Introduction to soft tissues

Size: px
Start display at page:

Download "Introduction to soft tissues"

Transcription

1 Modelli Costitutivi dei Materiali Corso di Laurea in Ingegneria Biomedica Pavia, 2013 Introduction to soft tissues Ferdinando Auricchio Dipartimento di Ingegneria Civile e Architettura, Università di Pavia, Italy 2 CESNA: Center for Advanced Numerical Simulations IUSS, Pavia, ITALY 3 UME Graduate School: Understanding and Managing Extremes IUSS, Pavia Pavia, Italy 4 IMATI Istituto di Matematica Applicata e Tecnologie Informatiche, CNR, Italy Thanks to Anna Ferrara September 30, 2013 F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

2 Why is it interesting to study Soft Tissues? I Provide contributions to minimally invasive intervention optimization, e.g., balloon angioplasty or stenting Understand onset and progression of cardiovascular diseases, e.g., atherosclerosis Design of artificial (mechanical or biological) prostheses Tissue engineering F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

3 Soft Tissues I Soft tissues include skin, ligaments, tendons, cartilage, blood vessel Soft tissues contain collagen, elastin, endothelial cells, smooth muscle cells Soft tissue behavior strongly influenced by concentration and structural arrangement of its constituents F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

4 Soft Tissues: basic properties I Structural properties non-homogeneous materials due to composition (properties change through tissue thickness) incompressible materials due to higher water quantity, 60 70% anisotropic materials due to fiber preferred orientations (properties change with direction) Mechanical elastic properties large deformations (strain larger than 20% under physiological pressure) nonlinear stress-strain response (exponential stiffening at higher loads) Mechanical anelastic properties hysteresis and preconditioning stress relaxation and creep F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

5 Soft Tissues: application I Arteries Aorta F.Auricchio (UNIPV) Heart valves Carotids Intro to soft tissues Aortic valves September 30, / 20

6 Arteries I Arterial system consists of a branching network of elastic conduits and high resistance terminals Arteries subdivided into elastic and muscolar Elastic arteries: closer to heart with large diameters Aorta Pulmonary artery Common carotids Common iliacs Muscolar arteries: located at the periphery with smaller diameters Coronaries Cerebrals Renals Femorals F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

7 Arteries: histology I Artery wall is made of three concentric layers tunica adventitia (A), tunica media (M), tunica intima (I) Each layer contains in different proportions and structural arrangement elastin, collagen, endothelial cells and smooth muscle cells muscolar artery (coronaries) elastic artery (aorta) F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

8 Arteries: preferred orientations I Collagen fibers: embedded in ground matrix, symmetrically arranged with respect to the circumferential direction, forming a typically fibrous tissue F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

9 Arteries: residual stresses I Arteries not stress-free, but subject to residual stresses axial residual stresses, i.e. artery segment excised from body shortens axially circumferential residual stresses, i.e.circular ring radially cut springs open into a circular sector F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

10 Heart valves I Heart valve: composed of aortic valve (AV), pulmonary valve (PV), mitral valve (MV), and tricuspid valve (TV) Each valves show similar architecture, but different function with regard to their role in the cardiac cycle Aortic valve: located between left ventricle and ascending aorta, allowing blood flow from left ventricle to body and preventing flow in reverse direction F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

11 Aortic valve I Different views of an excised porcine aortic valve Note aortic leaflets! F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

12 Aortic leaflets: histology I Aortic leaflets. Made of three layers: ventricularis, spongiosa and fibrosa Each layer appears as a fibrous tissue containing in different concentration: elastin, collagen, proteoglycans Collagen fiber highly oriented in the circumferential direction F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

13 Mechanical properties: nonlinear response I stress I II III aorta-unstretched aorta-stretched strain?? Tendon Ligament Aorta Skin Ultimate tensile strength [MPa] Ultimate tensile strain [%] F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

14 Mechanical properties: stiff and anisotropy I Behavior of separate layers is different media stiffer in circumferential than axial direction adventitia and intima stiffer in axial than circumferential direction intima stiffer than adventitia F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

15 Mechanical properties: hysteresis and preconditioning I Difference in the stress-strain relation between loading and unloading Hysteresis loop area: energy dissipation as heat during load cycle Stress-strain curve changes between 1st and 2nd cycle of loading-unloading Preconditioning: loading-unloading response becomes repeatable with less energy dissipation after a proper number of subsequent cycles F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

16 Mechanical properties: creep and stress relaxation I Stress relaxation: stress response over time to a step change of strain Creep: strain response over time to a step change of stress Stress relaxation Creep F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

17 How can you investigate Soft Tissue behavior? I uniaxial Mechanical in-vitro tests biaxial Different in-vitro tests are possible uniaxial tensil test biaxial tensil test extension-inflation test torsion test extension-inflation torsion F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

18 Uniaxial in-vitro tests: loading device I Federica Lanzo Master Thesis Tensile testing machine MTS Insight 10 kn Load cell 250 N - Specimen stretching F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

19 Uniaxial in-vitro Test: human carotid arteries I? Mechanical properties of human carotid arteries with a focus on intimal failure Digital images of human carotid artery under loading Stress-strain plot. Points corresponding to intimal failures... and anisotropy? F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

20 Uniaxial in-vitro Test: human iliac arteries I? Rectangular strip samples with axial and circumferential orientations Displacement controlled strain increased until fracture F.Auricchio (UNIPV) Intro to soft tissues September 30, / 20

Mechanical Properties and Active Remodeling of Blood Vessels. Blood Vessels

Mechanical Properties and Active Remodeling of Blood Vessels. Blood Vessels Mechanical Properties and Active Remodeling of Blood Vessels Gross anatomy of systemic and pulmonary circulation Microscopic structure Mechanical properties and testing Residual stress Remodeling Blood

More information

Mechanical Properties and Active Remodeling of Blood Vessels. Systemic Arterial Tree. Elastic Artery Structure

Mechanical Properties and Active Remodeling of Blood Vessels. Systemic Arterial Tree. Elastic Artery Structure Mechanical Properties and Active Remodeling of Blood Vessels Gross anatomy of systemic and pulmonary circulation Microscopic structure Mechanical properties and testing Residual stress Remodeling Systemic

More information

Rheological, mechanical and failure properties of biological soft tissues at high strains and rates of deformation

Rheological, mechanical and failure properties of biological soft tissues at high strains and rates of deformation Rheological, mechanical and failure properties of biological soft tissues at high strains and rates of deformation Society of Rheology Conference Salt Lake City, Utah October 10, 2007 Martin L. Sentmanat,

More information

Progetto di un flap intimale di dissezione aortica per simulazione in vitro

Progetto di un flap intimale di dissezione aortica per simulazione in vitro UNIVERSITÀ DEGLI STUDI DI PAVIA Facoltà di Ingegneria Dipartimento di ingegneria Civile e Architettura Corso di laurea in Bioingegneria Progetto di un flap intimale di dissezione aortica per simulazione

More information

Soft tissue biomechanics

Soft tissue biomechanics Soft tissue biomechanics Caroline Öhman Pula, 22/06-08 TABLE OF CONTENTS Introduction to soft tissues Tendon and ligaments Introduction Composition Function and structure In vitro testing Stress-strain

More information

Image Analysis and Cytometry in Three-Dimensional Digital Reconstruction of Porcine Native Aortic Valve Leaflets

Image Analysis and Cytometry in Three-Dimensional Digital Reconstruction of Porcine Native Aortic Valve Leaflets Image Analysis and Cytometry in Three-Dimensional Digital Reconstruction of Porcine Native Aortic Valve Leaflets Introduction Chi Zheng, M1 - University of Pittsburgh; BSE - University of Michigan In association

More information

Centre of Mechanics of Biological Materials - CMBM

Centre of Mechanics of Biological Materials - CMBM Centre of Mechanics of Biological Materials - CMBM MECHANICAL BEHAVIOR OF THE DEEP FASCIAE Head of the Centre Prof. Arturo N. Natali Collaborator Prof. Piero G. Pavan From the basic researches to the clinical

More information

Original. Stresses and Strains Distributions in Three-Dimension Three-Layer Abdominal Aortic Wall Based on in vivo Ultrasound Imaging

Original. Stresses and Strains Distributions in Three-Dimension Three-Layer Abdominal Aortic Wall Based on in vivo Ultrasound Imaging Original Stresses and Strains Distributions in Three-Dimension Three-Layer Abdominal Aortic Wall Based on in vivo Ultrasound Imaging P. Khamdaengyodtai 1, T. Khamdaeng 1, P. Sakulchangsatjatai 1, N. Kammuang-lue

More information

CYCLIC LOADING OF PORCINE CORONARY ARTERIES. A Thesis Presented to The Academic Faculty. Crystal M. Gilpin

CYCLIC LOADING OF PORCINE CORONARY ARTERIES. A Thesis Presented to The Academic Faculty. Crystal M. Gilpin CYCLIC LOADING OF PORCINE CORONARY ARTERIES A Thesis Presented to The Academic Faculty By Crystal M. Gilpin In Partial Fulfillment Of the Requirements for the Degree Master of Science in the School of

More information

Practical Histology. Cardiovascular System. Dr Narmeen S. Ahmad

Practical Histology. Cardiovascular System. Dr Narmeen S. Ahmad Practical Histology Cardiovascular System Dr Narmeen S. Ahmad The Cardiovascular System A closed system of the heart and blood vessels Functions of cardiovascular system: Transport nutrients, hormones

More information

Cardiovascular Physiology

Cardiovascular Physiology Cardiovascular Physiology Lecture 1 objectives Explain the basic anatomy of the heart and its arrangement into 4 chambers. Appreciate that blood flows in series through the systemic and pulmonary circulations.

More information

Soft tissue biomechanics and its challenges for experimental mechanics

Soft tissue biomechanics and its challenges for experimental mechanics Soft tissue biomechanics and its challenges for experimental mechanics Focus on blood vessels Stéphane AVRIL MINES-SAINT-ETIENNE Université de Lyon MINES-SAINT-ETIENNE Historical site Founded in 1816 PARIS

More information

Chapter 14. The Cardiovascular System

Chapter 14. The Cardiovascular System Chapter 14 The Cardiovascular System Introduction Cardiovascular system - heart, blood and blood vessels Cardiac muscle makes up bulk of heart provides force to pump blood Function - transports blood 2

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering FW 16/17, AUT Biomechanics of tendons and ligaments G. Rouhi Biomechanics of tendons and ligaments Biomechanics of soft tissues The major soft tissues in musculoskeletal

More information

Summer Workshop of Applied Mechanics. Influence of residual stress in coronary arteries

Summer Workshop of Applied Mechanics. Influence of residual stress in coronary arteries Summer Workshop of Applied Mechanics June 2002 Department of Mechanics Faculty of Mechanical Engineering Czech Technical University in Prague Influence of residual stress in coronary arteries Ing.Lukáš

More information

SCPA602 Cardiovascular System

SCPA602 Cardiovascular System SCPA602 Cardiovascular System Associate Professor Dr. Wannee Jiraungkoorskul Department of Pathobiology, Faculty of Science, Mahidol University Tel: 02-201-5563, E-mail: wannee.jir@mahidol.ac.th 1 Objectives

More information

Lab Activity 25. Blood Vessels & Circulation. Portland Community College BI 232

Lab Activity 25. Blood Vessels & Circulation. Portland Community College BI 232 Lab Activity 25 Blood Vessels & Circulation Portland Community College BI 232 Artery and Vein Histology Walls have 3 layers: Tunica intima Tunica media Tunica externa 2 Tunica Intima Is the innermost layer

More information

THE CIRCULATORY SYSTEM

THE CIRCULATORY SYSTEM Biology 30S THE CIRCULATORY SYSTEM Name: This module adapted from bblearn.merlin.mb.ca 1 Introduction to Circulation The first organ to form, and the last organ to die. The heart is the pump of life. The

More information

Finite Element Implementation of a Structurally-Motivated Constitutive Relation for the Human Abdominal Aortic Wall with and without Aneurysms

Finite Element Implementation of a Structurally-Motivated Constitutive Relation for the Human Abdominal Aortic Wall with and without Aneurysms Downloaded from orbit.dtu.dk on: Dec 18, 017 Finite Element Implementation of a Structurally-Motivated Constitutive Relation for the Human Abdominal Aortic Wall with and without Aneurysms Traberg, Marie

More information

DYNAMIC STRENGTH OF PORCINE ARTERIES

DYNAMIC STRENGTH OF PORCINE ARTERIES DYNAMIC STRENGTH OF PORCINE ARTERIES A Thesis Presented to The Academic Faculty By Jinwu Fan In Partial Fulfillment Of the Requirements for the Degree Master of Science in the School of Mechanical Engineering

More information

Eindhoven University of Technology. Exam Modeling Cardiac Function (8W160)

Eindhoven University of Technology. Exam Modeling Cardiac Function (8W160) Eindhoven University of Technology department of Biomedical Engineering group Cardiovascular Biomechanics Exam Modeling Cardiac Function (8W160) January 21, 2011, 14.00 17.00 h This exam consists of 6

More information

Figure 10.1A Transparency Master 79

Figure 10.1A Transparency Master 79 Brain Carotid arteries Jugular vein Right front leg Lungs (inflated) Cranial Right atrium To left front leg Left subclavian Bronchus capillaries Brachiocephalic vein Left atrium Dorsal aorta Right ventricle

More information

Histology of the myocardium and blood vessels. Prof. Abdulameer Al-Nuaimi

Histology of the myocardium and blood vessels. Prof. Abdulameer Al-Nuaimi Histology of the myocardium and blood vessels Prof. Abdulameer Al-Nuaimi E-mail: a.al-nuaimi@sheffield.ac.uk E-mail: abdulameerh@yahoo.com Histology of blood vessels The walls of arteries and veins are

More information

Material characterization of HeartPrint models and comparison with arterial tissue properties

Material characterization of HeartPrint models and comparison with arterial tissue properties Material characterization of HeartPrint models and comparison with arterial tissue properties Over the years, catheter-based interventions have gained popularity for the treatment of cardiovascular diseases

More information

Cardiovascular System

Cardiovascular System Cardiovascular System Purpose Transport oxygen and nutrients Take waste products away from tissues & organs Things we learned Blood pressure: the force of blood pushing against the walls of blood vessels

More information

Cardiovascular Anatomy Dr. Gary Mumaugh

Cardiovascular Anatomy Dr. Gary Mumaugh Cardiovascular Anatomy Dr. Gary Mumaugh Location of Heart Approximately the size of your fist Location o Superior surface of diaphragm o Left of the midline in mediastinum o Anterior to the vertebral column,

More information

Adult Cardiac Surgery

Adult Cardiac Surgery Adult Cardiac Surgery Mahmoud ABU-ABEELEH Associate Professor Department of Surgery Division of Cardiothoracic Surgery School of Medicine University Of Jordan Adult Cardiac Surgery: Ischemic Heart Disease

More information

STRUCTURES OF THE CARDIOVASCULAR SYSTEM

STRUCTURES OF THE CARDIOVASCULAR SYSTEM STRUCTURES OF THE CARDIOVASCULAR SYSTEM CARDIOVASCULAR SYSTEM Also called the circulatory system Consists of the heart, arteries, veins, and capillaries Main function is to pump/circulate oxygenated blood

More information

Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co.

Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co. Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co. Anatomy Views Label the diagrams of the heart below: Interactive Physiology Study

More information

Fisiologia della prestazione sportiva

Fisiologia della prestazione sportiva PROPRIETÀ MECCANICHE DEL TENDINE IN VIVO Fisiologia della prestazione sportiva Università degli Studi di Verona Scienze Motorie aa 2014-2015 Stiffness Stiffness is the rigidity of an object the extent

More information

Health Science 20 Circulatory System Notes

Health Science 20 Circulatory System Notes Health Science 20 Circulatory System Notes Functions of the Circulatory System The circulatory system functions mainly as the body s transport system. It transports: o Oxygen o Nutrients o Cell waste o

More information

Blood Vessel Mechanics

Blood Vessel Mechanics Blood Vessel Mechanics Ying Zheng, Ph.D. Department of Bioengineering BIOEN 326 11/01/2013 Blood Vessel Structure A Typical Artery and a Typical Vein Pressure and Blood Flow Wall stress ~ pressure Poiseuille

More information

Heart. Heart 2-Tunica media: middle layer (media ='middle') muscle fibers (smooth or cardiac).

Heart. Heart 2-Tunica media: middle layer (media ='middle') muscle fibers (smooth or cardiac). t. innermost lumenal General Circulatory system heart and blood vessels walls have 3 layers (inside to outside) 1-Tunica interna: aka tunica intima layer--lumenal layer epithelium--endothelium simple squamous

More information

Chapter 2 The Human Cardiovascular System

Chapter 2 The Human Cardiovascular System Chapter 2 The Human Cardiovascular System 2.1 Introduction Before delving into the computational methods of CHD, this chapter provides a preliminary understanding of the circulatory system from a physiological

More information

CP STENT. Large Diameter, Balloon Expandable Stent

CP STENT. Large Diameter, Balloon Expandable Stent CP STENT Large, Expandable CP STENT OPTIONS 12mm to Expansion 26mm to Expansion CP Matrix (number of zigs) 1.6 2.2 2.8 3.4 3.9 4.5 5 5.5 6 12 14 15 16 18 20 22 24 26 28 30 CP Details: CP is composed of

More information

Overview of Anatomy and Physioloy II Second Year Students

Overview of Anatomy and Physioloy II Second Year Students University of Baghdad College of Nursing Department of Basic Medical Sciences Overview of Anatomy and Physioloy II Second Year Students Asaad Ismail Ahmad, Ph.D. Asaad Ismail Ahmad, Ph.D. Electrolyte and

More information

Two semilunar valves. Two atrioventricular valves. Valves of the heart. Left atrioventricular or bicuspid valve Mitral valve

Two semilunar valves. Two atrioventricular valves. Valves of the heart. Left atrioventricular or bicuspid valve Mitral valve The Heart 3 Valves of the heart Two atrioventricular valves Two semilunar valves Right atrioventricular or tricuspid valve Left atrioventricular or bicuspid valve Mitral valve Aortic valve Pulmonary valve

More information

2. capillaries - allow exchange of materials between blood and tissue fluid

2. capillaries - allow exchange of materials between blood and tissue fluid Chapter 19 - Vascular System A. categories and general functions: 1. arteries - carry blood away from heart 2. capillaries - allow exchange of materials between blood and tissue fluid 3. veins - return

More information

Do Now. Get out work from last class to be checked

Do Now. Get out work from last class to be checked Do Now Get out work from last class to be checked Heart Actions Cardiac Cycle: One complete heartbeat. The contraction of a heart chamber is called systole and the relaxation of a chamber is called diastole.

More information

Blood Vessels. Types of Blood Vessels Arteries carry blood away from the heart Capillaries smallest blood vessels. Veins carry blood toward the heart

Blood Vessels. Types of Blood Vessels Arteries carry blood away from the heart Capillaries smallest blood vessels. Veins carry blood toward the heart C H A P T E R Blood Vessels 20 Types of Blood Vessels Arteries carry blood away from the heart Capillaries smallest blood vessels The site of exchange of molecules between blood and tissue fluid Veins

More information

Approximately the size of your fist Location Superior surface of diaphragm Left of the midline in mediastinum Anterior to the vertebral column,

Approximately the size of your fist Location Superior surface of diaphragm Left of the midline in mediastinum Anterior to the vertebral column, Dr. Gary Mumaugh Approximately the size of your fist Location Superior surface of diaphragm Left of the midline in mediastinum Anterior to the vertebral column, posterior to the sternum Posteriorly the

More information

Human Anatomy, First Edition

Human Anatomy, First Edition Human Anatomy, First Edition McKinley & O'Loughlin Chapter 23 : Vessels and Circulation 23-1 Blood Vessels An efficient style of transport for oxygen, nutrients, and waste products to and from body tissues.

More information

Ligaments. A Source of Work Related Disorders STAR Symposium Do not copy or reproduce in any form

Ligaments. A Source of Work Related Disorders STAR Symposium Do not copy or reproduce in any form Ligaments A Source of Work Related Disorders M. Solomonow, PhD, MD (hon) Occupational Medicine Research Center Bioengineering Laboratory Department of Orthopaedic Surgery Louisiana State University Health

More information

Anatomy & Physiology of Cardiovascular System. Chapter 18 & 19

Anatomy & Physiology of Cardiovascular System. Chapter 18 & 19 Anatomy & Physiology of Cardiovascular System Chapter 18 & 19 Objectives..cont 1. Discuss the physiological stages of cardiac muscle contraction. 2. Trace a typical ECG and label each wave or complex 3.

More information

A computational study of stent performance by considering vessel anisotropy and residual stresses

A computational study of stent performance by considering vessel anisotropy and residual stresses Loughborough University Institutional Repository A computational study of stent performance by considering vessel anisotropy and residual stresses This item was submitted to Loughborough University's Institutional

More information

Muscle-Tendon Mechanics Dr. Ted Milner (KIN 416)

Muscle-Tendon Mechanics Dr. Ted Milner (KIN 416) Muscle-Tendon Mechanics Dr. Ted Milner (KIN 416) Muscle Fiber Geometry Muscle fibers are linked together by collagenous connective tissue. Endomysium surrounds individual fibers, perimysium collects bundles

More information

Figure ) The specific chamber of the heart that is indicated by letter A is called the. Diff: 1 Page Ref: 364

Figure ) The specific chamber of the heart that is indicated by letter A is called the. Diff: 1 Page Ref: 364 Essentials of Anatomy and Physiology, 9e (Marieb) Chapter 11 The Cardiovascular System Short Answer Figure 11.1 Using Figure 11.1, identify the following: 1) The Purkinje fibers are indicated by label.

More information

Major Function of the Cardiovascular System. Transportation. Structures of the Cardiovascular System. Heart - muscular pump

Major Function of the Cardiovascular System. Transportation. Structures of the Cardiovascular System. Heart - muscular pump Structures of the Cardiovascular System Heart - muscular pump Blood vessels - network of tubes Blood - liquid transport vehicle brachiocephalic trunk superior vena cava right pulmonary arteries right pulmonary

More information

Collin County Community College

Collin County Community College Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 6 Blood Vessels 1 Anatomy of Blood Vessels Walls of blood vessels contain 3 distinct layers : Tunica intima innermost layer includes

More information

Chapter 11. The Cardiovascular System. Clicker Questions Pearson Education, Inc.

Chapter 11. The Cardiovascular System. Clicker Questions Pearson Education, Inc. Chapter 11 The Cardiovascular System Clicker Questions Oxygen-poor blood is pumped through the venae cavae to the right side of the heart, and then through the pulmonary arteries to the lungs and back

More information

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 64, NO. 11, NOVEMBER

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 64, NO. 11, NOVEMBER IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 64, NO. 11, NOVEMBER 2017 2607 A Regression Method Based on Noninvasive Clinical Data to Predict the Mechanical Behavior of Ascending Aorta Aneurysmal

More information

The Circulatory System

The Circulatory System The Circulatory System Dr. Sami Zaqout The circulatory system Circulatory system Blood vascular systems Lymphatic vascular systems Blood vascular systems Blood vascular systems The circulatory system Circulatory

More information

Circulatory System 10.1

Circulatory System 10.1 1 Circulatory System 10.1 2 ARTERIES Arteries-blood vessels that carry blood away from the heart Thick walls Inner & Outer layers: connective tissue Middle layers are muscle and elastic connective tissue

More information

IB TOPIC 6.2 THE BLOOD SYSTEM

IB TOPIC 6.2 THE BLOOD SYSTEM IB TOPIC 6.2 THE BLOOD SYSTEM TERMS TO KNOW circulation ventricle artery vein THE BLOOD SYSTEM 6.2.U1 - Arteries convey blood at high pressure from the ventricles to the tissues of the body Circulation

More information

THE MATERIAL PROPERTIES OF THE CHORDAE TENDINEAE OF THE MITRAL VALVE: AN IN VITRO INVESTIGATION. A Thesis Presented to The Academic Faculty

THE MATERIAL PROPERTIES OF THE CHORDAE TENDINEAE OF THE MITRAL VALVE: AN IN VITRO INVESTIGATION. A Thesis Presented to The Academic Faculty THE MATERIAL PROPERTIES OF THE CHORDAE TENDINEAE OF THE MITRAL VALVE: AN IN VITRO INVESTIGATION A Thesis Presented to The Academic Faculty By Jennifer Lynn Ritchie In Partial Fulfillment Of the Requirements

More information

CVS HISTOLOGY. Dr. Nabil Khouri.

CVS HISTOLOGY. Dr. Nabil Khouri. CVS HISTOLOGY Dr. Nabil Khouri http://anatomy.kmu.edu.tw/blockhis/block3/slides/block4_24.html The Heart Wall Contract as a single unit Cardiac Muscle Simultaneous contraction due to depolarizing at the

More information

Clinical application of Arterial stiffness. pulse wave analysis pulse wave velocity

Clinical application of Arterial stiffness. pulse wave analysis pulse wave velocity Clinical application of Arterial stiffness pulse wave analysis pulse wave velocity Arterial system 1. Large arteries: elastic arteries Aorta, carotid, iliac, Buffering reserve: store blood during systole

More information

Connective Tissue. Answer Choices(In CAPITAL BOLD): RETICULAR ELASTIC. IRREGULAR Spongy bone ELASTIC BLOOD

Connective Tissue. Answer Choices(In CAPITAL BOLD): RETICULAR ELASTIC. IRREGULAR Spongy bone ELASTIC BLOOD Connective Tissue Answer Choices(In CAPITAL BOLD): Proper: Specialized: Loose- Cartilage- AREOLAR HYALINE ADIPOSE FIBROCARTILAGE RETICULAR ELASTIC Dense- Bone- REGULAR COMPACT BONE IRREGULAR Spongy bone

More information

Cardiovascular (Circulatory) System

Cardiovascular (Circulatory) System Cardiovascular (Circulatory) System Piryaei May 2011 Circulatory System Heart Blood Vessels Macrovasculature (More than 0.1mm) Elastic Artery Muscular (Distributing) Artery Large Arteriol Small Vein Muscular

More information

Functions of Blood. Blood Vessels. Lymphatic System. Components of the Cardiovascular System. Unit 5 Cardiovascular System: Heart and Blood Vessels

Functions of Blood. Blood Vessels. Lymphatic System. Components of the Cardiovascular System. Unit 5 Cardiovascular System: Heart and Blood Vessels Unit 5 Cardiovascular System: Heart and Blood Vessels Components of the Cardiovascular System Heart pumps blood Blood vessels the tubes through which the blood flows Functions of Blood Blood removes wastes

More information

Cardiovascular System. Blood Vessel anatomy Physiology & regulation

Cardiovascular System. Blood Vessel anatomy Physiology & regulation Cardiovascular System Blood Vessel anatomy Physiology & regulation Path of blood flow Aorta Arteries Arterioles Capillaries Venules Veins Vena cava Vessel anatomy: 3 layers Tunica externa (adventitia):

More information

THE MECHANICAL PROPERTIES OF FIN WHALE ARTERIES ARE EXPLAINED BY NOVEL CONNECTIVE TISSUE DESIGNS

THE MECHANICAL PROPERTIES OF FIN WHALE ARTERIES ARE EXPLAINED BY NOVEL CONNECTIVE TISSUE DESIGNS The Journal of Experimental Biology 199, 985 997 (1996) Printed in Great Britain The Company of Biologists Limited 1996 JEB0238 985 THE MECHANICAL PROPERTIES OF FIN WHALE ARTERIES ARE EXPLAINED BY NOVEL

More information

cardiac imaging planes planning basic cardiac & aortic views for MR

cardiac imaging planes planning basic cardiac & aortic views for MR cardiac imaging planes planning basic cardiac & aortic views for MR Dianna M. E. Bardo, M. D. Assistant Professor of Radiology & Cardiovascular Medicine Director of Cardiac Imaging cardiac imaging planes

More information

UNIT 4: BLOOD VESSELS

UNIT 4: BLOOD VESSELS UNIT 4: BLOOD VESSELS Dr. Moattar Raza Rizvi NRS237, Physiology Generalized Structure of Blood Vessels 1 Tunica interna (tunica intima) Endothelial layer that lines the lumen of all vessels In vessels

More information

Unit 8: Blood / Lymph / Cardiovascular System

Unit 8: Blood / Lymph / Cardiovascular System Name: Period: Unit 8: Blood / Lymph / Cardiovascular System Test Review 1. Identify the general formed elements of the blood and their general functions. a. Erythrocytes: b. Leukocytes: c. Thrombocytes:

More information

Modelling of Atherosclerotic Plaque for Use in a Computational Test-Bed for Stent Angioplasty

Modelling of Atherosclerotic Plaque for Use in a Computational Test-Bed for Stent Angioplasty Modelling of Atherosclerotic Plaque for Use in a Computational Test-Bed for Stent Angioplasty The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story

More information

Chapter 20: Cardiovascular System: The Heart

Chapter 20: Cardiovascular System: The Heart Chapter 20: Cardiovascular System: The Heart I. Functions of the Heart A. List and describe the four functions of the heart: 1. 2. 3. 4. II. Size, Shape, and Location of the Heart A. Size and Shape 1.

More information

The Cardiovascular and Lymphatic Systems Cardiovascular System Blood Vessels Blood Vessels Arteries Arteries Arteries

The Cardiovascular and Lymphatic Systems Cardiovascular System Blood Vessels Blood Vessels Arteries Arteries Arteries CH 12 The Cardiovascular and s The Cardiovascular and s OUTLINE: Cardiovascular System Blood Vessels Blood Pressure Cardiovascular System The cardiovascular system is composed of Blood vessels This system

More information

The Circulatory System. Lesson Overview. Lesson Overview The Circulatory System

The Circulatory System. Lesson Overview. Lesson Overview The Circulatory System 33.1 THINK ABOUT IT More than one-third of the 1.2 million Americans who suffer a heart attack each year die. This grim evidence shows that the heart and the circulatory system it powers are vital to life.

More information

The cardiovascular system

The cardiovascular system The cardiovascular system Components of the Cardiovascular system Heart Vessels: Arteries Capillaries Veins Functions of CVS: Transportation system where blood is the transporting vehicle Carries oxygen,

More information

Heart Dissection. 5. Locate the tip of the heart or the apex. Only the left ventricle extends all the way to the apex.

Heart Dissection. 5. Locate the tip of the heart or the apex. Only the left ventricle extends all the way to the apex. Heart Dissection Page 1 of 6 Background: The heart is a four-chambered, hollow organ composed primarily of cardiac muscle tissue. It is located in the center of the chest in between the lungs. It is the

More information

Your heart is a muscular pump about the size of your fist, located

Your heart is a muscular pump about the size of your fist, located How Your Heart Works Your heart is a muscular pump about the size of your fist, located slightly to the left and behind your breastbone. Its function is to pump blood throughout your body. As your heart

More information

the Cardiovascular System I

the Cardiovascular System I the Cardiovascular System I By: Dr. Nabil A Khouri MD, MsC, Ph.D MEDIASTINUM 1. Superior Mediastinum 2. inferior Mediastinum Anterior mediastinum. Middle mediastinum. Posterior mediastinum Anatomy of

More information

Histopathology: Vascular pathology

Histopathology: Vascular pathology Histopathology: Vascular pathology These presentations are to help you identify basic histopathological features. They do not contain the additional factual information that you need to learn about these

More information

Characterizing the Inhomogeneity of Aorta Mechanical Properties and its Effect on the Prediction of Injury

Characterizing the Inhomogeneity of Aorta Mechanical Properties and its Effect on the Prediction of Injury Characterizing the Inhomogeneity of Aorta Mechanical Properties and its Effect on the Prediction of Injury Golriz Kermani, Soroush Assari, Ali Hemmasizadeh, Kurosh Darvish Biomechanics Lab, Department

More information

ATHEROSCLEROSIS زيد ثامر جابر. Zaid. Th. Jaber

ATHEROSCLEROSIS زيد ثامر جابر. Zaid. Th. Jaber ATHEROSCLEROSIS زيد ثامر جابر Zaid. Th. Jaber Objectives 1- Review the normal histological features of blood vessels walls. 2-define the atherosclerosis. 3- display the risk factors of atherosclerosis.

More information

Effect of time and loading protocol on mechanical behavior of healthy porcine coronary arteries

Effect of time and loading protocol on mechanical behavior of healthy porcine coronary arteries Master Thesis Biomedical Engineering Effect of time and loading protocol on mechanical behavior of healthy porcine coronary arteries Thomas L. Plantenga 0531838 BMTE 09.13 22 April 2009 Supervisors: Eindhoven

More information

Finite element modeling of the thoracic aorta: including aortic root motion to evaluate the risk of aortic dissection

Finite element modeling of the thoracic aorta: including aortic root motion to evaluate the risk of aortic dissection Journal of Medical Engineering & Technology, Vol. 32, No. 2, March/April 2008, 167 170 Short Communication Finite element modeling of the thoracic aorta: including aortic root motion to evaluate the risk

More information

UNIT 11: THE CARDIOVASCULAR SYSTEM

UNIT 11: THE CARDIOVASCULAR SYSTEM UNIT 11: THE CARDIOVASCULAR SYSTEM Functions of the Heart PUMPS Blood Transports Oxygen and Nutrients Removes Carbon Dioxide and Metabolic Wastes Thermoregulation Immunological Function Clotting Mechanisms

More information

Is a Standardized Measurement of the Elastic Recoil of Coronary Stents under Vascular Conditions Necessary and Meaningful?

Is a Standardized Measurement of the Elastic Recoil of Coronary Stents under Vascular Conditions Necessary and Meaningful? 204 May 2000 Is a Standardized Measurement of the Elastic Recoil of Coronary Stents under Vascular Conditions Necessary and Meaningful? W. SCHMIDT, K. P. SCHMITZ, P. BEHRENS, D. BEHREND University of Rostock,

More information

CIRCULATORY SYSTEM BLOOD VESSELS

CIRCULATORY SYSTEM BLOOD VESSELS Name: Block: CIRCULATORY SYSTEM Multicellular organisms (above the level of roundworms) rely on a circulatory system to bring nutrients to, and take wastes away from, cells. In higher organisms such as

More information

Circulatory system. Lecture #2

Circulatory system. Lecture #2 Circulatory system Lecture #2 The essential components of the human cardiovascular system: Heart Blood Blood vessels Arteries - blood vessels that conduct arterial blood from heart ventricle to organs

More information

Ex vivo assessment of material characteristics in. trileaflet valve groups. Elena S. DiMartino Jehangir J. Appoo. University of Calgary

Ex vivo assessment of material characteristics in. trileaflet valve groups. Elena S. DiMartino Jehangir J. Appoo. University of Calgary Ex vivo assessment of material characteristics in ascending aortic aneurysm tissue for bicuspidand trileaflet valve groups Richard Beddoes Elena S. DiMartino Jehangir J. Appoo University of Calgary www.aorta.ca

More information

Modelling of stress-strain states in arteries as a pre-requisite for damage prediction

Modelling of stress-strain states in arteries as a pre-requisite for damage prediction 2002 WT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved. Paper from: Damage and Fracture Mechanics V, CA Brebbia, & S Nishida (Editors). SBN 1-85312-926-7 Modelling of stress-strain

More information

Professor Stephen D. Downing

Professor Stephen D. Downing Professor Stephen D. Downing Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 2011-2013 Stephen Downing, All Rights Reserved 1. Comparison to Wrought Metals 2.

More information

Microscopic Anatomy CARDIOVASCULAR SYSTEM

Microscopic Anatomy CARDIOVASCULAR SYSTEM Microscopic Anatomy CARDIOVASCULAR SYSTEM I. Introduction The cardiovascular system is a closed system consisting of a pump, the heart, and a series of tubular blood vessels that interconnect all body

More information

The arising of anisotropy and inhomogeneity in a isotropic viscoelastic model of the passive myocardium

The arising of anisotropy and inhomogeneity in a isotropic viscoelastic model of the passive myocardium The arising of anisotropy and inhomogeneity in a isotropic viscoelastic model of the passive myocardium Citation for published version (APA): van Gemert, R. C. (1992). The arising of anisotropy and inhomogeneity

More information

REVIEW SHEET Anatomy of Blood Vessels

REVIEW SHEET Anatomy of Blood Vessels REVIEW SHEET Anatomy of Blood Vessels Name LabTime/Date Microscopic Structure of the Blood Vessels 1. Cross-sectional views of an aftery of a vein are shown here. ldentify each; on the lines to the sides,

More information

Exam 3 Study Guide. 4) The process whereby the binding of antibodies to antigens causes RBCs to clump is called:

Exam 3 Study Guide. 4) The process whereby the binding of antibodies to antigens causes RBCs to clump is called: Exam 3 Study Guide 1) Where does hematopoiesis produce new red blood cells: 2) Which of the following is a blood clotting disorder: 3) Treatment of hemophilia often involves: 4) The process whereby the

More information

Warm Up- Monday -AND- Setup Cornell Notes.

Warm Up- Monday -AND- Setup Cornell Notes. Warm Up- Monday Brainstorm in your notebook: If the heart sends blood to all organs, how and where does the heart get blood to provide oxygen for its muscles? -AND- Setup Cornell Notes. Announcements Unit

More information

Cardiovascular System. I. Structures of the heart A. : Pericardium sack that surrounds the heart

Cardiovascular System. I. Structures of the heart A. : Pericardium sack that surrounds the heart Cardiovascular System I. Structures of the heart A. : Pericardium sack that surrounds the heart 1. : Pericardial Cavity serous fluid filled space between the heart and the pericardium B. Heart Wall 1.

More information

COMPREHENSIVE EVALUATION OF FETAL HEART R. GOWDAMARAJAN MD

COMPREHENSIVE EVALUATION OF FETAL HEART R. GOWDAMARAJAN MD COMPREHENSIVE EVALUATION OF FETAL HEART R. GOWDAMARAJAN MD Disclosure No Relevant Financial Relationships with Commercial Interests Fetal Echo: How to do it? Timing of Study -optimally between 22-24 weeks

More information

What is histology? HISTOLOGY

What is histology? HISTOLOGY Introduction to Histology What is histology? HISTOLOGY histo = tissue ogy = study So HISTOLOGY = the study of tissues! What is a TISSUE? Tissues are groups of cells with specialized structural and functional

More information

THE MECHANICAL PROPERTIES OF NATIVE PORCINE AORTIC AND PULMONARY HEART VALVE LEAFLETS

THE MECHANICAL PROPERTIES OF NATIVE PORCINE AORTIC AND PULMONARY HEART VALVE LEAFLETS THE MECHANICAL PROPERTIES OF NATIVE PORCINE AORTIC AND PULMONARY HEART VALVE LEAFLETS by Thanh Vi Lam B.S., The Johns Hopkins University, 2001 Submitted to the Graduate Faculty of School of Engineering

More information

Vascular Mechanobiology: growth and remodeling in the aorta in health and disease

Vascular Mechanobiology: growth and remodeling in the aorta in health and disease Vascular Mechanobiology: growth and remodeling in the aorta in health and disease Dr.-Ing. Christian J. Cyron Technical University of Munich funded by the German Research Foundation (Emmy-Noether Grant

More information

Experimental and Theoretical Studies of Native and Engineered Vascular Tissue Mechanics

Experimental and Theoretical Studies of Native and Engineered Vascular Tissue Mechanics University of South Carolina Scholar Commons Theses and Dissertations 12-15-2014 Experimental and Theoretical Studies of Native and Engineered Vascular Tissue Mechanics Boran Zhou University of South Carolina

More information

Extra notes for lab- 1 histology. Slide 1 : cross section in the elastic artery ( aortic arch, ascending aorta, descending aorta )

Extra notes for lab- 1 histology. Slide 1 : cross section in the elastic artery ( aortic arch, ascending aorta, descending aorta ) Extra notes for lab- 1 histology Slide 1 : cross section in the elastic artery ( aortic arch, ascending aorta, descending aorta ) - twin of ascending aorta is the pulmonary trunk. Ascending aorta represents

More information

37 1 The Circulatory System

37 1 The Circulatory System H T H E E A R T 37 1 The Circulatory System The circulatory system and respiratory system work together to supply cells with the nutrients and oxygen they need to stay alive. a) The respiratory system:

More information