Probabilistic Models in Cognitive Science and Artificial Intelligence

Size: px
Start display at page:

Download "Probabilistic Models in Cognitive Science and Artificial Intelligence"

Transcription

1 Probabilistic Models in Cognitive Science and Artificial Intelligence

2 Very Brief History of Cog Sci and AI 1950 s-1980 s Symbolic models of cognition von Neumann computer architecture as metaphor 1980 s-1990 s Connectionist models of cognition Massively parallel neuron-like networks of simple processors as metaphor Late 1990 s -? Probabilistic / statistical models of cognition Formalizes the best of connectionist (subsymbolic) ideas

3 Relation of Probabilistic Models to Connectionist and Symbolic Models Connectionist models Probabilistic models Symbolic models weak (unknown) bias ad hoc, implicit incorporation of prior knowledge & assumptions strong bias principled, elegant incorporation of prior knowledge & assumptions via predicate calculus statistical learning (large # examples) rule learning from (small # examples) vector representations structured representations

4 Frequentist notion Two Notions of Probability Relative frequency obtained if event were observed many times (e.g., coin flip) Subjective notion Degree of belief in some hypothesis Analogous to connectionist activation Long philosophical battle between these two views Subjective notion makes sense for cog sci and AI given that probabilities represent mental states

5 Why Probability? Randomness in the brain and world introduces uncertainty, and uncertainty is well described in the language of random events. Currency of probability provides strong constraints (vs. neural net activation) It s the optimal thing to compute, in the sense that any other strategy will lead to lower expected returns e.g., I bet you $1 that roll of die will produce number < 3. How much are you willing to wager?

6 Why Probability? Leads to elegant theories to be based on premise that human performance is optimal Rational theories, ideal observer theories Probably true in some areas of cognition (e.g., vision) More interesting: bounded rationality Optimality is assumed to be subject to limitations on processing hardware and capacity, representation, experience with the world. Explicit qualitative assumptions

7 Basic Probability (most slides borrowed with permission from Andrew Moore of CMU and Google)

8

9

10 Notation Digression P(A) is shorthand for P(A=true) P(~A) is shorthand for P(A=false) Similar notation applies to other binary RVs: P(Gender=M), P(Gender=F) Same notation applies to multivalued RVs: P(Major=history), P(Age=19), P(Q=c) Note: upper case letters/names for variables, lower case letters/names for values For RVs that have values other than true and false, P(Q) is shorthand for P(Q=q) for some unknown q

11

12

13

14

15

16 Q R S P(H F) = R/(Q+R) P(F H) = R/(S+R)

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31 If you have joint distribution, you can perform any inference in the domain.

32 Simpler probabilistic facts and some algebra

33 Directed Graphical Model Concept learning What Is A Bayes Net? From = 31 parameters to =10 Earthquake Burglary A node is conditionally independent of its ancestors given its parents. E.g., C is conditionally independent of R, E, and B given A Notation: C? R,B,E A Radio Alarm Call

34 Tenenbaum (1999) Concept learning E.g., glorch vs. not glorch E.g., word meanings E.g., edible food glorch not glorch not glorch glorch Focus on Learning concepts from positive examples Learning from a small number of examples Contrast with machine learning approaches and psychological models at the time

35 Domain Two dimensional continuous feature space Categories defined by axis-parallel rectangles e.g., feature dimensions cholesterol level (x 1 ) insulin level (x 2 ) e.g., concept healthy (C)

36 Hypothesis (Model) Space H: all rectangles on the plane, parameterized by (l 1, l 2, s 1, s 2 ) h: one particular hypothesis Consider all hypotheses in parallel In contrast to non-bayesian approach of maintaining only the best hypothesis at any point in time.

37 Prediction via Model Averaging Generalization function for unknown input Y given a set of n examples X = {x 1, x 2, x 3,, x n } p(y X) = h p(y & h X) Marginalization p(y & h X) = p(y h, X) p(h X) Chain rule p(y h, X) = p(y h) = 1 if y is in h p(h X) ~ p(x h) p(h) likelihood prior

38 Priors, p(h) Priors and Likelihood Functions Location invariant Uninformative prior (prior depends only on area of rectangle) Expected size prior x Likelihood function, p(x h) X = set of n examples Size principle

39 Expected size prior

40 Generalization Gradients MIN: smallest hypothesis consistent with data weak Bayes: instead of using size principle, assumes examples are produced by process independent of the true class Dark line = 50% prob.

41 Experimental Design Subjects shown n dots on screen that are randomly chosen examples from some rectangle of healthy levels n {2, 3, 4, 6, 10, 50} Dots varied in horizontal and vertical range Task r {.25,.5, 1, 2, 4, 8} units in a 24 unit window draw the true rectangle around the dots

42 Experimental Results

43 Method Summary of Tenenbaum (1999) Pick prior distribution (includes hypothesis space) Pick likelihood function leads to predictions for generalization as a function of r (range) and n (number of examples) Claims people generalize optimally given assumptions about priors and likelihood Bayesian approach provides best description of how people generalize on rectangle task. Explains how people can learn from a small number of examples, and only positive examples.

44 Important Ideas in Bayesian Models Generative models Likelihood function, prior distribution Consideration of multiple models in parallel Potentially infinite model space Inference prediction via model averaging role of priors diminishes with amount of evidence Learning Just another form of inference Bayesian Occam's razor: trade off between model simplicity and fit to data

45 Important Technical Issues Representing structured data Grammars Relational schemas (e.g., paper authors and topics Hierarchical models Allows for weaker assumptions at the cost of more complex inference Nonparametric models Flexible models that grow in complexity as the data justifies Approximate inference Markov chain Monte Carlo, particle filters, variational approximations

46

47 Griffiths and Tenenbaum (2006) Optimal Predictions in Everyday Cognition If you were assessing an insurance case for an 18- year-old man, what would you predict for his lifespan? If you phoned a box office to book tickets and had been on hold for 3 minutes, what would you predict for the total time you would be on hold? If your friend read you her favorite line of poetry, and told you it was line 5 of a poem, what would you predict for the total length of the poem? If you opened a book about the history of ancient Egypt to a page listing the reigns of the pharaohs, and noticed that in 4000 BC a particular pharaoh had been ruling for 11 years, what would you predict for the total duration of his reign?

48 Griffiths and Tenenbaum Conclusion Average responses reveal a close correspondence between peoples implicit probabilistic models and the statistics of the world. People show a statistical sophistication and optimality of reasoning generally assumed to be absent in the domain of higher-order cognition.

49 Griffiths and Tenenbaum Bayesian Model If an individual has lived for t cur =50 years, how many years t total do you expect them to live?

50 What Does Optimality Entail? Individuals have complete, accurate knowledge about the domain priors. Fairly sophisticated computation involving Bayesian integral

51

52 From The Economist (1/5/2006) [Griffiths and Tenenbuam] put the idea of a Bayesian brain to a quotidian test. They found that it passed with flying colors. The key to successful Bayesian reasoning is in having an appropriate prior With the correct prior, even a single piece of data can be used to make meaningful Bayesian predictions.

53 My Caution Bayesian formalism is sufficiently broad that nearly any theory can be cast in Bayesian terms E.g., adding two numbers as Bayesian inference Emphasis on how cognition conforms to Bayesian principles often directs attention away from important memory and processing limitations.

54 Problem Latent Dirichlet Allocation (a.k.a. Topic Model) Given a set of text documents, can we infer the topics that are covered by the set, and can we assign topics to individual documents Unsupervised learning problem Technique Exploit statistical regularities in data E.g., documents that are on the topic of education will likely contain a set of words such as teacher, student, lesson, etc.

55 Generative Model of Text Each document is a collection of topics (e.g., education, finance, the arts) Each topic is characterized by a set of words that are likely to appear The string of words in a document is generated by: 1) Draw a topic from the probability distribution associated with a document 2) Draw a word from the probability distribution associated with a topic Bag of words approach

56 Inferring (Learning) Topics Input: set of unlabeled documents Learning task Infer distribution over topics for each document Infer distribution over words for each topic Distribution over topics can be helpful for classifying or clustering documents

57

58

59 Dan Knights and Rob Lindsey s work at JDPA

60 Rob s Work: Phrase Discovery 0.17 new york 0.31 shuttle 0.27 non 0.19 minutes 0.16 new 0.23 lax 0.14 requested 0.13 waited 0.14 ny 0.16 flight 0.14 smoke vegas 0.12 early 0.12 room strip 0.11 sheraton 0.11 given york 0.09 sheraton gateway 0.09 smelled coaster 0.09 proximity 0.08 reserved 0.10 check 0.10 nyny 0.09 flights 0.08 change 0.10 min 0.08 roller 0.08 catch 0.07 told 0.10 waiting 0.08 las 0.08 morning 0.07 cigarette 0.09 arrived 0.07 it's 0.07 bus 0.07 assigned 0.09 wait 0.07 bars 0.07 pick 0.07 request 0.09 late 0.07 las vegas 0.07 shuttles 0.07 called fun 0.07 terminal 0.07 asked 0.08 arrival 0.06 drinks 0.06 layover 0.07 reservation 0.08 bell 0.06 mgm grand 0.06 international 0.06 advance 0.08 late night 0.06 you're 0.06 driver 0.06 resolve 0.08 pm 0.06 mgm 0.06 closeness 0.06 cigarette smoke 0.07 luggage 0.06 arcade 0.06 minutes 0.05 guaranteed 0.07 took forever 0.06 chin 0.06 pickup 0.05 smokers 0.07 told 0.06 italian 0.06 drop 0.05 prior 0.06 called 0.05 city 0.05 ride 0.05 upgrade 0.06 took care 0.05 island 0.05 marriott 0.05 ended skyline 0.05 terminals 0.05 checked 0.06 cleaned 0.05 big apple 0.05 convenience 0.05 smell 0.06 checkout 0.05 luxor 0.05 to/from 0.05 asking 0.05 took long

61 Bayesian Analysis Make inferences from data using probability models about quantities we want to predict E.g., expected age of death given 51 yr old E.g., latent topics in document 1. Set up full probability model that characterizes distribution over all quantities (observed and unobserved) 2. Condition model on observed data to compute posterior distribution 3. Evaluate fit of model to data

Signal Detection Theory and Bayesian Modeling

Signal Detection Theory and Bayesian Modeling Signal Detection Theory and Bayesian Modeling COGS 202: Computational Modeling of Cognition Omar Shanta, Shuai Tang, Gautam Reddy, Reina Mizrahi, Mehul Shah Detection Theory and Psychophysics: A Review

More information

ERA: Architectures for Inference

ERA: Architectures for Inference ERA: Architectures for Inference Dan Hammerstrom Electrical And Computer Engineering 7/28/09 1 Intelligent Computing In spite of the transistor bounty of Moore s law, there is a large class of problems

More information

CS 4365: Artificial Intelligence Recap. Vibhav Gogate

CS 4365: Artificial Intelligence Recap. Vibhav Gogate CS 4365: Artificial Intelligence Recap Vibhav Gogate Exam Topics Search BFS, DFS, UCS, A* (tree and graph) Completeness and Optimality Heuristics: admissibility and consistency CSPs Constraint graphs,

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 10: Introduction to inference (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 17 What is inference? 2 / 17 Where did our data come from? Recall our sample is: Y, the vector

More information

Cognitive Science and Bayes. The main question. Several views. Introduction. The main question Several views Examples. The heuristics view

Cognitive Science and Bayes. The main question. Several views. Introduction. The main question Several views Examples. The heuristics view To Bayes or not to Bayes Radboud University Nijmegen 07-04- 09 The original Bayesian view Are people Bayesian estimators? Or more precisely: should cognitive judgments be viewed as following optimal statistical

More information

Cognitive Modeling. Lecture 12: Bayesian Inference. Sharon Goldwater. School of Informatics University of Edinburgh

Cognitive Modeling. Lecture 12: Bayesian Inference. Sharon Goldwater. School of Informatics University of Edinburgh Cognitive Modeling Lecture 12: Bayesian Inference Sharon Goldwater School of Informatics University of Edinburgh sgwater@inf.ed.ac.uk February 18, 20 Sharon Goldwater Cognitive Modeling 1 1 Prediction

More information

Bayesian modeling of human concept learning

Bayesian modeling of human concept learning To appear in Advances in Neural Information Processing Systems, M. S. Kearns, S. A. Solla, & D. A. Cohn (eds.). Cambridge, MA: MIT Press, 999. Bayesian modeling of human concept learning Joshua B. Tenenbaum

More information

Bayesian models of inductive generalization

Bayesian models of inductive generalization Bayesian models of inductive generalization Neville E. Sanjana & Joshua B. Tenenbaum Department of Brain and Cognitive Sciences Massachusetts Institute of Technology Cambridge, MA 239 nsanjana, jbt @mit.edu

More information

CISC453 Winter Probabilistic Reasoning Part B: AIMA3e Ch

CISC453 Winter Probabilistic Reasoning Part B: AIMA3e Ch CISC453 Winter 2010 Probabilistic Reasoning Part B: AIMA3e Ch 14.5-14.8 Overview 2 a roundup of approaches from AIMA3e 14.5-14.8 14.5 a survey of approximate methods alternatives to the direct computing

More information

Introduction to Machine Learning. Katherine Heller Deep Learning Summer School 2018

Introduction to Machine Learning. Katherine Heller Deep Learning Summer School 2018 Introduction to Machine Learning Katherine Heller Deep Learning Summer School 2018 Outline Kinds of machine learning Linear regression Regularization Bayesian methods Logistic Regression Why we do this

More information

CS221 / Autumn 2017 / Liang & Ermon. Lecture 19: Conclusion

CS221 / Autumn 2017 / Liang & Ermon. Lecture 19: Conclusion CS221 / Autumn 2017 / Liang & Ermon Lecture 19: Conclusion Outlook AI is everywhere: IT, transportation, manifacturing, etc. AI being used to make decisions for: education, credit, employment, advertising,

More information

Bayesian and Frequentist Approaches

Bayesian and Frequentist Approaches Bayesian and Frequentist Approaches G. Jogesh Babu Penn State University http://sites.stat.psu.edu/ babu http://astrostatistics.psu.edu All models are wrong But some are useful George E. P. Box (son-in-law

More information

Individual Differences in Attention During Category Learning

Individual Differences in Attention During Category Learning Individual Differences in Attention During Category Learning Michael D. Lee (mdlee@uci.edu) Department of Cognitive Sciences, 35 Social Sciences Plaza A University of California, Irvine, CA 92697-5 USA

More information

MTAT Bayesian Networks. Introductory Lecture. Sven Laur University of Tartu

MTAT Bayesian Networks. Introductory Lecture. Sven Laur University of Tartu MTAT.05.113 Bayesian Networks Introductory Lecture Sven Laur University of Tartu Motivation Probability calculus can be viewed as an extension of classical logic. We use many imprecise and heuristic rules

More information

AClass: A Simple, Online Probabilistic Classifier. Vikash K. Mansinghka Computational Cognitive Science Group MIT BCS/CSAIL

AClass: A Simple, Online Probabilistic Classifier. Vikash K. Mansinghka Computational Cognitive Science Group MIT BCS/CSAIL AClass: A Simple, Online Probabilistic Classifier Vikash K. Mansinghka Computational Cognitive Science Group MIT BCS/CSAIL AClass: A Simple, Online Probabilistic Classifier or How I learned to stop worrying

More information

Supplementary notes for lecture 8: Computational modeling of cognitive development

Supplementary notes for lecture 8: Computational modeling of cognitive development Supplementary notes for lecture 8: Computational modeling of cognitive development Slide 1 Why computational modeling is important for studying cognitive development. Let s think about how to study the

More information

Lecture 3: Bayesian Networks 1

Lecture 3: Bayesian Networks 1 Lecture 3: Bayesian Networks 1 Jingpeng Li 1 Content Reminder from previous lecture: Bayes theorem Bayesian networks Why are they currently interesting? Detailed example from medical diagnostics Bayesian

More information

Neurons and neural networks II. Hopfield network

Neurons and neural networks II. Hopfield network Neurons and neural networks II. Hopfield network 1 Perceptron recap key ingredient: adaptivity of the system unsupervised vs supervised learning architecture for discrimination: single neuron perceptron

More information

Introduction. Patrick Breheny. January 10. The meaning of probability The Bayesian approach Preview of MCMC methods

Introduction. Patrick Breheny. January 10. The meaning of probability The Bayesian approach Preview of MCMC methods Introduction Patrick Breheny January 10 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/25 Introductory example: Jane s twins Suppose you have a friend named Jane who is pregnant with twins

More information

Assessment Schedule 2015 Mathematics and Statistics (Statistics): Evaluate statistically based reports (91584)

Assessment Schedule 2015 Mathematics and Statistics (Statistics): Evaluate statistically based reports (91584) NCEA Level 3 Mathematics and Statistics (Statistics) (9584) 205 page of 7 Assessment Schedule 205 Mathematics and Statistics (Statistics): Evaluate statistically based reports (9584) Evidence Statement

More information

Learning Deterministic Causal Networks from Observational Data

Learning Deterministic Causal Networks from Observational Data Carnegie Mellon University Research Showcase @ CMU Department of Psychology Dietrich College of Humanities and Social Sciences 8-22 Learning Deterministic Causal Networks from Observational Data Ben Deverett

More information

For general queries, contact

For general queries, contact Much of the work in Bayesian econometrics has focused on showing the value of Bayesian methods for parametric models (see, for example, Geweke (2005), Koop (2003), Li and Tobias (2011), and Rossi, Allenby,

More information

Att vara eller inte vara (en Bayesian)?... Sherlock-conundrum

Att vara eller inte vara (en Bayesian)?... Sherlock-conundrum Att vara eller inte vara (en Bayesian)?... Sherlock-conundrum (Thanks/blame to Google Translate) Gianluca Baio University College London Department of Statistical Science g.baio@ucl.ac.uk http://www.ucl.ac.uk/statistics/research/statistics-health-economics/

More information

A Brief Introduction to Bayesian Statistics

A Brief Introduction to Bayesian Statistics A Brief Introduction to Statistics David Kaplan Department of Educational Psychology Methods for Social Policy Research and, Washington, DC 2017 1 / 37 The Reverend Thomas Bayes, 1701 1761 2 / 37 Pierre-Simon

More information

Bayesian models of inductive generalization

Bayesian models of inductive generalization Bayesian models of inductive generalization Neville E. Sanjana & Joshua B. Tenenbaum Department of Brain and Cognitive Sciences Massachusetts Institute of Technology Cambridge, MA 239 {nsanjana, jbt}@mit.edu

More information

Rethinking Cognitive Architecture!

Rethinking Cognitive Architecture! Rethinking Cognitive Architecture! Reconciling Uniformity and Diversity via Graphical Models! Paul Rosenbloom!!! 1/25/2010! Department of Computer Science &! Institute for Creative Technologies! The projects

More information

A Decision-Theoretic Approach to Evaluating Posterior Probabilities of Mental Models

A Decision-Theoretic Approach to Evaluating Posterior Probabilities of Mental Models A Decision-Theoretic Approach to Evaluating Posterior Probabilities of Mental Models Jonathan Y. Ito and David V. Pynadath and Stacy C. Marsella Information Sciences Institute, University of Southern California

More information

Exploring the Influence of Particle Filter Parameters on Order Effects in Causal Learning

Exploring the Influence of Particle Filter Parameters on Order Effects in Causal Learning Exploring the Influence of Particle Filter Parameters on Order Effects in Causal Learning Joshua T. Abbott (joshua.abbott@berkeley.edu) Thomas L. Griffiths (tom griffiths@berkeley.edu) Department of Psychology,

More information

Bayes Linear Statistics. Theory and Methods

Bayes Linear Statistics. Theory and Methods Bayes Linear Statistics Theory and Methods Michael Goldstein and David Wooff Durham University, UK BICENTENNI AL BICENTENNIAL Contents r Preface xvii 1 The Bayes linear approach 1 1.1 Combining beliefs

More information

CS343: Artificial Intelligence

CS343: Artificial Intelligence CS343: Artificial Intelligence Introduction: Part 2 Prof. Scott Niekum University of Texas at Austin [Based on slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials

More information

Bayesian Networks Representation. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University

Bayesian Networks Representation. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University Bayesian Networks Representation Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University March 16 th, 2005 Handwriting recognition Character recognition, e.g., kernel SVMs r r r a c r rr

More information

Artificial Intelligence Lecture 7

Artificial Intelligence Lecture 7 Artificial Intelligence Lecture 7 Lecture plan AI in general (ch. 1) Search based AI (ch. 4) search, games, planning, optimization Agents (ch. 8) applied AI techniques in robots, software agents,... Knowledge

More information

Cogs 202 (SP12): Cognitive Science Foundations. Computational Modeling of Cognition. Prof. Angela Yu. Department of Cognitive Science, UCSD

Cogs 202 (SP12): Cognitive Science Foundations. Computational Modeling of Cognition. Prof. Angela Yu. Department of Cognitive Science, UCSD Cogs 202 (SP12): Cognitive Science Foundations Computational Modeling of Cognition Prof. Angela Yu Department of Cognitive Science, UCSD http://www.cogsci.ucsd.edu/~ajyu/teaching/cogs202_sp12/index.html

More information

Model calibration and Bayesian methods for probabilistic projections

Model calibration and Bayesian methods for probabilistic projections ETH Zurich Reto Knutti Model calibration and Bayesian methods for probabilistic projections Reto Knutti, IAC ETH Toy model Model: obs = linear trend + noise(variance, spectrum) 1) Short term predictability,

More information

Visual book review 1 Safe and Sound, AI in hazardous applications by John Fox and Subrata Das

Visual book review 1 Safe and Sound, AI in hazardous applications by John Fox and Subrata Das Visual book review 1 Safe and Sound, AI in hazardous applications by John Fox and Subrata Das Boris Kovalerchuk Dept. of Computer Science Central Washington University, Ellensburg, WA 98926-7520 borisk@cwu.edu

More information

CPS331 Lecture: Coping with Uncertainty; Discussion of Dreyfus Reading

CPS331 Lecture: Coping with Uncertainty; Discussion of Dreyfus Reading CPS331 Lecture: Coping with Uncertainty; Discussion of Dreyfus Reading Objectives: 1. To discuss ways of handling uncertainty (probability; Mycin CF) 2. To discuss Dreyfus views on expert systems Materials:

More information

Computational Modeling of Human Cognition

Computational Modeling of Human Cognition Computational Modeling of Human Cognition Michael C. Mozer Department of Computer Science and Institute of Cognitive Science University of Colorado, Boulder Lecture for Issues and Methods February 23,

More information

Subjective randomness and natural scene statistics

Subjective randomness and natural scene statistics Psychonomic Bulletin & Review 2010, 17 (5), 624-629 doi:10.3758/pbr.17.5.624 Brief Reports Subjective randomness and natural scene statistics Anne S. Hsu University College London, London, England Thomas

More information

Using Inverse Planning and Theory of Mind for Social Goal Inference

Using Inverse Planning and Theory of Mind for Social Goal Inference Using Inverse Planning and Theory of Mind for Social Goal Inference Sean Tauber (sean.tauber@uci.edu) Mark Steyvers (mark.steyvers@uci.edu) Department of Cognitive Sciences, University of California, Irvine

More information

The Acquisition and Use of Causal Structure Knowledge. Benjamin Margolin Rottman

The Acquisition and Use of Causal Structure Knowledge. Benjamin Margolin Rottman The Acquisition and Use of Causal Structure Knowledge Benjamin Margolin Rottman Learning Research and Development Center University of Pittsburgh 3939 O Hara Street Pittsburgh PA 526 In M.R. Waldmann (Ed.),

More information

EECS 433 Statistical Pattern Recognition

EECS 433 Statistical Pattern Recognition EECS 433 Statistical Pattern Recognition Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1 / 19 Outline What is Pattern

More information

Knowledge is rarely absolutely certain. In expert systems we need a way to say that something is probably but not necessarily true.

Knowledge is rarely absolutely certain. In expert systems we need a way to say that something is probably but not necessarily true. CmSc310 Artificial Intelligence Expert Systems II 1. Reasoning under uncertainty Knowledge is rarely absolutely certain. In expert systems we need a way to say that something is probably but not necessarily

More information

Probability, Statistics, Error Analysis and Risk Assessment. 30-Oct-2014 PHYS 192 Lecture 8 1

Probability, Statistics, Error Analysis and Risk Assessment. 30-Oct-2014 PHYS 192 Lecture 8 1 Probability, Statistics, Error Analysis and Risk Assessment 30-Oct-2014 PHYS 192 Lecture 8 1 An example online poll Rate my professor link What can we learn from this poll? 30-Oct-2014 PHYS 192 Lecture

More information

Pythia WEB ENABLED TIMED INFLUENCE NET MODELING TOOL SAL. Lee W. Wagenhals Alexander H. Levis

Pythia WEB ENABLED TIMED INFLUENCE NET MODELING TOOL SAL. Lee W. Wagenhals Alexander H. Levis Pythia WEB ENABLED TIMED INFLUENCE NET MODELING TOOL Lee W. Wagenhals Alexander H. Levis ,@gmu.edu Adversary Behavioral Modeling Maxwell AFB, Montgomery AL March 8-9, 2007 1 Outline Pythia

More information

A HMM-based Pre-training Approach for Sequential Data

A HMM-based Pre-training Approach for Sequential Data A HMM-based Pre-training Approach for Sequential Data Luca Pasa 1, Alberto Testolin 2, Alessandro Sperduti 1 1- Department of Mathematics 2- Department of Developmental Psychology and Socialisation University

More information

EEL-5840 Elements of {Artificial} Machine Intelligence

EEL-5840 Elements of {Artificial} Machine Intelligence Menu Introduction Syllabus Grading: Last 2 Yrs Class Average 3.55; {3.7 Fall 2012 w/24 students & 3.45 Fall 2013} General Comments Copyright Dr. A. Antonio Arroyo Page 2 vs. Artificial Intelligence? DEF:

More information

Intelligent Systems. Discriminative Learning. Parts marked by * are optional. WS2013/2014 Carsten Rother, Dmitrij Schlesinger

Intelligent Systems. Discriminative Learning. Parts marked by * are optional. WS2013/2014 Carsten Rother, Dmitrij Schlesinger Intelligent Systems Discriminative Learning Parts marked by * are optional 30/12/2013 WS2013/2014 Carsten Rother, Dmitrij Schlesinger Discriminative models There exists a joint probability distribution

More information

Natural Scene Statistics and Perception. W.S. Geisler

Natural Scene Statistics and Perception. W.S. Geisler Natural Scene Statistics and Perception W.S. Geisler Some Important Visual Tasks Identification of objects and materials Navigation through the environment Estimation of motion trajectories and speeds

More information

Computational Perception and Cognition

Computational Perception and Cognition Computational Perception and Cognition ELL788 [Slides by Santanu Chaudhury, Hiranmay Ghosh, and Sumeet Agarwal] [Material sourced from Friedenberg and Silverman, 2006] Introduction: Philosophical & Psychological

More information

Model Uncertainty in Classical Conditioning

Model Uncertainty in Classical Conditioning Model Uncertainty in Classical Conditioning A. C. Courville* 1,3, N. D. Daw 2,3, G. J. Gordon 4, and D. S. Touretzky 2,3 1 Robotics Institute, 2 Computer Science Department, 3 Center for the Neural Basis

More information

Relationships Between the High Impact Indicators and Other Indicators

Relationships Between the High Impact Indicators and Other Indicators Relationships Between the High Impact Indicators and Other Indicators The High Impact Indicators are a list of key skills assessed on the GED test that, if emphasized in instruction, can help instructors

More information

BAYESIAN HYPOTHESIS TESTING WITH SPSS AMOS

BAYESIAN HYPOTHESIS TESTING WITH SPSS AMOS Sara Garofalo Department of Psychiatry, University of Cambridge BAYESIAN HYPOTHESIS TESTING WITH SPSS AMOS Overview Bayesian VS classical (NHST or Frequentist) statistical approaches Theoretical issues

More information

Student Performance Q&A:

Student Performance Q&A: Student Performance Q&A: 2009 AP Statistics Free-Response Questions The following comments on the 2009 free-response questions for AP Statistics were written by the Chief Reader, Christine Franklin of

More information

Learning from just one or a few examples, and mostly unlabeled examples ( semi-supervised learning ).

Learning from just one or a few examples, and mostly unlabeled examples ( semi-supervised learning ). Outline for lectures Introduction Cognition as probabilistic inference Learning concepts from examples (continued) Learning and using intuitive theories (more structured systems of knowledge) tufa tufa

More information

Local Image Structures and Optic Flow Estimation

Local Image Structures and Optic Flow Estimation Local Image Structures and Optic Flow Estimation Sinan KALKAN 1, Dirk Calow 2, Florentin Wörgötter 1, Markus Lappe 2 and Norbert Krüger 3 1 Computational Neuroscience, Uni. of Stirling, Scotland; {sinan,worgott}@cn.stir.ac.uk

More information

Standard KOA3 5=3+2 5=4+1. Sarah Krauss CCLM^2 Project Summer 2012

Standard KOA3 5=3+2 5=4+1. Sarah Krauss CCLM^2 Project Summer 2012 Sarah Krauss CCLM^2 Project Summer 2012 DRAFT DOCUMENT. This material was developed as part of the Leadership for the Common Core in Mathematics (CCLM^2) project at the University of Wisconsin-Milwaukee.

More information

Learning to Identify Irrelevant State Variables

Learning to Identify Irrelevant State Variables Learning to Identify Irrelevant State Variables Nicholas K. Jong Department of Computer Sciences University of Texas at Austin Austin, Texas 78712 nkj@cs.utexas.edu Peter Stone Department of Computer Sciences

More information

A Bayesian Account of Reconstructive Memory

A Bayesian Account of Reconstructive Memory Hemmer, P. & Steyvers, M. (8). A Bayesian Account of Reconstructive Memory. In V. Sloutsky, B. Love, and K. McRae (Eds.) Proceedings of the 3th Annual Conference of the Cognitive Science Society. Mahwah,

More information

Bayesian Logistic Regression Modelling via Markov Chain Monte Carlo Algorithm

Bayesian Logistic Regression Modelling via Markov Chain Monte Carlo Algorithm Journal of Social and Development Sciences Vol. 4, No. 4, pp. 93-97, Apr 203 (ISSN 222-52) Bayesian Logistic Regression Modelling via Markov Chain Monte Carlo Algorithm Henry De-Graft Acquah University

More information

10CS664: PATTERN RECOGNITION QUESTION BANK

10CS664: PATTERN RECOGNITION QUESTION BANK 10CS664: PATTERN RECOGNITION QUESTION BANK Assignments would be handed out in class as well as posted on the class blog for the course. Please solve the problems in the exercises of the prescribed text

More information

Understanding Statistics for Research Staff!

Understanding Statistics for Research Staff! Statistics for Dummies? Understanding Statistics for Research Staff! Those of us who DO the research, but not the statistics. Rachel Enriquez, RN PhD Epidemiologist Why do we do Clinical Research? Epidemiology

More information

Bayes Theorem Application: Estimating Outcomes in Terms of Probability

Bayes Theorem Application: Estimating Outcomes in Terms of Probability Bayes Theorem Application: Estimating Outcomes in Terms of Probability The better the estimates, the better the outcomes. It s true in engineering and in just about everything else. Decisions and judgments

More information

From data to models: incorporating uncertainty into decision support systems. Outline. Probabilistic vs Mechanistic models.

From data to models: incorporating uncertainty into decision support systems. Outline. Probabilistic vs Mechanistic models. From data to models: incorporating uncertainty into decision support systems Wade P Smith, PhD New York Oncology Hematology Albany, NY 12206 Outline From data to information to models Some basic models

More information

Probabilistic Reasoning with Bayesian Networks and BayesiaLab

Probabilistic Reasoning with Bayesian Networks and BayesiaLab The presentation will start at: 13:00:00 The current time is: 13:00:42 Central Standard Time, UTC-6 Probabilistic Reasoning with Bayesian Networks and BayesiaLab Introduction Your Hosts Today Stefan Conrady

More information

High-level Vision. Bernd Neumann Slides for the course in WS 2004/05. Faculty of Informatics Hamburg University Germany

High-level Vision. Bernd Neumann Slides for the course in WS 2004/05. Faculty of Informatics Hamburg University Germany High-level Vision Bernd Neumann Slides for the course in WS 2004/05 Faculty of Informatics Hamburg University Germany neumann@informatik.uni-hamburg.de http://kogs-www.informatik.uni-hamburg.de 1 Contents

More information

Oscillatory Neural Network for Image Segmentation with Biased Competition for Attention

Oscillatory Neural Network for Image Segmentation with Biased Competition for Attention Oscillatory Neural Network for Image Segmentation with Biased Competition for Attention Tapani Raiko and Harri Valpola School of Science and Technology Aalto University (formerly Helsinki University of

More information

Decisions and Dependence in Influence Diagrams

Decisions and Dependence in Influence Diagrams JMLR: Workshop and Conference Proceedings vol 52, 462-473, 2016 PGM 2016 Decisions and Dependence in Influence Diagrams Ross D. hachter Department of Management cience and Engineering tanford University

More information

COMP329 Robotics and Autonomous Systems Lecture 15: Agents and Intentions. Dr Terry R. Payne Department of Computer Science

COMP329 Robotics and Autonomous Systems Lecture 15: Agents and Intentions. Dr Terry R. Payne Department of Computer Science COMP329 Robotics and Autonomous Systems Lecture 15: Agents and Intentions Dr Terry R. Payne Department of Computer Science General control architecture Localisation Environment Model Local Map Position

More information

Statistics and Probability

Statistics and Probability Statistics and a single count or measurement variable. S.ID.1: Represent data with plots on the real number line (dot plots, histograms, and box plots). S.ID.2: Use statistics appropriate to the shape

More information

Hierarchical Bayesian Modeling of Individual Differences in Texture Discrimination

Hierarchical Bayesian Modeling of Individual Differences in Texture Discrimination Hierarchical Bayesian Modeling of Individual Differences in Texture Discrimination Timothy N. Rubin (trubin@uci.edu) Michael D. Lee (mdlee@uci.edu) Charles F. Chubb (cchubb@uci.edu) Department of Cognitive

More information

UC San Diego UC San Diego Previously Published Works

UC San Diego UC San Diego Previously Published Works UC San Diego UC San Diego Previously Published Works Title Optimal Predictions in Everyday Cognition: The Wisdom of Individuals or Crowds? Permalink https://escholarship.org/uc/item/2zc6w43w Journal Cognitive

More information

You must answer question 1.

You must answer question 1. Research Methods and Statistics Specialty Area Exam October 28, 2015 Part I: Statistics Committee: Richard Williams (Chair), Elizabeth McClintock, Sarah Mustillo You must answer question 1. 1. Suppose

More information

Effects of generative and discriminative learning on use of category variability

Effects of generative and discriminative learning on use of category variability Effects of generative and discriminative learning on use of category variability Anne S. Hsu (ahsu@gatsby.ucl.ac.uk) Department of Cognitive, Perceptual and Brain Sciences, University College London, London,

More information

Conduct an Experiment to Investigate a Situation

Conduct an Experiment to Investigate a Situation Level 3 AS91583 4 Credits Internal Conduct an Experiment to Investigate a Situation Written by J Wills MathsNZ jwills@mathsnz.com Achievement Achievement with Merit Achievement with Excellence Conduct

More information

6 Relationships between

6 Relationships between CHAPTER 6 Relationships between Categorical Variables Chapter Outline 6.1 CONTINGENCY TABLES 6.2 BASIC RULES OF PROBABILITY WE NEED TO KNOW 6.3 CONDITIONAL PROBABILITY 6.4 EXAMINING INDEPENDENCE OF CATEGORICAL

More information

TRIPODS Workshop: Models & Machine Learning for Causal I. & Decision Making

TRIPODS Workshop: Models & Machine Learning for Causal I. & Decision Making TRIPODS Workshop: Models & Machine Learning for Causal Inference & Decision Making in Medical Decision Making : and Predictive Accuracy text Stavroula Chrysanthopoulou, PhD Department of Biostatistics

More information

Content Scope & Sequence

Content Scope & Sequence Content Scope & Sequence GRADE 2 scottforesman.com (800) 552-2259 Copyright Pearson Education, Inc. 0606443 1 Counting, Coins, and Combinations Counting, Coins, and Combinations (Addition, Subtraction,

More information

Marcus Hutter Canberra, ACT, 0200, Australia

Marcus Hutter Canberra, ACT, 0200, Australia Marcus Hutter Canberra, ACT, 0200, Australia http://www.hutter1.net/ Australian National University Abstract The approaches to Artificial Intelligence (AI) in the last century may be labelled as (a) trying

More information

Thinking and Intelligence

Thinking and Intelligence Thinking and Intelligence Learning objectives.1 The basic elements of thought.2 Whether the language you speak affects the way you think.3 How subconscious thinking, nonconscious thinking, and mindlessness

More information

Practical Bayesian Optimization of Machine Learning Algorithms. Jasper Snoek, Ryan Adams, Hugo LaRochelle NIPS 2012

Practical Bayesian Optimization of Machine Learning Algorithms. Jasper Snoek, Ryan Adams, Hugo LaRochelle NIPS 2012 Practical Bayesian Optimization of Machine Learning Algorithms Jasper Snoek, Ryan Adams, Hugo LaRochelle NIPS 2012 ... (Gaussian Processes) are inadequate for doing speech and vision. I still think they're

More information

Is proton beam therapy cost effective in the treatment of adenocarcinoma of the prostate? Konski A, Speier W, Hanlon A, Beck J R, Pollack A

Is proton beam therapy cost effective in the treatment of adenocarcinoma of the prostate? Konski A, Speier W, Hanlon A, Beck J R, Pollack A Is proton beam therapy cost effective in the treatment of adenocarcinoma of the prostate? Konski A, Speier W, Hanlon A, Beck J R, Pollack A Record Status This is a critical abstract of an economic evaluation

More information

Ping Pong in Church: Productive use of concepts in human probabilistic inference

Ping Pong in Church: Productive use of concepts in human probabilistic inference Ping Pong in Church: Productive use of concepts in human probabilistic inference Tobias Gerstenberg (t.gerstenberg@ucl.ac.uk) & Noah D. Goodman 2 (ngoodman@stanford.edu) Cognitive, Perceptual and Brain

More information

Bayesian Models for Combining Data Across Subjects and Studies in Predictive fmri Data Analysis

Bayesian Models for Combining Data Across Subjects and Studies in Predictive fmri Data Analysis Bayesian Models for Combining Data Across Subjects and Studies in Predictive fmri Data Analysis Thesis Proposal Indrayana Rustandi April 3, 2007 Outline Motivation and Thesis Preliminary results: Hierarchical

More information

UNLOCKING VALUE WITH DATA SCIENCE BAYES APPROACH: MAKING DATA WORK HARDER

UNLOCKING VALUE WITH DATA SCIENCE BAYES APPROACH: MAKING DATA WORK HARDER UNLOCKING VALUE WITH DATA SCIENCE BAYES APPROACH: MAKING DATA WORK HARDER 2016 DELIVERING VALUE WITH DATA SCIENCE BAYES APPROACH - MAKING DATA WORK HARDER The Ipsos MORI Data Science team increasingly

More information

DYNAMICISM & ROBOTICS

DYNAMICISM & ROBOTICS DYNAMICISM & ROBOTICS Phil/Psych 256 Chris Eliasmith Dynamicism and Robotics A different way of being inspired by biology by behavior Recapitulate evolution (sort of) A challenge to both connectionism

More information

Search e Fall /18/15

Search e Fall /18/15 Sample Efficient Policy Click to edit Master title style Search Click to edit Emma Master Brunskill subtitle style 15-889e Fall 2015 11 Sample Efficient RL Objectives Probably Approximately Correct Minimizing

More information

Generic Priors Yield Competition Between Independently-Occurring Preventive Causes

Generic Priors Yield Competition Between Independently-Occurring Preventive Causes Powell, D., Merrick, M. A., Lu, H., & Holyoak, K.J. (2014). Generic priors yield competition between independentlyoccurring preventive causes. In B. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.),

More information

[1] provides a philosophical introduction to the subject. Simon [21] discusses numerous topics in economics; see [2] for a broad economic survey.

[1] provides a philosophical introduction to the subject. Simon [21] discusses numerous topics in economics; see [2] for a broad economic survey. Draft of an article to appear in The MIT Encyclopedia of the Cognitive Sciences (Rob Wilson and Frank Kiel, editors), Cambridge, Massachusetts: MIT Press, 1997. Copyright c 1997 Jon Doyle. All rights reserved

More information

Ordinal Data Modeling

Ordinal Data Modeling Valen E. Johnson James H. Albert Ordinal Data Modeling With 73 illustrations I ". Springer Contents Preface v 1 Review of Classical and Bayesian Inference 1 1.1 Learning about a binomial proportion 1 1.1.1

More information

Gene Selection for Tumor Classification Using Microarray Gene Expression Data

Gene Selection for Tumor Classification Using Microarray Gene Expression Data Gene Selection for Tumor Classification Using Microarray Gene Expression Data K. Yendrapalli, R. Basnet, S. Mukkamala, A. H. Sung Department of Computer Science New Mexico Institute of Mining and Technology

More information

5.3: Associations in Categorical Variables

5.3: Associations in Categorical Variables 5.3: Associations in Categorical Variables Now we will consider how to use probability to determine if two categorical variables are associated. Conditional Probabilities Consider the next example, where

More information

Organizing Data. Types of Distributions. Uniform distribution All ranges or categories have nearly the same value a.k.a. rectangular distribution

Organizing Data. Types of Distributions. Uniform distribution All ranges or categories have nearly the same value a.k.a. rectangular distribution Organizing Data Frequency How many of the data are in a category or range Just count up how many there are Notation x = number in one category n = total number in sample (all categories combined) Relative

More information

Predicting the future as Bayesian inference: People combine prior knowledge with observations when estimating duration and extent. Thomas L.

Predicting the future as Bayesian inference: People combine prior knowledge with observations when estimating duration and extent. Thomas L. Predicting the future 1 Running head: PREDICTING THE FUTURE Predicting the future as Bayesian inference: People combine prior knowledge with observations when estimating duration and extent Thomas L. Griffiths

More information

Similarity and discrimination in classical conditioning: A latent variable account

Similarity and discrimination in classical conditioning: A latent variable account DRAFT: NIPS 17 PREPROCEEDINGS 1 Similarity and discrimination in classical conditioning: A latent variable account Aaron C. Courville* 1,3, Nathaniel D. Daw 4 and David S. Touretzky 2,3 1 Robotics Institute,

More information

STATISTICAL INFERENCE 1 Richard A. Johnson Professor Emeritus Department of Statistics University of Wisconsin

STATISTICAL INFERENCE 1 Richard A. Johnson Professor Emeritus Department of Statistics University of Wisconsin STATISTICAL INFERENCE 1 Richard A. Johnson Professor Emeritus Department of Statistics University of Wisconsin Key words : Bayesian approach, classical approach, confidence interval, estimation, randomization,

More information

Artificial Intelligence Programming Probability

Artificial Intelligence Programming Probability Artificial Intelligence Programming Probability Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/25 17-0: Uncertainty

More information

Bayesian (Belief) Network Models,

Bayesian (Belief) Network Models, Bayesian (Belief) Network Models, 2/10/03 & 2/12/03 Outline of This Lecture 1. Overview of the model 2. Bayes Probability and Rules of Inference Conditional Probabilities Priors and posteriors Joint distributions

More information

The Development and Application of Bayesian Networks Used in Data Mining Under Big Data

The Development and Application of Bayesian Networks Used in Data Mining Under Big Data 2017 International Conference on Arts and Design, Education and Social Sciences (ADESS 2017) ISBN: 978-1-60595-511-7 The Development and Application of Bayesian Networks Used in Data Mining Under Big Data

More information

The Role of Causal Models in Reasoning Under Uncertainty

The Role of Causal Models in Reasoning Under Uncertainty The Role of Causal Models in Reasoning Under Uncertainty Tevye R. Krynski (tevye@mit.edu) Joshua B. Tenenbaum (jbt@mit.edu) Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology

More information