Bayesian Nonparametric Methods for Precision Medicine

Size: px
Start display at page:

Download "Bayesian Nonparametric Methods for Precision Medicine"

Transcription

1 Bayesian Nonparametric Methods for Precision Medicine Brian Reich, NC State Collaborators: Qian Guan (NCSU), Eric Laber (NCSU) and Dipankar Bandyopadhyay (VCU) University of Illinois at Urbana-Champaign Department of Statistics January 31, 2019 Brian Reich - NC State Bayesian policy search 1 / 41

2 Qian Guan Brian Reich - NC State Bayesian policy search 2 / 41

3 Mia Hu Brian Reich - NC State Bayesian policy search 3 / 41

4 Personalized medicine Personalized medicine attempts to improve healthcare by optimally allocating treatment to population subgroups Common subpopulations are based on genetics, baseline health status, etc. In this talk we deal with cost constraints, i.e., restrictions on the number of treatments that can be applied We also want an interpretable policy, not a black box Brian Reich - NC State Bayesian policy search 4 / 41

5 Motivating dental example Classic recall recommendation is 6 months for all patients This is not evidence-based In clinical practice some patients are given different recall recommendations based on ad hoc rules or the dentists intuition This process has yet to be formally optimized Brian Reich - NC State Bayesian policy search 5 / 41

6 Motivating dental example We have observational data collected by Health Partners in suburban Minneapolis For each visit the response is the proportion of the measurement sites with either a missing tooth or unhealthy gums Covariates include age, race, gender, diabetic status, etc. We have data for 25,000 patients The average number of visits is 8.5 Brian Reich - NC State Bayesian policy search 6 / 41

7 Example response trajectories Brian Reich - NC State Bayesian policy search 7 / 41

8 Observed versus recommended recall Brian Reich - NC State Bayesian policy search 8 / 41

9 Challenges posed by this problem Many time points Non-compliance Cost constraints Complicated data structure with mass at zero and autocorrelation Brian Reich - NC State Bayesian policy search 9 / 41

10 A second motivating example: Malaria in the DRC Malaria affects hundreds of millions of people Effective treatments such as bed nets are available However, resources are limited We build a recommendation engine to determine the optimal allocation of bed nets across DRC Challenge: Optimal allocation must account for spillover effects of treatment to other regions Brian Reich - NC State Bayesian policy search 10 / 41

11 Estimated Malaria prevalence in Brian Reich - NC State Bayesian policy search 11 / 41

12 Bed net distribution in Brian Reich - NC State Bayesian policy search 12 / 41

13 Back to the dental example: Data for patient i History up to visit t: H it = {X i, Y i0, A i1, δ i1, Y i1,..., A iti, δ iti, Y iti } Baseline covariates: X i Baseline response: Y i0 Recommended time until next visit (action) t: A it Time between visits t 1 and t: δ it We control A it, everything else is random Brian Reich - NC State Bayesian policy search 13 / 41

14 Definitions A policy π is a deterministic function that maps the available data to a recommendation, A it = π(h it ; α) where α are unknown parameters We consider only policies determined by a risk score: R it = α 0 + J g j (H it )α j j=1 where the g j are clinically-meaningful features The action is then a function of the risk, e.g., { 3 if R it 0 A it = π(h it ; α) = 9 if R it < 0 Brian Reich - NC State Bayesian policy search 14 / 41

15 Comparing policies The problem now reduces to finding the optimal α Reward: measure of success for patient i, e.g., the improvement in the response over the next 5 years Value: V (α) is the expected (averaging over X i, δ it, and Y it ) reward if actions are given using α Cost: C(α) is the expected time between visits if actions are given using α Optimal policy: the α that maximizes V (α) subject to a constraint on C(α) Brian Reich - NC State Bayesian policy search 15 / 41

16 Estimating the policy Let f be the systems dynamics model A complete f must specify stochastic models for: X i ; Y i0 X i ; δ i1 X i, Y i0, A i1,... Given f, we can approximate V (α) and C(α) Some methods attempt to estimate the policy without estimating f, e.g., Q-learning and A-learning These are hard to put in the Bayesian framework Brian Reich - NC State Bayesian policy search 16 / 41

17 G-computation Our approach is to estimate f using Bayesian nonparametrics (BNP) This allows us to incorporate prior information and do uncertainty quantification Of course if the model is wrong, estimates of V (α) and C(α) will be poor, and we may not find the best α We try to avoid misspecification problems using a flexible BNP model We view our method as an extension of Xu et al (JASA, 2016), who propose a BNP/G-computation method for a three-stage trial Brian Reich - NC State Bayesian policy search 17 / 41

18 Our Dirichlet process mixture model Let Θ i = {θ i0, θ i1, θ i2 } be a random effect for subject i Baseline: (X T i, Y i0 ) T Normal(θ i0, Σ 0 ) Compliance: δ it A it, X i, Y it 1 Normal(X T it θ i1, σ 2 1 ) Progression: Y it Y it 1 δ it, A it, X i, Y it 1 Normal(Z T it θ i2, σ 2 2 ) X and Z are user-specified functions of the history H it θ i iid f where f has a Dirichlet process mixture (DPM) prior Brian Reich - NC State Bayesian policy search 18 / 41

19 Estimating the policy via α Given f, the optimal α is determined but difficult to compute α opt = arg max α V (α) s.t. C(α) < c For a given f we can approximate V (α) and C(α) using Monte Carlo simulation These can be noisy approximations, making optimization challenging We use simulation/optimization methods for stochastic functions Brian Reich - NC State Bayesian policy search 19 / 41

20 Estimating the policy via α We first estimate V and C on a course grid of candidate α We then smooth these values with Gaussian process regression To refine the solution we using sequential optimization, selecting the next candidate α to maximum expected gain This process takes around 40 minutes for the simulated examples Brian Reich - NC State Bayesian policy search 20 / 41

21 Estimating the policy via α We can also use this process to obtain the posterior distribution of the policy parameters α The optimal α is a function of f We repeat the optimization for several posterior samples of f, giving the posterior for the optimal α This can be used for uncertainty quantification/testing Brian Reich - NC State Bayesian policy search 21 / 41

22 Simulation set-up Data generated with n subjects each followed for five years The dynamics f are either MVN (single) or a mixture of two MNV (mixture) Risk score: R it = α 0 + X i1 α 1 + X i2 α 2 + log( δ it 1 A it 1 )α 3 + Y it 1 α 4 Actions, A it = { 3 if R it 0 9 if R it < 0 The reward function is 1 n i ni t=1 Y iti(y it > 0) Brian Reich - NC State Bayesian policy search 22 / 41

23 Simulation set-up - Competing models Baseline: A it = 6 for all i and t Gaussian: Policy search assuming normality for Θ i DPM: Policy search assuming the full BNP/DPM model Oracle: f is known perfectly Brian Reich - NC State Bayesian policy search 23 / 41

24 Simulation study - Value (smaller is better) Cluster n Baseline Gaussian DPM Oracle Single Single Mixture Mixture Brian Reich - NC State Bayesian policy search 24 / 41

25 Simulation study - Cost (constrained to be 6) Cluster n Baseline Gaussian DPM Oracle Single Single Mixture Mixture Brian Reich - NC State Bayesian policy search 25 / 41

26 Scenario 1: Estimated versus true α (a) Single cluster, n=1000 α opt X1 X2 Comp Prev Y Feature Gaussian DPM Oracle Brian Reich - NC State Bayesian policy search 26 / 41

27 Scenario 3: Estimated versus true α (c) Mixture, n=1000 α opt X1 X2 Comp Prev Y Feature Brian Reich - NC State Bayesian policy search 27 / 41

28 Coverage for α posterior samples posterior samples X X2 posterior samples posterior samples Comp Prev Y Brian Reich - NC State Bayesian policy search 28 / 41

29 Real-data analysis - fitted priority score The utility function is the reduction in proportion of unhealthy sites in 5 years from baseline Recommendation is to return in 3 months if R t > 0, and 9 months otherwise The estimated optimal risk score is R t = Std Age Diabetes log( δ t 1 A t 1 + 1) Y t 1 Young, unhealthy, diabetics that do not comply are recommended to return in 3 months Brian Reich - NC State Bayesian policy search 29 / 41

30 Value of competing policies The value of this policy is (0.0002) The value if all patients have A = 6 is (0.0002) This is an improvement of 40% This is a substantial improvement, especially when the improvement of expected value is multiplied by the number of people in the population Of course, this comes with caveats Brian Reich - NC State Bayesian policy search 30 / 41

31 Example 2: Estimated Malaria prevalence in Brian Reich - NC State Bayesian policy search 31 / 41

32 Example 2: Bed net distribution in Brian Reich - NC State Bayesian policy search 32 / 41

33 Example 2: Definitions Data: Y jt is the logit of the prevalence in zone j in year t for (Bhatt et al) Action: A jt is the proportion of homes given bed nets Reward: Spatiotemporal average malaria prevalence over the next five years Cost: Average A jt (over j) less than a fixed threshold each year Problem: Estimate the optimal policy for allocating A jt each year Brian Reich - NC State Bayesian policy search 33 / 41

34 Local priority score Our method assigns each health zone a priority score The priority score is a linear combination of the zone s climate current malaria prevalence prevalence in the neighboring zones The priority score is denoted P i = α 1 temp i +α 2 precip i +α 3 prevalence i +α 4 neigbor-prev i and is a function of unknown weights α Brian Reich - NC State Bayesian policy search 34 / 41

35 Global utility function We select the proportion of individuals to receive bed nets in all n zones, A = (A 1,..., A n ), to maximize n exp(p i )A i + α 0 w ij (A i A j ) 2 i=1 where w ij is a weight assigned to pair of zones The first term encourages zones with high priority scores to receive more bed nets The second term either encourages or discourages clustering of A j depending on the sign of α 0 This can be solved with quadratic programming i<j Brian Reich - NC State Bayesian policy search 35 / 41

36 Optimization The key task is to optimize over α 0,..., α 4 to minimize the long-run malaria prevalence in DRC As with the dental example, this requires extensive simulation from a fitted model We fit a Gaussian linear model with covariates Previous time s prevalence Prevalence in neighboring zones Temperature and precipitation Bed-net allocation Interactions and spatially correlated errors Brian Reich - NC State Bayesian policy search 36 / 41

37 Fitted priority score The optimal priority score weights (after transforming all variables to a common scale) are: Spatial clustering: α 0 = 0.13 Temperature: α 1 = 2.6 Precipitaion: α 2 = 0.8 Current prevalence: α 3 = 1.2 Prevalence of neighboring zones: α 4 = 3.1 These assume the average A jt stays at the current average Brian Reich - NC State Bayesian policy search 37 / 41

38 Value of competing policies The projected average prevalence over the next five years is following our policy if all resources are allocated to the zones with highest current prevalence if all zones are given the same resources Brian Reich - NC State Bayesian policy search 38 / 41

39 Estimated prevalence in Brian Reich - NC State Bayesian policy search 39 / 41

40 Projected prevalence in 2016 following our policy Brian Reich - NC State Bayesian policy search 40 / 41

41 Summary We proposed methods for optimizing dental-recall 1 and malaria-control 2 recommendation engines Our methods handle non-compliance and non-normality, and permit uncertainty quantification The methods are designed to produce interpretable results, but implementation would still be complicated Our methods would surely benefit from causal analysis Work supported by NIH, NSF and the Gates Foundation 1 In revision, JASA A&CS 2 Submitted to Biometrics Brian Reich - NC State Bayesian policy search 41 / 41

Individualized Treatment Effects Using a Non-parametric Bayesian Approach

Individualized Treatment Effects Using a Non-parametric Bayesian Approach Individualized Treatment Effects Using a Non-parametric Bayesian Approach Ravi Varadhan Nicholas C. Henderson Division of Biostatistics & Bioinformatics Department of Oncology Johns Hopkins University

More information

EECS 433 Statistical Pattern Recognition

EECS 433 Statistical Pattern Recognition EECS 433 Statistical Pattern Recognition Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1 / 19 Outline What is Pattern

More information

Using dynamic prediction to inform the optimal intervention time for an abdominal aortic aneurysm screening programme

Using dynamic prediction to inform the optimal intervention time for an abdominal aortic aneurysm screening programme Using dynamic prediction to inform the optimal intervention time for an abdominal aortic aneurysm screening programme Michael Sweeting Cardiovascular Epidemiology Unit, University of Cambridge Friday 15th

More information

Meta-analysis of two studies in the presence of heterogeneity with applications in rare diseases

Meta-analysis of two studies in the presence of heterogeneity with applications in rare diseases Meta-analysis of two studies in the presence of heterogeneity with applications in rare diseases Christian Röver 1, Tim Friede 1, Simon Wandel 2 and Beat Neuenschwander 2 1 Department of Medical Statistics,

More information

Introduction to Machine Learning. Katherine Heller Deep Learning Summer School 2018

Introduction to Machine Learning. Katherine Heller Deep Learning Summer School 2018 Introduction to Machine Learning Katherine Heller Deep Learning Summer School 2018 Outline Kinds of machine learning Linear regression Regularization Bayesian methods Logistic Regression Why we do this

More information

Bayesian Joint Modelling of Benefit and Risk in Drug Development

Bayesian Joint Modelling of Benefit and Risk in Drug Development Bayesian Joint Modelling of Benefit and Risk in Drug Development EFSPI/PSDM Safety Statistics Meeting Leiden 2017 Disclosure is an employee and shareholder of GSK Data presented is based on human research

More information

A Brief Introduction to Bayesian Statistics

A Brief Introduction to Bayesian Statistics A Brief Introduction to Statistics David Kaplan Department of Educational Psychology Methods for Social Policy Research and, Washington, DC 2017 1 / 37 The Reverend Thomas Bayes, 1701 1761 2 / 37 Pierre-Simon

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 10: Introduction to inference (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 17 What is inference? 2 / 17 Where did our data come from? Recall our sample is: Y, the vector

More information

Bayesians methods in system identification: equivalences, differences, and misunderstandings

Bayesians methods in system identification: equivalences, differences, and misunderstandings Bayesians methods in system identification: equivalences, differences, and misunderstandings Johan Schoukens and Carl Edward Rasmussen ERNSI 217 Workshop on System Identification Lyon, September 24-27,

More information

Fundamental Clinical Trial Design

Fundamental Clinical Trial Design Design, Monitoring, and Analysis of Clinical Trials Session 1 Overview and Introduction Overview Scott S. Emerson, M.D., Ph.D. Professor of Biostatistics, University of Washington February 17-19, 2003

More information

Modelling Spatially Correlated Survival Data for Individuals with Multiple Cancers

Modelling Spatially Correlated Survival Data for Individuals with Multiple Cancers Modelling Spatially Correlated Survival Data for Individuals with Multiple Cancers Dipak K. Dey, Ulysses Diva and Sudipto Banerjee Department of Statistics University of Connecticut, Storrs. March 16,

More information

Missing data. Patrick Breheny. April 23. Introduction Missing response data Missing covariate data

Missing data. Patrick Breheny. April 23. Introduction Missing response data Missing covariate data Missing data Patrick Breheny April 3 Patrick Breheny BST 71: Bayesian Modeling in Biostatistics 1/39 Our final topic for the semester is missing data Missing data is very common in practice, and can occur

More information

Regression Discontinuity Designs: An Approach to Causal Inference Using Observational Data

Regression Discontinuity Designs: An Approach to Causal Inference Using Observational Data Regression Discontinuity Designs: An Approach to Causal Inference Using Observational Data Aidan O Keeffe Department of Statistical Science University College London 18th September 2014 Aidan O Keeffe

More information

Mathematical-Statistical Modeling to Inform the Design of HIV Treatment Strategies and Clinical Trials

Mathematical-Statistical Modeling to Inform the Design of HIV Treatment Strategies and Clinical Trials Mathematical-Statistical Modeling to Inform the Design of HIV Treatment Strategies and Clinical Trials 2007 FDA/Industry Statistics Workshop Marie Davidian Department of Statistics North Carolina State

More information

Mathematical-Statistical Modeling to Inform the Design of HIV Treatment Strategies and Clinical Trials

Mathematical-Statistical Modeling to Inform the Design of HIV Treatment Strategies and Clinical Trials Mathematical-Statistical Modeling to Inform the Design of HIV Treatment Strategies and Clinical Trials Marie Davidian and H.T. Banks North Carolina State University Eric S. Rosenberg Massachusetts General

More information

Decision Making in Confirmatory Multipopulation Tailoring Trials

Decision Making in Confirmatory Multipopulation Tailoring Trials Biopharmaceutical Applied Statistics Symposium (BASS) XX 6-Nov-2013, Orlando, FL Decision Making in Confirmatory Multipopulation Tailoring Trials Brian A. Millen, Ph.D. Acknowledgments Alex Dmitrienko

More information

Selection of Linking Items

Selection of Linking Items Selection of Linking Items Subset of items that maximally reflect the scale information function Denote the scale information as Linear programming solver (in R, lp_solve 5.5) min(y) Subject to θ, θs,

More information

A Bayesian Measurement Model of Political Support for Endorsement Experiments, with Application to the Militant Groups in Pakistan

A Bayesian Measurement Model of Political Support for Endorsement Experiments, with Application to the Militant Groups in Pakistan A Bayesian Measurement Model of Political Support for Endorsement Experiments, with Application to the Militant Groups in Pakistan Kosuke Imai Princeton University Joint work with Will Bullock and Jacob

More information

Propensity Score Methods for Estimating Causality in the Absence of Random Assignment: Applications for Child Care Policy Research

Propensity Score Methods for Estimating Causality in the Absence of Random Assignment: Applications for Child Care Policy Research 2012 CCPRC Meeting Methodology Presession Workshop October 23, 2012, 2:00-5:00 p.m. Propensity Score Methods for Estimating Causality in the Absence of Random Assignment: Applications for Child Care Policy

More information

Coding and computation by neural ensembles in the primate retina

Coding and computation by neural ensembles in the primate retina Coding and computation by neural ensembles in the primate retina Liam Paninski Department of Statistics and Center for Theoretical Neuroscience Columbia University http://www.stat.columbia.edu/ liam liam@stat.columbia.edu

More information

PKPD modelling to optimize dose-escalation trials in Oncology

PKPD modelling to optimize dose-escalation trials in Oncology PKPD modelling to optimize dose-escalation trials in Oncology Marina Savelieva Design of Experiments in Healthcare, Issac Newton Institute for Mathematical Sciences Aug 19th, 2011 Outline Motivation Phase

More information

Outline. Hierarchical Hidden Markov Models for HIV-Transmission Behavior Outcomes. Motivation. Why Hidden Markov Model? Why Hidden Markov Model?

Outline. Hierarchical Hidden Markov Models for HIV-Transmission Behavior Outcomes. Motivation. Why Hidden Markov Model? Why Hidden Markov Model? Hierarchical Hidden Markov Models for HIV-Transmission Behavior Outcomes Li-Jung Liang Department of Medicine Statistics Core Email: liangl@ucla.edu Joint work with Rob Weiss & Scott Comulada Outline Motivation

More information

Lecture 5: Sequential Multiple Assignment Randomized Trials (SMARTs) for DTR. Donglin Zeng, Department of Biostatistics, University of North Carolina

Lecture 5: Sequential Multiple Assignment Randomized Trials (SMARTs) for DTR. Donglin Zeng, Department of Biostatistics, University of North Carolina Lecture 5: Sequential Multiple Assignment Randomized Trials (SMARTs) for DTR Introduction Introduction Consider simple DTRs: D = (D 1,..., D K ) D k (H k ) = 1 or 1 (A k = { 1, 1}). That is, a fixed treatment

More information

Bayesian methods in health economics

Bayesian methods in health economics Bayesian methods in health economics Gianluca Baio University College London Department of Statistical Science g.baio@ucl.ac.uk Seminar Series of the Master in Advanced Artificial Intelligence Madrid,

More information

Practical Bayesian Design and Analysis for Drug and Device Clinical Trials

Practical Bayesian Design and Analysis for Drug and Device Clinical Trials Practical Bayesian Design and Analysis for Drug and Device Clinical Trials p. 1/2 Practical Bayesian Design and Analysis for Drug and Device Clinical Trials Brian P. Hobbs Plan B Advisor: Bradley P. Carlin

More information

Bayesian Models for Combining Data Across Subjects and Studies in Predictive fmri Data Analysis

Bayesian Models for Combining Data Across Subjects and Studies in Predictive fmri Data Analysis Bayesian Models for Combining Data Across Subjects and Studies in Predictive fmri Data Analysis Thesis Proposal Indrayana Rustandi April 3, 2007 Outline Motivation and Thesis Preliminary results: Hierarchical

More information

BayesOpt: Extensions and applications

BayesOpt: Extensions and applications BayesOpt: Extensions and applications Javier González Masterclass, 7-February, 2107 @Lancaster University Agenda of the day 9:00-11:00, Introduction to Bayesian Optimization: What is BayesOpt and why it

More information

Challenges in Developing Learning Algorithms to Personalize mhealth Treatments

Challenges in Developing Learning Algorithms to Personalize mhealth Treatments Challenges in Developing Learning Algorithms to Personalize mhealth Treatments JOOLHEALTH Bar-Fit Susan A Murphy 01.16.18 HeartSteps SARA Sense 2 Stop Continually Learning Mobile Health Intervention 1)

More information

Biostatistical modelling in genomics for clinical cancer studies

Biostatistical modelling in genomics for clinical cancer studies This work was supported by Entente Cordiale Cancer Research Bursaries Biostatistical modelling in genomics for clinical cancer studies Philippe Broët JE 2492 Faculté de Médecine Paris-Sud In collaboration

More information

A Case Study: Two-sample categorical data

A Case Study: Two-sample categorical data A Case Study: Two-sample categorical data Patrick Breheny January 31 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/43 Introduction Model specification Continuous vs. mixture priors Choice

More information

Learning to Identify Irrelevant State Variables

Learning to Identify Irrelevant State Variables Learning to Identify Irrelevant State Variables Nicholas K. Jong Department of Computer Sciences University of Texas at Austin Austin, Texas 78712 nkj@cs.utexas.edu Peter Stone Department of Computer Sciences

More information

Robust Nonparametric Inference for Stochastic Interventions Under Multi-Stage Sampling. Nima Hejazi

Robust Nonparametric Inference for Stochastic Interventions Under Multi-Stage Sampling. Nima Hejazi Robust Nonparametric Inference for Stochastic Interventions Under Multi-Stage Sampling for the UC Berkeley Biostatistics Seminar Series, given 02 April 2018 Nima Hejazi Group in Biostatistics University

More information

Introduction to Bayesian Analysis 1

Introduction to Bayesian Analysis 1 Biostats VHM 801/802 Courses Fall 2005, Atlantic Veterinary College, PEI Henrik Stryhn Introduction to Bayesian Analysis 1 Little known outside the statistical science, there exist two different approaches

More information

Real-time computational attention model for dynamic scenes analysis

Real-time computational attention model for dynamic scenes analysis Computer Science Image and Interaction Laboratory Real-time computational attention model for dynamic scenes analysis Matthieu Perreira Da Silva Vincent Courboulay 19/04/2012 Photonics Europe 2012 Symposium,

More information

A Comparison of Methods for Determining HIV Viral Set Point

A Comparison of Methods for Determining HIV Viral Set Point STATISTICS IN MEDICINE Statist. Med. 2006; 00:1 6 [Version: 2002/09/18 v1.11] A Comparison of Methods for Determining HIV Viral Set Point Y. Mei 1, L. Wang 2, S. E. Holte 2 1 School of Industrial and Systems

More information

Combining Risks from Several Tumors Using Markov Chain Monte Carlo

Combining Risks from Several Tumors Using Markov Chain Monte Carlo University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Environmental Protection Agency Papers U.S. Environmental Protection Agency 2009 Combining Risks from Several Tumors

More information

Bayesian meta-analysis of Papanicolaou smear accuracy

Bayesian meta-analysis of Papanicolaou smear accuracy Gynecologic Oncology 107 (2007) S133 S137 www.elsevier.com/locate/ygyno Bayesian meta-analysis of Papanicolaou smear accuracy Xiuyu Cong a, Dennis D. Cox b, Scott B. Cantor c, a Biometrics and Data Management,

More information

Neurons and neural networks II. Hopfield network

Neurons and neural networks II. Hopfield network Neurons and neural networks II. Hopfield network 1 Perceptron recap key ingredient: adaptivity of the system unsupervised vs supervised learning architecture for discrimination: single neuron perceptron

More information

Sample size calculation for a stepped wedge trial

Sample size calculation for a stepped wedge trial Baio et al. Trials (2015) 16:354 DOI 10.1186/s13063-015-0840-9 TRIALS RESEARCH Sample size calculation for a stepped wedge trial Open Access Gianluca Baio 1*,AndrewCopas 2, Gareth Ambler 1, James Hargreaves

More information

MMSE Interference in Gaussian Channels 1

MMSE Interference in Gaussian Channels 1 MMSE Interference in Gaussian Channels Shlomo Shamai Department of Electrical Engineering Technion - Israel Institute of Technology 202 Information Theory and Applications Workshop 5-0 February, San Diego

More information

Bayesian Modeling of Multivariate Spatial Binary Data with Application to Dental Caries

Bayesian Modeling of Multivariate Spatial Binary Data with Application to Dental Caries Bayesian Modeling of Multivariate Spatial Binary Data with Application to Dental Caries Dipankar Bandyopadhyay dbandyop@umn.edu Division of Biostatistics, School of Public Health University of Minnesota

More information

Lecture II: Difference in Difference and Regression Discontinuity

Lecture II: Difference in Difference and Regression Discontinuity Review Lecture II: Difference in Difference and Regression Discontinuity it From Lecture I Causality is difficult to Show from cross sectional observational studies What caused what? X caused Y, Y caused

More information

NEW METHODS FOR SENSITIVITY TESTS OF EXPLOSIVE DEVICES

NEW METHODS FOR SENSITIVITY TESTS OF EXPLOSIVE DEVICES NEW METHODS FOR SENSITIVITY TESTS OF EXPLOSIVE DEVICES Amit Teller 1, David M. Steinberg 2, Lina Teper 1, Rotem Rozenblum 2, Liran Mendel 2, and Mordechai Jaeger 2 1 RAFAEL, POB 2250, Haifa, 3102102, Israel

More information

Bayesian Logistic Regression Modelling via Markov Chain Monte Carlo Algorithm

Bayesian Logistic Regression Modelling via Markov Chain Monte Carlo Algorithm Journal of Social and Development Sciences Vol. 4, No. 4, pp. 93-97, Apr 203 (ISSN 222-52) Bayesian Logistic Regression Modelling via Markov Chain Monte Carlo Algorithm Henry De-Graft Acquah University

More information

Joint Spatio-Temporal Modeling of Low Incidence Cancers Sharing Common Risk Factors

Joint Spatio-Temporal Modeling of Low Incidence Cancers Sharing Common Risk Factors Journal of Data Science 6(2008), 105-123 Joint Spatio-Temporal Modeling of Low Incidence Cancers Sharing Common Risk Factors Jacob J. Oleson 1,BrianJ.Smith 1 and Hoon Kim 2 1 The University of Iowa and

More information

Lecture Outline. Biost 590: Statistical Consulting. Stages of Scientific Studies. Scientific Method

Lecture Outline. Biost 590: Statistical Consulting. Stages of Scientific Studies. Scientific Method Biost 590: Statistical Consulting Statistical Classification of Scientific Studies; Approach to Consulting Lecture Outline Statistical Classification of Scientific Studies Statistical Tasks Approach to

More information

Mathematical Modeling of PDGF-Driven Glioblastoma Reveals Optimized Radiation Dosing Schedules

Mathematical Modeling of PDGF-Driven Glioblastoma Reveals Optimized Radiation Dosing Schedules Mathematical Modeling of PDGF-Driven Glioblastoma Reveals Optimized Radiation Dosing Schedules Kevin Leder, Ken Pittner, Quincey LaPlant, Dolores Hambardzumyan, Brian D. Ross, Timothy A. Chan, Eric C.

More information

Analysis of acgh data: statistical models and computational challenges

Analysis of acgh data: statistical models and computational challenges : statistical models and computational challenges Ramón Díaz-Uriarte 2007-02-13 Díaz-Uriarte, R. acgh analysis: models and computation 2007-02-13 1 / 38 Outline 1 Introduction Alternative approaches What

More information

Bayesian Inference. Thomas Nichols. With thanks Lee Harrison

Bayesian Inference. Thomas Nichols. With thanks Lee Harrison Bayesian Inference Thomas Nichols With thanks Lee Harrison Attention to Motion Paradigm Results Attention No attention Büchel & Friston 1997, Cereb. Cortex Büchel et al. 1998, Brain - fixation only -

More information

10-1 MMSE Estimation S. Lall, Stanford

10-1 MMSE Estimation S. Lall, Stanford 0 - MMSE Estimation S. Lall, Stanford 20.02.02.0 0 - MMSE Estimation Estimation given a pdf Minimizing the mean square error The minimum mean square error (MMSE) estimator The MMSE and the mean-variance

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Michèle Sebag ; TP : Herilalaina Rakotoarison TAO, CNRS INRIA Université Paris-Sud Nov. 9h, 28 Credit for slides: Richard Sutton, Freek Stulp, Olivier Pietquin / 44 Introduction

More information

Bayesian hierarchical modelling

Bayesian hierarchical modelling Bayesian hierarchical modelling Matthew Schofield Department of Mathematics and Statistics, University of Otago Bayesian hierarchical modelling Slide 1 What is a statistical model? A statistical model:

More information

Learning Utility for Behavior Acquisition and Intention Inference of Other Agent

Learning Utility for Behavior Acquisition and Intention Inference of Other Agent Learning Utility for Behavior Acquisition and Intention Inference of Other Agent Yasutake Takahashi, Teruyasu Kawamata, and Minoru Asada* Dept. of Adaptive Machine Systems, Graduate School of Engineering,

More information

Information Systems Mini-Monograph

Information Systems Mini-Monograph Information Systems Mini-Monograph Interpreting Posterior Relative Risk Estimates in Disease-Mapping Studies Sylvia Richardson, Andrew Thomson, Nicky Best, and Paul Elliott Small Area Health Statistics

More information

Bayesian and Frequentist Approaches

Bayesian and Frequentist Approaches Bayesian and Frequentist Approaches G. Jogesh Babu Penn State University http://sites.stat.psu.edu/ babu http://astrostatistics.psu.edu All models are wrong But some are useful George E. P. Box (son-in-law

More information

Robust Optimization accounting for Uncertainties

Robust Optimization accounting for Uncertainties Robust Optimization accounting for Uncertainties Thomas Bortfeld Massachusetts General Hospital, Boston tbortfeld@mgh.harvard.edu Supported by: RaySearch Philips Medical Systems Outline 1. Optimality and

More information

Appendix Part A: Additional results supporting analysis appearing in the main article and path diagrams

Appendix Part A: Additional results supporting analysis appearing in the main article and path diagrams Supplementary materials for the article Koukounari, A., Copas, A., Pickles, A. A latent variable modelling approach for the pooled analysis of individual participant data on the association between depression

More information

Advanced IPD meta-analysis methods for observational studies

Advanced IPD meta-analysis methods for observational studies Advanced IPD meta-analysis methods for observational studies Simon Thompson University of Cambridge, UK Part 4 IBC Victoria, July 2016 1 Outline of talk Usual measures of association (e.g. hazard ratios)

More information

Motivation: Attention: Focusing on specific parts of the input. Inspired by neuroscience.

Motivation: Attention: Focusing on specific parts of the input. Inspired by neuroscience. Outline: Motivation. What s the attention mechanism? Soft attention vs. Hard attention. Attention in Machine translation. Attention in Image captioning. State-of-the-art. 1 Motivation: Attention: Focusing

More information

How do we combine two treatment arm trials with multiple arms trials in IPD metaanalysis? An Illustration with College Drinking Interventions

How do we combine two treatment arm trials with multiple arms trials in IPD metaanalysis? An Illustration with College Drinking Interventions 1/29 How do we combine two treatment arm trials with multiple arms trials in IPD metaanalysis? An Illustration with College Drinking Interventions David Huh, PhD 1, Eun-Young Mun, PhD 2, & David C. Atkins,

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 Motivation and Goals The increasing availability and decreasing cost of high-throughput (HT) technologies coupled with the availability of computational tools and data form a

More information

Lecture 10: Learning Optimal Personalized Treatment Rules Under Risk Constraint

Lecture 10: Learning Optimal Personalized Treatment Rules Under Risk Constraint Lecture 10: Learning Optimal Personalized Treatment Rules Under Risk Constraint Introduction Consider Both Efficacy and Safety Outcomes Clinician: Complete picture of treatment decision making involves

More information

Introduction to Design and Analysis of SMARTs

Introduction to Design and Analysis of SMARTs Introduction to Design and Analysis of SMARTs Michael R. Kosorok September 2013 Outline What are SMARTs and Why Do We Care? Necessary Non-Standard Analytical Tools Some Illustrative Examples Overview of

More information

WRITTEN PRELIMINARY Ph.D. EXAMINATION. Department of Applied Economics. January 17, Consumer Behavior and Household Economics.

WRITTEN PRELIMINARY Ph.D. EXAMINATION. Department of Applied Economics. January 17, Consumer Behavior and Household Economics. WRITTEN PRELIMINARY Ph.D. EXAMINATION Department of Applied Economics January 17, 2012 Consumer Behavior and Household Economics Instructions Identify yourself by your code letter, not your name, on each

More information

Marcus Hutter Canberra, ACT, 0200, Australia

Marcus Hutter Canberra, ACT, 0200, Australia Marcus Hutter Canberra, ACT, 0200, Australia http://www.hutter1.net/ Australian National University Abstract The approaches to Artificial Intelligence (AI) in the last century may be labelled as (a) trying

More information

EXERCISE: HOW TO DO POWER CALCULATIONS IN OPTIMAL DESIGN SOFTWARE

EXERCISE: HOW TO DO POWER CALCULATIONS IN OPTIMAL DESIGN SOFTWARE ...... EXERCISE: HOW TO DO POWER CALCULATIONS IN OPTIMAL DESIGN SOFTWARE TABLE OF CONTENTS 73TKey Vocabulary37T... 1 73TIntroduction37T... 73TUsing the Optimal Design Software37T... 73TEstimating Sample

More information

Kelvin Chan Feb 10, 2015

Kelvin Chan Feb 10, 2015 Underestimation of Variance of Predicted Mean Health Utilities Derived from Multi- Attribute Utility Instruments: The Use of Multiple Imputation as a Potential Solution. Kelvin Chan Feb 10, 2015 Outline

More information

Linking Errors in Trend Estimation in Large-Scale Surveys: A Case Study

Linking Errors in Trend Estimation in Large-Scale Surveys: A Case Study Research Report Linking Errors in Trend Estimation in Large-Scale Surveys: A Case Study Xueli Xu Matthias von Davier April 2010 ETS RR-10-10 Listening. Learning. Leading. Linking Errors in Trend Estimation

More information

Games With Incomplete Information: Bayesian Nash Equilibrium

Games With Incomplete Information: Bayesian Nash Equilibrium Games With Incomplete Information: Bayesian Nash Equilibrium Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu June 29th, 2016 C. Hurtado (UIUC - Economics)

More information

Using Causal Inference to Estimate What-if Outcomes for Targeting Treatments

Using Causal Inference to Estimate What-if Outcomes for Targeting Treatments Using Causal Inference to Estimate What-if Outcomes for Targeting Treatments Qing Liu 1 Katharine Henry 1 Yanbo Xu 1 Suchi Saria 1,2 1 Department of Computer Science 2 Department of Applied Mathematics

More information

Lecture II: Difference in Difference. Causality is difficult to Show from cross

Lecture II: Difference in Difference. Causality is difficult to Show from cross Review Lecture II: Regression Discontinuity and Difference in Difference From Lecture I Causality is difficult to Show from cross sectional observational studies What caused what? X caused Y, Y caused

More information

Meta-analysis of few small studies in small populations and rare diseases

Meta-analysis of few small studies in small populations and rare diseases Meta-analysis of few small studies in small populations and rare diseases Christian Röver 1, Beat Neuenschwander 2, Simon Wandel 2, Tim Friede 1 1 Department of Medical Statistics, University Medical Center

More information

Design of a Community Randomized HIV Prevention Trial in Botswana

Design of a Community Randomized HIV Prevention Trial in Botswana Design of a Community Randomized HIV Prevention Trial in Botswana Rui Wang, Ph.D. Department of Population Medicine Harvard Medical School and Harvard Pilgrim HealthCare Institute November 3rd, 2016 CRT:

More information

SUPPLEMENTARY MATERIAL. Impact of Vaccination on 14 High-Risk HPV type infections: A Mathematical Modelling Approach

SUPPLEMENTARY MATERIAL. Impact of Vaccination on 14 High-Risk HPV type infections: A Mathematical Modelling Approach SUPPLEMENTARY MATERIAL Impact of Vaccination on 14 High-Risk HPV type infections: A Mathematical Modelling Approach Simopekka Vänskä, Kari Auranen, Tuija Leino, Heini Salo, Pekka Nieminen, Terhi Kilpi,

More information

Spatio-temporal modeling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique

Spatio-temporal modeling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique Spatio-temporal modeling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique Katie Colborn, PhD Department of Biostatistics and Informatics University of Colorado

More information

Bayesian Dose Escalation Study Design with Consideration of Late Onset Toxicity. Li Liu, Glen Laird, Lei Gao Biostatistics Sanofi

Bayesian Dose Escalation Study Design with Consideration of Late Onset Toxicity. Li Liu, Glen Laird, Lei Gao Biostatistics Sanofi Bayesian Dose Escalation Study Design with Consideration of Late Onset Toxicity Li Liu, Glen Laird, Lei Gao Biostatistics Sanofi 1 Outline Introduction Methods EWOC EWOC-PH Modifications to account for

More information

Method Comparison for Interrater Reliability of an Image Processing Technique in Epilepsy Subjects

Method Comparison for Interrater Reliability of an Image Processing Technique in Epilepsy Subjects 22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 mssanz.org.au/modsim2017 Method Comparison for Interrater Reliability of an Image Processing Technique

More information

arxiv: v3 [stat.ap] 17 Apr 2018

arxiv: v3 [stat.ap] 17 Apr 2018 Biometrical Journal 52 (2017) 61, zzz zzz / DOI: 10.1002/bimj.200100000 A Nonparametric Bayesian Basket Trial Design arxiv:1612.02705v3 [stat.ap] 17 Apr 2018 Yanxun Xu,1, Peter Müller 2, Apostolia M Tsimberidou

More information

Using mixture priors for robust inference: application in Bayesian dose escalation trials

Using mixture priors for robust inference: application in Bayesian dose escalation trials Using mixture priors for robust inference: application in Bayesian dose escalation trials Astrid Jullion, Beat Neuenschwander, Daniel Lorand BAYES2014, London, 11 June 2014 Agenda Dose escalation in oncology

More information

Objectives. Quantifying the quality of hypothesis tests. Type I and II errors. Power of a test. Cautions about significance tests

Objectives. Quantifying the quality of hypothesis tests. Type I and II errors. Power of a test. Cautions about significance tests Objectives Quantifying the quality of hypothesis tests Type I and II errors Power of a test Cautions about significance tests Designing Experiments based on power Evaluating a testing procedure The testing

More information

Practical Bayesian Optimization of Machine Learning Algorithms. Jasper Snoek, Ryan Adams, Hugo LaRochelle NIPS 2012

Practical Bayesian Optimization of Machine Learning Algorithms. Jasper Snoek, Ryan Adams, Hugo LaRochelle NIPS 2012 Practical Bayesian Optimization of Machine Learning Algorithms Jasper Snoek, Ryan Adams, Hugo LaRochelle NIPS 2012 ... (Gaussian Processes) are inadequate for doing speech and vision. I still think they're

More information

Detection of Unknown Confounders. by Bayesian Confirmatory Factor Analysis

Detection of Unknown Confounders. by Bayesian Confirmatory Factor Analysis Advanced Studies in Medical Sciences, Vol. 1, 2013, no. 3, 143-156 HIKARI Ltd, www.m-hikari.com Detection of Unknown Confounders by Bayesian Confirmatory Factor Analysis Emil Kupek Department of Public

More information

Analysis A step in the research process that involves describing and then making inferences based on a set of data.

Analysis A step in the research process that involves describing and then making inferences based on a set of data. 1 Appendix 1:. Definitions of important terms. Additionality The difference between the value of an outcome after the implementation of a policy, and its value in a counterfactual scenario in which the

More information

Analysis methods for improved external validity

Analysis methods for improved external validity Analysis methods for improved external validity Elizabeth Stuart Johns Hopkins Bloomberg School of Public Health Department of Mental Health Department of Biostatistics www.biostat.jhsph.edu/ estuart estuart@jhsph.edu

More information

An application of a pattern-mixture model with multiple imputation for the analysis of longitudinal trials with protocol deviations

An application of a pattern-mixture model with multiple imputation for the analysis of longitudinal trials with protocol deviations Iddrisu and Gumedze BMC Medical Research Methodology (2019) 19:10 https://doi.org/10.1186/s12874-018-0639-y RESEARCH ARTICLE Open Access An application of a pattern-mixture model with multiple imputation

More information

UNIVERSITY OF CALIFORNIA SANTA CRUZ A STOCHASTIC DYNAMIC MODEL OF THE BEHAVIORAL ECOLOGY OF SOCIAL PLAY

UNIVERSITY OF CALIFORNIA SANTA CRUZ A STOCHASTIC DYNAMIC MODEL OF THE BEHAVIORAL ECOLOGY OF SOCIAL PLAY . UNIVERSITY OF CALIFORNIA SANTA CRUZ A STOCHASTIC DYNAMIC MODEL OF THE BEHAVIORAL ECOLOGY OF SOCIAL PLAY A dissertation submitted in partial satisfaction of the requirements for the degree of BACHELOR

More information

Summary Report for HIV Random Clinical Trial Conducted in

Summary Report for HIV Random Clinical Trial Conducted in Summary Report for HIV Random Clinical Trial Conducted in 9-2014 H.T. Banks and Shuhua Hu Center for Research in Scientific Computation North Carolina State University Raleigh, NC 27695-8212 USA Eric Rosenberg

More information

Designing a Bayesian randomised controlled trial in osteosarcoma. How to incorporate historical data?

Designing a Bayesian randomised controlled trial in osteosarcoma. How to incorporate historical data? Designing a Bayesian randomised controlled trial in osteosarcoma: How to incorporate historical data? C. Brard, L.V Hampson, M-C Le Deley, G. Le Teuff SCT - Montreal, May 18th 2016 Brard et al. Designing

More information

Protocol to Patient (P2P)

Protocol to Patient (P2P) Protocol to Patient (P2P) Ghulam Warsi 1, Kert Viele 2, Lebedinsky Claudia 1,, Parasuraman Sudha 1, Eric Slosberg 1, Barinder Kang 1, August Salvado 1, Lening Zhang 1, Donald A. Berry 2 1 Novartis Pharmaceuticals

More information

Using Bayesian Networks to Analyze Expression Data. Xu Siwei, s Muhammad Ali Faisal, s Tejal Joshi, s

Using Bayesian Networks to Analyze Expression Data. Xu Siwei, s Muhammad Ali Faisal, s Tejal Joshi, s Using Bayesian Networks to Analyze Expression Data Xu Siwei, s0789023 Muhammad Ali Faisal, s0677834 Tejal Joshi, s0677858 Outline Introduction Bayesian Networks Equivalence Classes Applying to Expression

More information

Bayesian Methods in Regulatory Science

Bayesian Methods in Regulatory Science Bayesian Methods in Regulatory Science Gary L. Rosner, Sc.D. Regulatory-Industry Statistics Workshop Washington, D.C. 13 September 2018 What is Regulatory Science? US FDA Regulatory Science is the science

More information

Bayesian Prediction Tree Models

Bayesian Prediction Tree Models Bayesian Prediction Tree Models Statistical Prediction Tree Modelling for Clinico-Genomics Clinical gene expression data - expression signatures, profiling Tree models for predictive sub-typing Combining

More information

A Drift Diffusion Model of Proactive and Reactive Control in a Context-Dependent Two-Alternative Forced Choice Task

A Drift Diffusion Model of Proactive and Reactive Control in a Context-Dependent Two-Alternative Forced Choice Task A Drift Diffusion Model of Proactive and Reactive Control in a Context-Dependent Two-Alternative Forced Choice Task Olga Lositsky lositsky@princeton.edu Robert C. Wilson Department of Psychology University

More information

Latest developments in WHO estimates of TB disease burden

Latest developments in WHO estimates of TB disease burden Latest developments in WHO estimates of TB disease burden WHO Global Task Force on TB Impact Measurement meeting Glion, 1-4 May 2018 Philippe Glaziou, Katherine Floyd 1 Contents Introduction 3 1. Recommendations

More information

Handling Partial Preferences in the Belief AHP Method: Application to Life Cycle Assessment

Handling Partial Preferences in the Belief AHP Method: Application to Life Cycle Assessment Handling Partial Preferences in the Belief AHP Method: Application to Life Cycle Assessment Amel Ennaceur 1, Zied Elouedi 1, and Eric Lefevre 2 1 University of Tunis, Institut Supérieur de Gestion de Tunis,

More information

An Introduction to Bayesian Statistics

An Introduction to Bayesian Statistics An Introduction to Bayesian Statistics Robert Weiss Department of Biostatistics UCLA Fielding School of Public Health robweiss@ucla.edu Sept 2015 Robert Weiss (UCLA) An Introduction to Bayesian Statistics

More information

Historical controls in clinical trials: the meta-analytic predictive approach applied to over-dispersed count data

Historical controls in clinical trials: the meta-analytic predictive approach applied to over-dispersed count data Historical controls in clinical trials: the meta-analytic predictive approach applied to over-dispersed count data Sandro Gsteiger, Beat Neuenschwander, and Heinz Schmidli Novartis Pharma AG Bayes Pharma,

More information

Bayesian Confidence Intervals for Means and Variances of Lognormal and Bivariate Lognormal Distributions

Bayesian Confidence Intervals for Means and Variances of Lognormal and Bivariate Lognormal Distributions Bayesian Confidence Intervals for Means and Variances of Lognormal and Bivariate Lognormal Distributions J. Harvey a,b, & A.J. van der Merwe b a Centre for Statistical Consultation Department of Statistics

More information

Cancer survivorship and labor market attachments: Evidence from MEPS data

Cancer survivorship and labor market attachments: Evidence from MEPS data Cancer survivorship and labor market attachments: Evidence from 2008-2014 MEPS data University of Memphis, Department of Economics January 7, 2018 Presentation outline Motivation and previous literature

More information