE SCIENCE AND SYSTEMS ENGINEERING DEPARTMENT

More information

Soft tissue biomechanics and its challenges for experimental mechanics

Soft tissue biomechanics and its challenges for experimental mechanics Soft tissue biomechanics and its challenges for experimental mechanics Focus on blood vessels Stéphane AVRIL MINES-SAINT-ETIENNE Université de Lyon MINES-SAINT-ETIENNE Historical site Founded in 1816 PARIS

More information

Journal of Biomechanical Science and Engineering

Journal of Biomechanical Science and Engineering 0123456789 Bulletin of the JSME Vol.9, No.2, 2014 Journal of Biomechanical Science and Engineering Finite element analysis of hip joint cartilage reproduced from real bone surface geometry based on 3D-CT

More information

PROCESS OF ESTIMATING THE MATERIAL PROPERTIES OF HUMAN HEEL PAD SUB- LAYERS USING INVERSE FINITE ELEMENT ANALYSIS AND SOME MODEL APPLICATIONS

PROCESS OF ESTIMATING THE MATERIAL PROPERTIES OF HUMAN HEEL PAD SUB- LAYERS USING INVERSE FINITE ELEMENT ANALYSIS AND SOME MODEL APPLICATIONS PROCESS OF ESTIMATING THE MATERIAL PROPERTIES OF HUMAN HEEL PAD SUB- LAYERS USING INVERSE FINITE ELEMENT ANALYSIS AND SOME MODEL APPLICATIONS NAFISEH AHANCHIAN School of Health Sciences University of Salford,

More information

Modelling of Atherosclerotic Plaque for Use in a Computational Test-Bed for Stent Angioplasty

Modelling of Atherosclerotic Plaque for Use in a Computational Test-Bed for Stent Angioplasty Modelling of Atherosclerotic Plaque for Use in a Computational Test-Bed for Stent Angioplasty The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story

More information

Failure criteria for Adhesives. Sainath Kadam, 3mE 19 oktober 2014

Failure criteria for Adhesives. Sainath Kadam, 3mE 19 oktober 2014 Failure criteria for Adhesives Sainath Kadam, 3mE 19 oktober 2014 () Failure criteria for Adhesives 1 / 59 Outline 1 Introduction 2 Testing 3 Data analysis 4 FEM 5 Results and Conclusions () Failure criteria

More information

Laboratory tests for strength paramaters of brain aneurysms

Laboratory tests for strength paramaters of brain aneurysms Acta of Bioengineering and Biomechanics Vol. 9, No. 2, 2007 Laboratory tests for strength paramaters of brain aneurysms BRIGITTA KRISZTINA TÓTH 1 *, FERENC NASZTANOVICS 2, IMRE BOJTÁR 3 1 Budapest University

More information

Numerical predicting of contact and pressure sore of lower extremity parts caused by prosthetic and orthotic

Numerical predicting of contact and pressure sore of lower extremity parts caused by prosthetic and orthotic MACROJOURNALS The Journal of MacroTrends in Health and Medicine Numerical predicting of contact and pressure sore of lower extremity parts caused by prosthetic and orthotic Reza Fakhrai, Bahram Saadatfar,

More information

Computational Fluid Dynamics Analysis of Blood Flow in Human Aorta

Computational Fluid Dynamics Analysis of Blood Flow in Human Aorta Computational Fluid Dynamics Analysis of Blood Flow in Human Aorta Yogesh V. Borse 1, Prof. S.A. Giri 2 M. Tech Scholar, Dept of Mechanical Engg, Ramdeobaba College of Engineering and Management, Nagpur,

More information

Simulating the Motion of Heart Valves Under Fluid Flows Induced by Cardiac Contraction

Simulating the Motion of Heart Valves Under Fluid Flows Induced by Cardiac Contraction Simulating the Motion of Heart Valves Under Fluid Flows Induced by Cardiac Contraction Eann A. Patterson Department of Mechanical Engineering, The University of Sheffield Mappin Street, Sheffield, S1 3JD

More information

Stretching Cardiac Myocytes: A Finite Element Model of Cardiac Tissue

Stretching Cardiac Myocytes: A Finite Element Model of Cardiac Tissue Megan McCain ES240 FEM Final Project December 19, 2006 Stretching Cardiac Myocytes: A Finite Element Model of Cardiac Tissue Cardiac myocytes are the cells that constitute the working muscle of the heart.

More information

Stress and Displacement Analysis of Dental Implant Threads Using Three-Dimensional Finite Element Analysis

Stress and Displacement Analysis of Dental Implant Threads Using Three-Dimensional Finite Element Analysis 1 Research Article Stress and Displacement Analysis of Dental Implant Threads Using Three-Dimensional Finite Element Analysis Aswin Yodrux* Department of Materials Handling and Logistics for Engineering,

More information

Numerical Analysis of Coronary Stent for Diverse Materials

Numerical Analysis of Coronary Stent for Diverse Materials Numerical Analysis of Coronary Stent for Diverse Materials Vasantha Kumar Assistant Professor Department of Mechanical Engineering Bearys Institute of Technology Mangalore, Karnataka, India Abstract Coronary

More information

Refinements in Mathematical Models to Predict Aneurysm Growth and Rupture

Refinements in Mathematical Models to Predict Aneurysm Growth and Rupture Refinements in Mathematical Models to Predict Aneurysm Growth and Rupture RAMON BERGUER, a,b JOSEPH L. BULL, a,b AND KHALIL KHANAFER a a Vascular Mechanics Laboratory, Department of Biomedical Engineering,

More information

Contents 1 Computational Haemodynamics An Introduction 2 The Human Cardiovascular System

Contents 1 Computational Haemodynamics An Introduction 2 The Human Cardiovascular System Contents 1 Computational Haemodynamics An Introduction... 1 1.1 What is Computational Haemodynamics (CHD)... 1 1.2 Advantages of CHD... 3 1.3 Applications in the Cardiovascular System... 4 1.3.1 CHD as

More information

Estimation and Comparison of T Graft Versus Conventional Graft for Coronary Arteries

Estimation and Comparison of T Graft Versus Conventional Graft for Coronary Arteries World Applied Sciences Journal 27 (10): 1336-1344, 2013 ISSN 1818-4952 IDOSI Publications, 2013 DOI: 10.5829/idosi.wasj.2013.27.10.2908 Estimation and Comparison of T Graft Versus Conventional Graft for

More information

ACCURATE NUMERICAL ANALYSIS OF GEAR STRENGTH BASED ON FINITE ELEMENT METHOD

ACCURATE NUMERICAL ANALYSIS OF GEAR STRENGTH BASED ON FINITE ELEMENT METHOD 31 st December 212. Vol. 46 No.2 25-212 JATIT & LLS. All rights reserved. ACCURATE NUMERICAL ANALYSIS OF GEAR STRENGTH BASED ON FINITE ELEMENT METHOD XUEYI LI, CHAOCHAO LI, DAQIAN GENG, SHOUBO JIANG, BINBING

More information

Numerical Simulation of Blood Flow through Asymmetric and Symmetric Occlusion in Carotid Artery

Numerical Simulation of Blood Flow through Asymmetric and Symmetric Occlusion in Carotid Artery Proceedings of the 3 rd International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT 16) Ottawa, Canada May 2 3, 2016 Paper No. 170 Numerical Simulation of Blood Flow through Asymmetric and Symmetric

More information

A simple and effective method of. incorporating the effects of residual stress. in the abdominal aortic aneurysm wall.

A simple and effective method of. incorporating the effects of residual stress. in the abdominal aortic aneurysm wall. Research Report of Intelligent Systems for Medicine Laboratory Report # ISML/02/2017, February 2017 A simple and effective method of incorporating the effects of residual stress in the abdominal aortic

More information

Computational analysis of mechanical stress-strain interaction of a bioresorbable scaffold with blood vessel

Computational analysis of mechanical stress-strain interaction of a bioresorbable scaffold with blood vessel Loughborough University Institutional Repository Computational analysis of mechanical stress-strain interaction of a bioresorbable scaffold with blood vessel This item was submitted to Loughborough University's

More information

Non-Newtonian pulsatile blood flow in a modeled artery with a stenosis and an aneurysm

Non-Newtonian pulsatile blood flow in a modeled artery with a stenosis and an aneurysm Non-Newtonian pulsatile blood flow in a modeled artery with a stenosis and an aneurysm I. Husain, C. Langdon and J. Schwark Department of Mathematics Luther College University of Regina Regina, Saskatchewan

More information

Effects of Non-Newtonian Behavior of Blood on Wall Shear Stress in an Elastic Vessel with Simple and Consecutive Stenosis

Effects of Non-Newtonian Behavior of Blood on Wall Shear Stress in an Elastic Vessel with Simple and Consecutive Stenosis Biomedical & Pharmacology Journal Vol. 8(1), 123-131 (2015) Effects of Non-Newtonian Behavior of Blood on Wall Shear Stress in an Elastic Vessel with Simple and Consecutive Stenosis M. JAHANGIRI 1 *, M.

More information

Finite Element Analysis of Radius and Ulna. Eli Pavlatos April 24, 2013

Finite Element Analysis of Radius and Ulna. Eli Pavlatos April 24, 2013 Finite Element Analysis of Radius and Ulna Eli Pavlatos April 24, 2013 Outline Review bone biomechanics bone behavior during fracture Stress analysis concepts properties of bone for models Fracture simulations

More information

Mechanical Aspects of an Interference Screw Placement in ACL Reconstruction

Mechanical Aspects of an Interference Screw Placement in ACL Reconstruction Mechanical Aspects of an Interference Screw Placement in ACL Reconstruction Mahmoud Chizari 1, Mohammad Alrashidi 2, Khaled Alrashdan 2, Ibrahim Yildiz 3, Jamaluddin Mahmud 4 1 School of Engineering and

More information

Dynamic simulation of stent deployment effects of design, material and coating

Dynamic simulation of stent deployment effects of design, material and coating Journal of Physics: Conference Series OPEN ACCESS Dynamic simulation of stent deployment effects of design, material and coating To cite this article: A Schiavone et al 2013 J. Phys.: Conf. Ser. 451 012032

More information

Comparative study of the mechanical behavior of the superior thoracic artery and abdominal arteries using the finite elements method

Comparative study of the mechanical behavior of the superior thoracic artery and abdominal arteries using the finite elements method J. Biomedical Science and Engineering, 2012, 5, 52-57 JBiSE http://dx.doi.org/10.4236/jbise.2012.52008 Published Online February 2012 (http://www.scirp.org/journal/jbise/) Comparative study of the mechanical

More information

Blood Flow Simulation toward Actual Application at Hospital

Blood Flow Simulation toward Actual Application at Hospital THE 5 TH ASIAN COMPUTAITIONAL FLUID DYNAMICS BUSAN, KOREA, OCTOBER 27 ~ OCTOBER 30, 2003 Blood Flow Simulation toward Actual Application at Hospital Abstract R. Himeno 1 1. Advanced Center for Computing

More information

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

Effect of the femoral stem size on femur bone quality towards THR

Effect of the femoral stem size on femur bone quality towards THR Original article: Effect of the femoral stem size on femur bone quality towards THR Palash Kumar Maji a,*, Amit Roy Chowdhury b, Debasis Datta b, S Karmakar a, Subhomoy Chatterjee b and A K Prasad a a

More information

Oscillating Pressure Experiments on Porcine Aorta

Oscillating Pressure Experiments on Porcine Aorta Oscillating Pressure Experiments on Porcine Aorta V. V. Romanov, S. Assari, and K. Darvish Tissue Biomechanics Lab, College of Engineering, Temple University ABSTRACT This paper addresses the problem of

More information

Introduction to Biomedical Engineering: Basic concepts and Bone Biomechanics

Introduction to Biomedical Engineering: Basic concepts and Bone Biomechanics Introduction to Biomedical Engineering: Basic concepts and Bone Biomechanics Fall 2016, AKUT G. Rouhi Biomechanics The field of biomechanics applies principles of mechanics to study the structure and function

More information

54. Simulation and research on the influence of the shape and the geometrical parameters of a blood vessel bypass graft upon hemodynamics

54. Simulation and research on the influence of the shape and the geometrical parameters of a blood vessel bypass graft upon hemodynamics 54. Simulation and research on the influence of the shape and the geometrical parameters of a blood vessel bypass graft upon hemodynamics Andžela Šešok 1, Donatas Lukšys 2 Vilnius Gediminas Technical University,

More information

FSI within Aortic Arch Model over Cardiac Cycle and Influence of Wall Stiffness on Wall Stress in Layered Wall

FSI within Aortic Arch Model over Cardiac Cycle and Influence of Wall Stiffness on Wall Stress in Layered Wall Engineering Letters, 13:2, EL_13_2_15 (Advance online publication: 4 August 2006) FSI within Aortic Arch Model over Cardiac Cycle and Influence of Wall Stiffness on Wall Stress in Layered Wall F. Gao and

More information

MECHANICAL PROPERTIES OF CORONARY VEINS

MECHANICAL PROPERTIES OF CORONARY VEINS MECHANICAL PROPERTIES OF CORONARY VEINS T. Balázs Budapest University of Technology and Economics (BUTE), 1111 Budapest, Goldmann tér 3. Hungary, tibor.balazs@freemail.hu E. Bognár Budapest University

More information

Investigating the loading behaviour of intact and meniscectomy knee joints and the impact on surgical decisions

Investigating the loading behaviour of intact and meniscectomy knee joints and the impact on surgical decisions Investigating the loading behaviour of intact and meniscectomy knee joints and the impact on surgical decisions M. S. Yeoman 1 1. Continuum Blue Limited, One Caspian Point, Caspian Way, CF10 4DQ, United

More information

Compressive Stress, Shear Stress, and Displacement Study on Different Structured Dental Implant: 3-Dimensional Finite Element Analysis

Compressive Stress, Shear Stress, and Displacement Study on Different Structured Dental Implant: 3-Dimensional Finite Element Analysis ompressive Stress, Shear Stress, and isplacement Study on ifferent Structured ental Implant: 3-imensional Finite Element nalysis swin Yodrux 1 and Nantakrit Yodpijit 2 1, 2 enter for Innovation in Human

More information

Fatigue life prediction methodology of automotive rubber component. *Chang-Su Woo 1)

Fatigue life prediction methodology of automotive rubber component. *Chang-Su Woo 1) Fatigue life prediction methodology of automotive rubber component *Chang-Su Woo 1) 1) Department of Nano Mechanics, KIMM, Daejeon 305-345, Korea 1) cswoo@kimm.re.kr ABSTRACT Fatigue life prediction and

More information

Modelling of temporomandibular joint and FEM analysis

Modelling of temporomandibular joint and FEM analysis Acta of Bioengineering and Biomechanics Vol. 8, No. 1, 2006 Modelling of temporomandibular joint and FEM analysis MARTINA FRIOVÁ, ZDENK HORÁK, SVATAVA KONVIKOVÁ Laboratory of Biomechanics, Department of

More information

ISSUES ON COMPUTATIONAL MODELING FOR COMPUTATION-AIDED DIAGNOSIS 臨床診断支援ツールのための計算力学モデリング

ISSUES ON COMPUTATIONAL MODELING FOR COMPUTATION-AIDED DIAGNOSIS 臨床診断支援ツールのための計算力学モデリング ISSUES ON COMPUTATIONAL MODELING FOR COMPUTATION-AIDED DIAGNOSIS 臨床診断支援ツールのための計算力学モデリング Hao LIU Advanced Computer and Information Division, RIKEN 2-1, Hirosawa, Wako-shi, Saitama 351-0198 JAPAN e-mail:

More information

Biomechanical Analysis of CNS Gray Matter in Tension and Compression

Biomechanical Analysis of CNS Gray Matter in Tension and Compression Biomechanical Analysis of CNS Gray Matter in Tension and Compression Sina Mehdizadeh i, Siamak Najarian ii *, Farhad Farmanzad iii and Mehdi Khoshgoftar iv ABSTRACT The purpose of this study is to survey

More information

Modeling of stent implantation in a human stenotic artery

Modeling of stent implantation in a human stenotic artery Modeling of stent implantation in a human stenotic artery G.S. Karanasiou 1, A.I. Sakellarios 1, E.E. Tripoliti 1, E.G.M. Petrakis 1, M.E. Zervakis 1, Francesco Migliavacca 2, Gabriele Dubini 2, Elena

More information

Biomechanical Analysis of Hip Joint Arthroplasties using CT-Image Based Finite Element Method

Biomechanical Analysis of Hip Joint Arthroplasties using CT-Image Based Finite Element Method Research Article Biomechanical Analysis of Hip Joint Arthroplasties using CT-Image Based Finite Element Method Mitsugu Todo * Research Institute for Applied Mechanics, Kyushu University, Kasuga, Japan

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering FW 16/17, AUT Biomechanics of tendons and ligaments G. Rouhi Biomechanics of tendons and ligaments Biomechanics of soft tissues The major soft tissues in musculoskeletal

More information

Assessment of the Effects of Increasing Levels of Physiological Realism in the Computational Fluid Dynamics Analyses of Implanted Coronary Stents

Assessment of the Effects of Increasing Levels of Physiological Realism in the Computational Fluid Dynamics Analyses of Implanted Coronary Stents Dublin Institute of Technology ARROW@DIT Conference Papers School of Mechanical and Design Engineering 2008-09-01 Assessment of the Effects of Increasing Levels of Physiological Realism in the Computational

More information

6 th International Conference on Trends in Agricultural Engineering 7-9 September 2016, Prague, Czech Republic

6 th International Conference on Trends in Agricultural Engineering 7-9 September 2016, Prague, Czech Republic MEASUREMENT OF PRESSURE DISTRIBUTION IN KNEE JOINT REPLACEMENT J. Volf 1, V. Novák 1, V. Ryzhenko 1, D. Novák 2 1 Faculty of Engineering, Czech University of Life Sciences Prague, Czech Republic 2 Faculty

More information

Advanced FE Modeling of Absorbable PLLA Screws

Advanced FE Modeling of Absorbable PLLA Screws Advanced FE Modeling of Absorbable PLLA Screws Jorgen Bergstrom, Ph.D., David Quinn, Ph.D., Eric Schmitt jbergstrom@veryst.com, LLC September 14, 2011 Introduction Anterior cruciate ligament (ACL) reconstruction

More information

On the feasibility of speckle reduction in echocardiography using strain compounding

On the feasibility of speckle reduction in echocardiography using strain compounding Title On the feasibility of speckle reduction in echocardiography using strain compounding Author(s) Guo, Y; Lee, W Citation The 2014 IEEE International Ultrasonics Symposium (IUS 2014), Chicago, IL.,

More information

REGIONAL MECHANICAL PROPERTIES OF AAA TISSUE AND FINITE ELEMENT ANALYSIS OF RUPTURE

REGIONAL MECHANICAL PROPERTIES OF AAA TISSUE AND FINITE ELEMENT ANALYSIS OF RUPTURE USE OF REGIONAL MECHANICAL PROPERTIES OF ABDOMINAL AORTIC ANEURYSMS TO ADVANCE FINITE REGIONAL MECHANICAL PROPERTIES OF AAA ELEMENT MODELING OF RUPTURE RISK TISSUE AND FINITE ELEMENT ANALYSIS OF RUPTURE

More information

Reliable World Class Insights Your Silicon Valley Partner in Simulation ANSYS Sales, Consulting, Training & Support

Reliable World Class Insights Your Silicon Valley Partner in Simulation ANSYS Sales, Consulting, Training & Support www.ozeninc.com info@ozeninc.com (408) 732 4665 1210 E Arques Ave St 207 Sunnyvale, CA 94085 Reliable World Class Insights Your Silicon Valley Partner in Simulation ANSYS Sales, Consulting, Training &

More information

Comparative Study of Fixation Devices for Intertrochanteric Fractures

Comparative Study of Fixation Devices for Intertrochanteric Fractures Comparative Study of Fixation Devices for Intertrochanteric Fractures C. Sticlaru * A. Davidescu Politehnica University of Timişoara Politehnica University of Timişoara Timişoara, România Timişoara, România

More information

FLUID MECHANICAL PERTURBATIONS INDUCED BY STENT IMPLANTATION: A NUMERICAL STUDY

FLUID MECHANICAL PERTURBATIONS INDUCED BY STENT IMPLANTATION: A NUMERICAL STUDY LABORATORY OF BIOLOGICAL STRUCTURE MECHANICS www.labsmech.polimi.it FLUID MECHANICAL PERTURBATIONS INDUCED BY STENT IMPLANTATION: A NUMERICAL STUDY Rossella Balossino, Francesca Gervaso, Francesco Migliavacca,

More information

Post-conditioning. P a g e 1. To my Thesis Committee,

Post-conditioning. P a g e 1. To my Thesis Committee, P a g e 1 To my Thesis Committee, This document seeks to clarify my research project. After describing what post-conditioning (PC) is, I will explain differences between my research and the recent peristaltic

More information

Professor Stephen D. Downing

Professor Stephen D. Downing Professor Stephen D. Downing Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 2011-2013 Stephen Downing, All Rights Reserved 1. Comparison to Wrought Metals 2.

More information

Simulation of bone indentation

Simulation of bone indentation Modelling in Medicine and Biology VII 113 Simulation of bone indentation S. Kasiri 1, G. Reilly 1,2 & D. Taylor 1 1 Trinity Centre for Bioengineering, Trinity College Dublin, Ireland 2 Institute of Technology

More information

APPLICATION OF COMPOSITE FRACTURE MECHANICS TO BONE FRACTURE ANALYSIS USING ABAQUS XFEM

APPLICATION OF COMPOSITE FRACTURE MECHANICS TO BONE FRACTURE ANALYSIS USING ABAQUS XFEM APPLICATION OF COMPOSITE FRACTURE MECHANICS TO BONE FRACTURE ANALYSIS USING ABAQUS XFEM Presenter: David Reid Dassault Systemes UK Ltd SIMULIA david.reid@3ds.com 01925 885971 07825 308031 Work by: Xiaoliang

More information

Computational Simulation of Penetrating Trauma in Biological Soft Tissues using the Material Point Method

Computational Simulation of Penetrating Trauma in Biological Soft Tissues using the Material Point Method Computational Simulation of Penetrating Trauma in Biological Soft Tissues using the Material Point Method Irina IONESCU* +, James GUILKEY* ++, Martin BERZINS*, Robert M. KIRBY*, Jeffrey WEISS* + *Scientific

More information

Low Pressure Condition of a Lipid Core in an Eccentrically. Developed Carotid Atheromatous Plaque: A Static Finite Element Analysis

Low Pressure Condition of a Lipid Core in an Eccentrically. Developed Carotid Atheromatous Plaque: A Static Finite Element Analysis Low Pressure Condition of a Lipid Core in an Eccentrically Developed Carotid Atheromatous Plaque: A Static Finite Element Analysis Hiroshi Yamada* and Noriyuki Sakata** *Department of Biological Functions

More information

Blood Vessel Mechanics

Blood Vessel Mechanics Blood Vessel Mechanics Ying Zheng, Ph.D. Department of Bioengineering BIOEN 326 11/01/2013 Blood Vessel Structure A Typical Artery and a Typical Vein Pressure and Blood Flow Wall stress ~ pressure Poiseuille

More information

Computational Structural Modelling of Coronary Stent Deployment: A Review

Computational Structural Modelling of Coronary Stent Deployment: A Review Dublin Institute of Technology ARROW@DIT Articles School of Mechanical and Design Engineering 2010 Computational Structural Modelling of Coronary Stent Deployment: A Review David Martin Dublin Institute

More information

A Finite Element Study of the Stress Redistribution of the Lumbar Spine after Posterior Lumbar Interbody Fusion Surgery

A Finite Element Study of the Stress Redistribution of the Lumbar Spine after Posterior Lumbar Interbody Fusion Surgery A Finite Element Study of the Stress Redistribution of the Lumbar Spine after Posterior Lumbar Interbody Fusion Surgery Hsuan-Teh Hu 1, Kuo-Yuan Huang 2,3, Che-Jung Liu 1, Ching-Sung Kuo 1,4 1 Department

More information

A DAMAGE/REPAIR MODEL FOR ALVEOLAR BONE REMODELING

A DAMAGE/REPAIR MODEL FOR ALVEOLAR BONE REMODELING A DAMAGE/REPAIR MODEL FOR ALVEOLAR BONE REMODELING M. Mengoni 1 and J.-P. Ponthot 2 1. ABSTRACT Tooth movements obtained through orthodontic appliances result from a complex biochemical process of bone

More information

A computational study of stent performance by considering vessel anisotropy and residual stresses

A computational study of stent performance by considering vessel anisotropy and residual stresses Loughborough University Institutional Repository A computational study of stent performance by considering vessel anisotropy and residual stresses This item was submitted to Loughborough University's Institutional

More information

Note: this is a peer-reviewed and approved draft of the journal article:

Note: this is a peer-reviewed and approved draft of the journal article: Note: this is a peer-reviewed and approved draft of the journal article: Dickinson, A.S., Steer, J.W., Worsley, P.R. (2017) Finite Element Analysis of the Amputated Lower Limb: a Systematic Review and

More information

Comparative study of the contact pressures in hip joint models with femoroacetabular impingment with different cephalic deformities

Comparative study of the contact pressures in hip joint models with femoroacetabular impingment with different cephalic deformities Comparative study of the contact pressures in hip joint models with femoroacetabular impingment with different cephalic deformities Iryna Havenko Instituto Superior Técnico, Universidade de Lisboa, Portugal

More information

Transactions on Biomedicine and Health vol 3, 1996 WIT Press, ISSN

Transactions on Biomedicine and Health vol 3, 1996 WIT Press,   ISSN Evaluation of forearm fixation plate design using finite element methods S.H. Saidpour, I.M. Flitta, X. Velay School ofdesign Engineering and Computing, Department of Product Design and Manufacture, Bournemouth

More information

Topology optimisation of hip prosthesis to reduce stress shielding

Topology optimisation of hip prosthesis to reduce stress shielding Computer Aided Optimum Design in Engineering IX 257 Topology optimisation of hip prosthesis to reduce stress shielding S. Shuib 1, M. I. Z. Ridzwan 1, A. Y. Hassan 1 & M. N. M. Ibrahim 2 1 School of Mechanical

More information

FSI Analysis of Diseased Coronary using Patient Specific Data

FSI Analysis of Diseased Coronary using Patient Specific Data FSI Analysis of Diseased Coronary using Patient Specific Data Mingchao Cai, * Haofei Liu, a Chun Yang, a,c Jie Zheng, b Richard Bach, b Mehmet H. Kural, d Kristen L. Billiar, d David Muccigrosso, b Dongsi

More information

Abstract. Introduction. Journal of Biomedical Engineering and Research

Abstract. Introduction. Journal of Biomedical Engineering and Research Journal of Biomedical Engineering and Research Research Open Access Computational Modeling of Stent Implant Procedure and Comparison of Different Stent Materials Karthik Alagarsamy 1, Aleksandra Fortier

More information

CHARACTERIZATION OF BRAIN SURFACE STRAINS DURING CONTROLLED CORTICAL IMPACT. Huijae Kim

CHARACTERIZATION OF BRAIN SURFACE STRAINS DURING CONTROLLED CORTICAL IMPACT. Huijae Kim CHARACTERIZATION OF BRAIN SURFACE STRAINS DURING CONTROLLED CORTICAL IMPACT by Huijae Kim A thesis submitted to the faculty of The University of Utah in partial fulfillment of the requirement for the degree

More information

Analysis of the effects of plaque deposits on the blood flow through human artery

Analysis of the effects of plaque deposits on the blood flow through human artery ISSN 2395-1621 Analysis of the effects of plaque deposits on the blood flow through human artery #1 Sajid S. Mulani, #2 Pankaj I. Jagad 1 sajidsmulani21@gmail.com 2 pjjagad.scoe@sinhgad.edu #12 Department

More information

Rheological, mechanical and failure properties of biological soft tissues at high strains and rates of deformation

Rheological, mechanical and failure properties of biological soft tissues at high strains and rates of deformation Rheological, mechanical and failure properties of biological soft tissues at high strains and rates of deformation Society of Rheology Conference Salt Lake City, Utah October 10, 2007 Martin L. Sentmanat,

More information

Hematocrit Level on Blood flow through a Stenosed Artery with Permeable Wall: A Theoretical Study

Hematocrit Level on Blood flow through a Stenosed Artery with Permeable Wall: A Theoretical Study Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 12, Issue 1 (June 2017), pp. 291-304 Applications and Applied Mathematics: An International Journal (AAM) Hematocrit Level on Blood

More information

Mathematical Model for the Rupture of Cerebral Saccular Aneurysms through Threedimensional Stress Distribution in the Aneurysm Wall

Mathematical Model for the Rupture of Cerebral Saccular Aneurysms through Threedimensional Stress Distribution in the Aneurysm Wall Mathematical Model for the Rupture of Cerebral Saccular Aneurysms through Threedimensional Stress Distribution in the Aneurysm Wall Hans R. Chaudhry Department of Biomedical Engineering, New Jersey Institute

More information

Soft tissue biomechanics

Soft tissue biomechanics Soft tissue biomechanics Caroline Öhman Pula, 22/06-08 TABLE OF CONTENTS Introduction to soft tissues Tendon and ligaments Introduction Composition Function and structure In vitro testing Stress-strain

More information

EVALUATION OF ABDOMINAL AORTIC ANEURYSM WALL STESS BASED ON FLOW INDUCED LOAD

EVALUATION OF ABDOMINAL AORTIC ANEURYSM WALL STESS BASED ON FLOW INDUCED LOAD International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 11, November 2018, pp. 684 688, Article ID: IJMET_09_11_068 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=11

More information

A computational fluid dynamics simulation study of coronary blood flow affected by graft placement

A computational fluid dynamics simulation study of coronary blood flow affected by graft placement Interactive CardioVascular and Thoracic Surgery 19 (2014) 16 20 doi:10.1093/icvts/ivu034 Advance Access publication 22 April 2014 ORIGINAL ARTICLE ADULTCARDIAC A computational fluid dynamics simulation

More information

Vibration Analysis of Finger Using Non linear FEM to Understand HAV Syndrome

Vibration Analysis of Finger Using Non linear FEM to Understand HAV Syndrome Vibration Analysis of Finger Using Non linear FEM to Understand HAV Syndrome Shrikant Pattnaik, Jay Kim Dept. of Mechanical Engineering University of Cincinnati What is HAVS Hand Arm Vibration Syndrome

More information

Oil Transmission Pipelines Condition Monitoring Using Wavelet Analysis and Ultrasonic Techniques

Oil Transmission Pipelines Condition Monitoring Using Wavelet Analysis and Ultrasonic Techniques Engineering, 2013, 5, 551-555 doi:10.4236/eng.2013.56066 Published Online June 2013 (http://www.scirp.org/journal/eng) Oil Transmission Pipelines Condition Monitoring Using Wavelet Analysis and Ultrasonic

More information