Plant regeneration through isolated microspore culture in recalcitrant durum wheat genotypes

Size: px
Start display at page:

Download "Plant regeneration through isolated microspore culture in recalcitrant durum wheat genotypes"

Transcription

1 Indian Journal of Biotechnology Vol 16, January 2017, pp Plant regeneration through isolated microspore culture in recalcitrant durum wheat genotypes Yasemin Coskun* and Cigdem Savaskan Department of Biology, Faculty of Arts and Sciences, Suleyman Demirel University, Isparta , Turkey Received 10 June 2015; revised 28 December 2015; accepted 2 January 2016 In the present study, a protocol of isolated microspore culture was optimized to regenerate green plants in Turkish durum wheat genotypes (Kiziltan-91, C-1252, Mirzabey 2000 & Kunduru-1149). The bread wheat cultivar (Gun-91) was used as control because of its high androgenic response in the microspore culture. First significant step was to treat the anthers with four pretreatments (cold, cold with mannitol, cold with sorbitol & mannitol at room temperature). maceration was used as an isolation method and microspores were plated on induction culture medium supplemented with arabinogalactan-proteins (AGP) and ovary coculture. When the embryos reached the size of 2 mm, they were transferred to the differentiation medium having a combination of phenylacetic acid (PAA) and gibberellic acid (GA 3 ). The best results were obtained with the pretreatment of mannitol (+4 C) for 7 d on providing embryos and regenerated green plants in four durum wheat genotypes. The cultivar Kiziltan-91 gave the best response for embryo (>2 mm) formation (20.63%) and cultivar Kunduru-1149 for green and total plant regeneration (6.25% and 18.75%). These results indicated that the present protocol performed well to increase the embryo formation and green plant regeneration in the recalcitrant durum wheat genotypes studied. Keywords: Durum wheat, genotype, mannitol, microspore culture, pretreatment. Introduction Microspore culture is one of the most powerful methods to produce haploids or doubled haploids (DH) in cereals by androgenesis. DH technology generates homozygous lines very fast, which can be used to obtain a product with desired traits 1. However, significant complications still occur in providing green plant regeneration in durum wheat (Triticum durum Desf.) genotypes. Two important problems of microspore culture of durum wheat are needed to be focused before it can be used for breeding programmes. Variation in the behavior of genotypes in microspore culture is the first and regenerated high proportion of albino plantlets is the second problem 2. The most important step to obtain good regeneration of embryos through microspore culture is to trigger the microspores to a sporophytic pathway. Various pretreatments are used to induce stress in cereal species, which switch microspores from gametophytic programme to the *Author for correspondence: Tel: yascoskun@gmail.com sporophytic pathway 3. In bread wheat (T. aestivum L.), pretreatment of spikes with cold or heat shock, chemicals, carbohydrate starvation, water stress, radiation etc acts as an external stimulus to trigger or enhance microspore embryogenesis. These factors may act alone or in combination in order to achieve an optimal conversion of microspores to embryogenic cells 4,5. To obtain a worldwide method of microspore culture for all wheat genotypes is an impossible task because of the differences in embryogenic response amongst themselves. General protocol of isolated microspore culture includes the following basic steps: growing of donor plants, anther collection, pretreatments, isolation of microspores, culture medium, induction of microspores to regenerate embryos 1. In contrast to hexaploid bread wheat, few studies on microspore embryogenesis have been reported in tetraploid durum wheat. Because of its recalcitrant nature to microspore culture, most of the cultivars did not regenerate green plants with all procedures 6. These problems have to be resolved in order to use durum wheat cultivars in microspore culture technique and applications in wheat biotechnology.

2 120 INDIAN J BIOTECHNOL, JANUARY 2017 In the present study, four different Turkish durum wheat genotypes (tetraploid-aabb, 2n=4 =28) have been investigated to find out an efficient protocol for embryo production and green plant regeneration through microspore culture technique. Materials and Methods Plant Material Four durum wheat cultivars, viz., Kiziltan-91, C-1252, Mirzabey 2000 and Kunduru-1149, were used as plant material. Bread wheat (hexaploid- AABBDD) cv. Gun-91 (2n=6 =42) was used as control because of its high androgenic response in microspore culture. Seeds were vernalized for 1 month at 4 C and then were placed in pots with a mixture of peat and sand (3:1). Each pot contained two to three plants after the germination of seeds. Plants were kept in a growth room at 24±2 C temperature during the day and 18±2 C during the night, with a 16 h photoperiod, 51-54% humidity and 12,000 lux light intensity. Pretreatment Spikes were harvested from the pot grown plants when the majority of microspores were in the mid to late uninucleate stage. Microspores were stained in acetocarmine to see the stage of microspores based on the location of the nucleus relative to the microspore pore. Collected tillers were stored in water at 4 C up to 4 d, until sufficient spikes (5-10) were collected. For sterilization, spikes were removed from their sheaths in a laminar flow bench and sprayed with 70% ethanol. Spikes were plated on four different pre-treatments (Table 1): (i) cold (+4 C), (ii) 0.4 M Table 1 Pretreatment conditions used for wheat genotypes No. Material Pretreatment Conditions (i) Spike 0.5 ml sterile water +4 C, 7 d, dark (ii) Spike partially immersed +4 C, 7 d, dark (iii) Spike 0.4 M sorbitol partially immersed 0.4 M sorbitol +4 C, 7 d, dark (iv) Spike partially immersed 5 d, dark mannitol (+4 C), (iii) 0.4 M sorbitol (+4 C) for 7 d, and (iv) (room temperature) for 5 d in the dark. s from flowers on the central part of each spike of pretreatment (i), (ii) and (iv) were then placed in solution and stored for 1 d at room temperature (~24 C) in the dark. Only the anthers of pretreatment (iii) was placed in 0.4 M sorbitol solution and stored under the same conditions. Isolation of Microspores After pretreatment, the microspores already shed into mannitol solution were transferred to 10 ml centrifuge tube, while the microspores still remaining in anthers were isolated in 0.4 M mannitol by filtration and added to the centrifuge tube. For isolation, the anthers in mannitol solution were placed in Millipore filter system with 100 µm nylon mesh and squeezed with a glass rod. The solution on the filter paper was collected under the filter system by a vacuum pump. The microspores both shed and isolated in mannitol (0.4 M) were then centrifuged at 3500 rpm for 5 min and filtered through a 41 µm nylon mesh. Thus, the anther wall debris was completely discarded. After 2-3 washes in by centrifugation for 5 min at 3500 rpm, collected microspores were counted under a microscope with a hemacytometer. For culture, microspore density was adjusted to approx 50, ,000 microspores per plate. A similar procedure was applied in case of pretreatment (iii). Culture Media The MMS4 7, a modified MS medium 8, was used as induction medium. The medium differences to MS include: lower inorganic nitrogen (300 mg/l NH 4 NO 3 instead of 1650 mg/l), higher organic nitrogen (975 mg/l glutamine instead of 146 mg/l), high myoinositol (300 mg/l instead of 100 mg/l), 90 g/l maltose in place of 30 g/l sucrose, 2 mg/l PAA instead of IAA, phytagel in place of agarose, and the inclusion of 10 mg/l arabinogalactan-protein (AGP) (Sigma L 0650). Microspores cultured as drops on solidified medium with ovaries in mm 2 Petri dish. Twenty ovaries, which were removed from freshly harvested spikes, or stored at 4 C for up to 1 wk, were used for co-culture 9. Plates were sealed with parafilm and incubated at 28 C in the dark for d. Plant Regeneration After embryos reached the size of 2 mm, they were transferred to MMS5 7 differentiation medium for

3 COSKUN & SAVASKAN: PLANT REGENERATION THROUGH MICROSPORE CULTURE IN DURUM WHEAT wks at 25 C with 16 h light period. The MMS5 medium was similar to MMS4 but contained lower maltose (30 g/l instead of 90 g/l), 0.2 mg/l PAA, 0.5 mg/l GA 3, 1 g/l casein, 690 mg/l proline and higher CuSO 4 (2.5 mg/l instead of mg/l). When shoots were developed into an appropriate size, plantlets were transferred to MS medium with 30 g/l sucrose and omitted hormones and kept at 25 C with 16 h light. Statistical Analysis All the experiments were conducted in complete randomized designs (CRD) with at least three and more replications for each genotype. The frequency of divided microspores was calculated with the number that had divided by the d 10 in induction medium to the number of non-divided microspores by using a hemacytometer. Embryos were counted at d 30 in induction medium for all the experiments and categorized in two groups: large (>2 mm) and small (<2 mm, mm). Only the large embryos were transferred to differentiation medium (MMS5). The numbers of divided microspores, embryo-like structures (ELS), embryo (small & large), green and albino plants and the total number of of plant regeneration were calculated for each pretreatment and genotype. Data were statistically analyzed using ANOVA with SPSS software program and means were compared with Duncan s Multiple Range Test (Duncan s Test). percentage of large (>2 mm) embryo formation. For pretreatments and interaction of cultivar PRT, all the parameters of microspore culture were also affected significantly. Effect of Pretreatments on Dividing Microspores and ELS It is clear from the studies that both mannitol (+4 C) and sorbitol (+4 C) pretreatments induced embryogenesis from isolated microspores of durum wheat. However, effect of mannitol (+4 C) was significantly improved in dividing microspores compared to sorbitol (+4 C). And also with mannitol (+4 C) pretreatment, microspores frequently formed a star-like or fibrillar structure, which is the deciding path that shows that microspores are switching to a sporophytic pathway (Fig. 1). The response difference between the pretreatments was also found significant (Table 3). The highest microspore dividing frequencies was observed with the pretreatment (+4 C) in all durum wheat genotypes and, as expected, it was the highest in bread wheat Gun-91 (64.28%). Among durum wheat genotypes, C-1252 showed the best result with a frequency of 56.25%. Earlier studies have shown that starvation and heat shock pretreatments induced the formation of embryos at high frequency in microspore cultures of Results and Discussion In four pretreatments (PRT) tested with five wheat cultivars, ANOVA showed that the number of divided microspores, embryo-like structures (ELS), embryos (small & large), green and albino plants, and the total of plant regeneration were strongly affected by cultivars and pretreatments (Table 2). Cultivars had a significant effect on dividing microspore percentage, while showed a lower influence on the Table 2 ANOVA of pretreatment effects on microspore culture parameters in wheat genotypes Source df F-value Dividing microspores Embryo-like structures (ELS) Fig. 1 Microspores with two different embryogenic stages ('star-like' structure) after 7 d of pretreatment. Embryo formation Small (<2 mm) Large (>2 mm) Green Plant regeneration Albino Cultivar ** ** ** 8.917* 6.396** ** ** Pretreatment ** ** ** ** ** ** ** (PRT) Cultivar PRT ** ** ** ** ** ** ** Significant at **P<0.01, * P<0.05 Total

4 122 INDIAN J BIOTECHNOL, JANUARY 2017 Table 3 Mean effects of different pretreatments on isolated microspore culture response of wheat genotypes** Cultivar Pretreatments* Dividing microspores Embryo-like structures Embryo formation Small (<2 mm) Large (>2 mm) Green Plant regeneration Albino Kiziltan-91 I ij bc gh i 0.00 d 9.52 e-h 9.52 e-h II d d-g bc b 5.77 b 9.61 e-h b III e gh d-f cd 0.00 d 7.89 h 7.89 h IV o kl ij i 0.00 d 8.00 gh 8.00 gh C-1252 I gh d-f jk g-i 0.00 d 3.70 i 3.70 i II c i bc c 4.16 c d-g bc III fg b c-e e-g 0.00 d de de IV jk c-e hi hi 0.00 d 9.09 e-h 9.09 e-h Mirzabey 2000 I hi e-h k i 0.00 d 4.00 i 4.00 i II f j b-d c-e 0.00 d d-g d-g III gh hi e-g d-g 0.00 d 9.37 e-h 9.37 e-h IV mn f-h d-f fg 0.00 d 5.00 i 5.00 i Total Kunduru-1149 I lm hi jk i 0.00 d d-f d-f II hi i c-e d-g 6.25 ab cd a III kl jk f-h e-g 0.00 d d-f d-f IV n l jk 6.00 j 0.00 d 8.33 f-h 8.33 f-h Gun-91 I b a a c-f 4.00 c a a II a cd a a 7.02 a bc a III d d-g b d-g 0.00 d b b IV e d-g b-d f-h 0.00 d cd cd *Pretreatments: (i) Cold (+4 ), (ii) 0.4 M Mannitol (+4 C), (iii) 0.4 M Sorbitol (+4 C), & (iv) 0.4 M Mannitol (room temperature) **Means in a column followed by same letter are not significantly different at P<0.01 level by ANOVA test based on three replications wheat 10. Touraev et al 11 reported that using stress pretreatment on anthers at 33 C for several days produced embryos in microspore cultures with starlike structures and generated embryos following repeated symmetric divisions. In a cytological study comparing the effects of different pretreatments, mostly symmetric first divisions were observed during mannitol pretreatment, while only asymmetric first divisions were seen during cold pretreatment 4,12,13. In our study, we observed microspores representing a centralized nucleus surrounded by star-like cytoplasmic strands radiating towards cell wall with mannitol (+4 C) as well as with sorbitol (+4 C) pretreatments. The microspores had a vacuole fragmented by cytoplasmic strands with the nucleus positioned close to the microspore wall. When the two pretreatment applications were compared, mannitol treated microspores had the highest rate of conversion into embryos, while sorbitol treated microspores showed intermediate response. The frequency of ELS in different pretreatments varied % depending on the wheat genotypes (Table 3). Among the four pretreatments used in the study, cold (+4 C) pretreatment without polyols was more responsive to ELS and it was the highest in bread wheat Gun-91 (41.00%). Besides, sorbitol (+4 C) pretreatment resulted in the highest ELS frequency (37.77%) in durum wheat C Kiziltan-91 also yielded good results in cold (+4 C) pretreatment with a frequency of 36.00%. Mirzabey 2000 and Kunduru-1149 produced higher ELS in cold (+4 C) pretreatment. Pretreatment factors, temperature shock and starvation (mannitol) seemed to act in synergy in embryogenic induction 4. Using only temperature shock (+4 C) produced lower embryos and higher ELS.

5 COSKUN & SAVASKAN: PLANT REGENERATION THROUGH MICROSPORE CULTURE IN DURUM WHEAT 123 Effect of Pretreatments on Embryo Formation and Plant Regeneration Of four different pretreatments employed, mannitol (+4 C) significantly improved the formation of both large and small embryos in comparison to other pretreatments (Table 3). The number of small embryos produced in the pretreatment of mannitol (+4 C) was the highest in bread cultivar Gun-91 with a frequency of 35.11%. The formation of small embryo in Gun-91 was also higher in cold (+4 C) pretreatment. Among durum wheat genotypes, C-1252 and Kiziltan-91 yielded the best results for small embryos with a frequency of and 25.00%, respectively. Regarding large embryos, Gun-91 produced the highest scores with a percentage of 25.33% in mannitol (+4 C) pretreatment. In durum wheat genotypes, Kiziltan-91 (Fig. 2) also had the second best response with a percentage of 20.63%. It is important to note that, besides mannitol (+4 C), sorbitol (+4 C) pretreatment also yielded a good performance compared to other pretreatments in all durum wheat genotypes. This study is the first report indicating the effects of sorbitol pretreatment on microspore embryogenesis in durum wheat cultivars. Earlier studies have also reported the microspore embryogenesis with mannitol pretreatment in bread wheat and durum wheat 3. Several studies have pointed out that mannitol pretreatment gave the best results of microspore culture in cereals 7,17. Hu and Kasha 12 indicated that anther pretreatment with along with cold for 4 d substantially delayed the mitotic division of the nucleus, keeping all microspores at the same stage during pretreatment and also resulted in the formation of large numbers of embryos 3 in wheat. Our results showed that mannitol (+4 C) pretreatment had the highest microspore embryogenesis recovery potential across durum wheat cultivars. Moreover, the sorbitol (+4 C) pretreatment of microspores also yielded good results in embryogenesis of wheat. Overall, the highest regeneration of plantlets in microspore culture was observed in the pretreatment of mannitol (+4 C) with regard to all cultivars, both bread and durum wheat (Table 3). Gun-91 produced the highest green plant regeneration with a frequency of 7.02% as expected. Besides, Kunduru-1149 yielded the best results with a frequency of 6.25% among durum wheat genotypes (Fig. 3). However, no green plant regeneration was observed in genotype Mirzabey 2000 with all the pretreatments employed. In the pretreatment of mannitol (+4 C), the highest percentages of total plant regeneration frequency ranged % corresponding to Mirzabey 2000 and Gun-91, respectively. For the same pretreatment, in durum wheat genotypes, the highest total plant regeneration was observed in Kunduru-1149 with a frequency of 18.75%. Kiziltan-91 also yielded good results for green plant regeneration with high quality (Fig. 4). The highest regeneration Fig. 3 (a-b) Plant regeneration of durum wheat genotype Kunduru-1149: (a) Albino, & (b) Green plant Fig. 2 (a-d) Mature embryoids of different pretreatments in durum wheat genotype Kiziltan-91: (a) Cold pretreatment (+4 C), (b) 0.4 M Mannitol (+4 C), (c) 0.4 M Sorbitol (+4 C), & (d) 0.4 M Mannitol (room temperature). Fig. 4 (a-b) Plant regeneration of durum wheat genotype Kiziltan-91: (a) Albino, & (b) Green plant

6 124 INDIAN J BIOTECHNOL, JANUARY 2017 frequency of albino plants was observed in Gun-91 in all the pretreatments. It is also the only genotype where green plants were regenerated in cold (+4 C) pretreatment. Mannitol and sorbitol are isomers and have the same chemical formula and molecular weight, but differ in chemical properties and physical structure. Both mannitol and sorbitol can be used in further studies since their effects on albinism were similar with regard to the regeneration of plants. Moreover, owing to starch accumulation, it is likely that sorbitol is partly metabolized by microspores during pretreatment, which is consistent with its use as an alternative source of carbohydrates in culture media 18,19. In our study, sorbitol yielded the second best results after mannitol in dividing microspore count, embryo formation (>2 mm) and total plant regeneration. In the present study, it is evident from the results that genotype effect played an important role in the regeneration rate of green plants in microspore culture of durum wheat. Shariatpanahi et al 20 reported that the number of embryos in culture medium, total number of regenerated plants and frequency of green plants showed a significant difference between the genotypes. Liu et al 21 indicated that all tested genotypes responded to their method and formed green plants by microspore embryogenesis but genotypic differences were observed among applications with 2-HNA and stress pretreatments for regeneration to green plants. Of the four durum wheat cultivars tested in our study, Kunduru-1149 was the most responsive to the microspore culture. Despite having the lowest dividing microspore frequency, its regeneration capability was the highest among the four durum wheat tested with different pretreatments. Moieni and Sarrafi 22 reported that studies with bread wheat showed important genetic differences and relatively high heritability for androgenetic traits. Several studies have shown that the presence of the D genome facilitated a high androgenic response in bread wheat (AABBDD), while its absence was the cause for low induction of embryogenesis and green plant regeneration in durum wheat (AABB) 23,24. However, Zheng 4 observed a low heritability for albino plant regeneration, indicating that it may be possible to reduce albinos by controlling the culture conditions. Also in our study, Kunduru-1149 produced higher numbers of green plant regeneration with mannitol (+4 C) compared to other pretreatments. However, there was no green plant regeneration in all the genotypes with sorbitol (+4 C) and mannitol (room temperature) pretreatments. Improving an efficient microspore culture technique for all the wheat genotypes globally requires a good artificial manipulation of microspores and success in regeneration of large number of green plants. Due to genetic differences between cultures, it s very hard to apply the same method to all genotypes. The first critical factor in artificial manipulation involves treatment(s) that switche(s) microspores from naturally determined pollen formation to an alternative development leading to embryogenesis 4. The present study clearly shows that the pretreatment of mannitol (+4 C) was the best for improving microspore culture for green plant regeneration and Kunduru-1149 was the best cultivar in response to the culture technique as compared to the other Turkish durum wheat cultivars studied. Acknowledgement The present research was supported by The Scientific Research Projects of Suleyman Demirel University in Turkey (Project No: 1655-D-08). References 1 Ferrie A M R & Caswell K L, Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production, Plant Cell Tissue Organ Cult, 104 (2011) Cistue L, Romagosa I, Battle F & Echavarri B, Improvements in the production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture, Plant Cell Rep, 28 (2009) Labbani Z, De Buyser J & Picard E, Effect of mannitol pretreatment to improve green plant regeneration on isolated microspore culture in Triticum turgidum ssp. durum cv. Jennah Khetifa, Plant Breed, 126 (2007) Zheng M Y, Microspore culture in wheat (Triticum aestivum) Doubled haploid production via induced embryogenesis, Plant Cell Tissue Organ Cult, 73 (2003) Shim Y S, Kasha K J, Simion E & Letarte J, The relationship between induction of embryogenesis and chromosome doubling in microspore cultures, Protoplasma, 228 (2006) Cistue L, Soriano M, Castillo A M, Valles M P, Sanz J M et al, Production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture, Plant Cell Rep, 25 (2006)

7 COSKUN & SAVASKAN: PLANT REGENERATION THROUGH MICROSPORE CULTURE IN DURUM WHEAT Kasha K J, Simion E, Miner M, Letarte J & Hu T C, Haploid wheat isolated microspore culture protocol, in Doubled haploid production in crop plants: A manual, edited by M Maluszynski, K J Kasha, B P Forster & I Szarejko (Springer, Netherlands) 2003, Murashige T & Skoog F, A revised medium for rapid growth and bioassays with tobacco tissue culture, Physiol Plant, 15 (1962) Hu T & Kasha K J, Improvement of isolated microspore culture of wheat (Triticum aestivum L.) through ovary coculture, Plant Cell Rep, 16 (1997) Silva T D, Microspore embryogenesis, in Embryogenesis, edited by K-I Sato (InTech) 2012, [Available from: e-embryogenesis] 11 Touraev A, Indrianto A, Wratschko I, Vicente O & Heberle- Bors E, Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature, Sex Plant Reprod, 9 (1996) Hu T & Kasha K J, A cytological study of pretreatments used to improve isolated microspore cultures of wheat (Triticum aestivum L.) cv. Chris, Genome, 42 (1999) Kasha K J, Simion E, Oro R, Yao Q A, Hu T C et al, An improved in vitro technique for isolated microspore culture of barley, Euphytica, 120 (2001) Letarte J, Simion E, Miner M & Kasha K J, Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture, Plant Cell Rep, 24 (2006) Soriano M, Cistue L & Castillo A M, Enhanced induction of microspore embryogenesis after n-butanol treatment in wheat (Triticum aestivum L.) anther culture, Plant Cell Rep, 27 (2008) Santra M, Ankrah N, Santra D K & Kidwell K K, An improved wheat microspore culture technique for the production of doubled haploid plants, Crop Sci, 52 (2012) Caredda S, Doncoeur C, Devaux P, Sangwan R S & Clement C, Plastid differentation during androgenesis in albino and non-albino producing cultivars of barley (Hordeum vulgare L.), Sex Plant Reprod, 13 (2000) Kadota M, Imizu K & Hirano T, Double-phase in vitro culture using sorbitol increases shoot proliferation and reduces hyperhydricity in Japanese pear, Sci Hortic, 89 (2001) Wojnarowiez G, Caredda S, Devaux P, Sangwan R & Clement C, Barley anther culture: Assessment of carbohydrate effects on embryo yield, green plant production and differential plastid development in relation with albinism, J Plant Physiol, 161 (2004) Shariatpanahi M E, Belogradova K, Hessamvaziri L, Heberle-Bors E & Touraev A, Efficient embryogenesis and regeneration in freshly isolated and cultured wheat (Triticum aestivum L.) microspores without stress pretreatment, Plant Cell Rep, 25 (2006) Liu W, Zheng M Y, Polle E A & Konzak C F, Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis, Crop Sci, 42 (2002) Moieni A & Sarrafi A, Genetic analysis for haploid regeneration responses of hexaploid wheat anther cultures, Plant Breed, 114 (1995) Ghaemi M, Sarrafi A & Alibert G, The effects of silver nitrate, colchicine, cupric sulfate and genotype on the production of embryoids from anthers of tetraploid wheat (Triticum turgidum), Plant Cell Tissue Organ Cult, 36 (1994) Cistue L & Kasha K J, Gametic embryogenesis in Triticum: A study of some critical factors in haploid (microspore) embryogenesis, in Somatic embryogenesis, vol 2 (Plant Cell Monograph), edited by A Mujib & J Samaj (Springer- Verlag, Berlin) 2006,

The effect of ovary-conditioned medium on microspore embryogenesis in common wheat (Triticum aestivum L.)

The effect of ovary-conditioned medium on microspore embryogenesis in common wheat (Triticum aestivum L.) Plant Cell Rep (2002) 20:802 807 DOI 10.1007/s00299-001-0411-2 CELL BIOLOGY AND MORPHOGENESIS M. Y. Zheng Y. Weng W. Liu C. F. Konzak The effect of ovary-conditioned medium on microspore embryogenesis

More information

Culture of freshly isolated wheat (Triticum aestivum L.) microspores treated with inducer chemicals

Culture of freshly isolated wheat (Triticum aestivum L.) microspores treated with inducer chemicals Plant Cell Rep (2001) 20:685 690 DOI 10.1007/s00299-001-0393-0 CELL BIOLOGY AND MORPHOGENESIS M. Y. Zheng W. Liu Y. Weng E. Polle C. F. Konzak Culture of freshly isolated wheat (Triticum aestivum L.) microspores

More information

Isolated microspore culture of wheat (Triticum aestivum L.) with Hungarian cultivars

Isolated microspore culture of wheat (Triticum aestivum L.) with Hungarian cultivars Volume 50(1-2):31-35, 2006 Acta Biologica Szegediensis http://www.sci.u-szeged.hu/abs ARTICLE Isolated microspore culture of wheat (Triticum aestivum L.) with Hungarian cultivars Csaba Lantos 1,2, Sándor

More information

PlantCell Reports. Microspore culture of Hordeum vulgate L.: the influence of density and osmolality

PlantCell Reports. Microspore culture of Hordeum vulgate L.: the influence of density and osmolality Plant Cell Reports (1993) 12:661-665 PlantCell Reports 9 Springer-Verlag 1993 Microspore culture of Hordeum vulgate L.: the influence of density and osmolality S. Hoekstra, M.H. van ijderveld, Heidekamp,

More information

Anther/Pollen culture

Anther/Pollen culture Anther/Pollen culture Method to produce haploid plants Spontaneous occurrence in low frequency Induction by physical and/or chemical treatment Chromosome elimination following interspecific hybridization

More information

Effects of p-chlorophenoxyisobutyric acid, arabinogalactan, and activated charcoal on microspore embryogenesis in kale

Effects of p-chlorophenoxyisobutyric acid, arabinogalactan, and activated charcoal on microspore embryogenesis in kale Effects of p-chlorophenoxyisobutyric acid, arabinogalactan, and activated charcoal on microspore embryogenesis in kale R.Q. Niu, Y. Zhang, Y. Tong, Z.Y. Liu, Y.H. Wang and H. Feng College of Horticulture,

More information

Tissue Culture Applications- Part I

Tissue Culture Applications- Part I Discipline: Botany Paper: Plant Biotechnology Lesson: Tissue Culture Applications- Part II Lesson Developer: Namrata Dhaka Department/College: Department of Genetics, University of Delhi South Campus 1

More information

EMBRYOGENIC RESPONSIBILITY OF SELECTED GENOTYPES OF BRASSICA CARINATA A. BRAUN TO MICROSPORE CULTURE

EMBRYOGENIC RESPONSIBILITY OF SELECTED GENOTYPES OF BRASSICA CARINATA A. BRAUN TO MICROSPORE CULTURE EMBRYOGENIC RESPONSIBILITY OF SELECTED GENOTYPES OF BRASSICA CARINATA A. BRAUN TO MICROSPORE CULTURE EYASU A., BECHYNĚ M., KLÍMA M., VYVADILOVÁ M. Abstract Microspore culture protocol has been modified

More information

The potential of double haploid cassava via irradiated pollen

The potential of double haploid cassava via irradiated pollen The potential of double haploid cassava via irradiated pollen Mary Buttibwa 1,2, Robert Kawuki 1, Arthur K. Tugume 2, Yona Baguma 1 1 NaCRRI, Namulonge, Uganda, 2 Makerere Unversity, Uganda World congress

More information

Investigation of the Effects of Temperature and Starvation Stresses on Microspore Embryogenesis in Two Tetraploid Roses (Rosa Hybrida L.

Investigation of the Effects of Temperature and Starvation Stresses on Microspore Embryogenesis in Two Tetraploid Roses (Rosa Hybrida L. Scientia Agriculturae www.pscipub.com/sa E-ISSN: 2310-953X / P-ISSN: 2311-0228 DOI: 10.15192/PSCP.SA.2016.14.2.220227 Sci. Agri. 14 (2), 2016: 220-227 PSCI Publications Investigation of the Effects of

More information

PROCEEDINGS OF THE FOURTH ACADEMIC SESSIONS 2007

PROCEEDINGS OF THE FOURTH ACADEMIC SESSIONS 2007 Development of a cost-effective basal medium for in-vitro propagation of Anthurium (Anthurium andreanum) as an alternative for Murashige and Skoog (MS) medium K M C Fernando and S Subasinghe Department

More information

Induction of microspore-derived embryos by anther culture in selected pepper genotypes

Induction of microspore-derived embryos by anther culture in selected pepper genotypes African Journal of Biotechnology Vol. 10(75), pp. 17116-17121, 28 November, 2011 Available online at http://www.academicjournals.org/ajb DOI: 10.5897/AJB11.2023 ISSN 1684 5315 2011 Academic Journals Full

More information

THE EFFECT OF CARBON SOURCES ON IN VITRO MICROTUBERIZATION OF POTATO (Solanum tuberosum L.)

THE EFFECT OF CARBON SOURCES ON IN VITRO MICROTUBERIZATION OF POTATO (Solanum tuberosum L.) Turkish Journal of Field Crops,, (): - THE EFFECT OF CARBON SOURCES ON IN VITRO MICROTUBERIZATION OF POTATO (Solanum tuberosum L.) Demet ALTINDAL * Tahsin KARADOĞAN Süleyman Demirel University, Faculty

More information

Prospects of Isolated Microspore Culture for Haploid Production in Anemone coronaria L.

Prospects of Isolated Microspore Culture for Haploid Production in Anemone coronaria L. Floriculture and Ornamental Biotechnology 01 Global Science Books Prospects of Isolated Microspore Culture for Haploid Production in Anemone coronaria L. Rosalia Paladines 1* Diandra Jurado 1 Tjitske Riksen-Bruinsma

More information

IGCSE BIOLOGY 0610 SCHEME OF WORK 1

IGCSE BIOLOGY 0610 SCHEME OF WORK 1 IGCSE BIOLOGY 0610 SCHEME OF WORK 1 UNIT 6: Reproduction in plants Recommended Prior Knowledge: A basic knowledge of cell structure will be helpful, but otherwise the Unit requires very little previous

More information

National Science Foundation Plant Genome Cereal Plant Transformation Workshop Albert Kausch University of Rhode Island

National Science Foundation Plant Genome Cereal Plant Transformation Workshop Albert Kausch University of Rhode Island National Science Foundation Plant Genome Cereal Plant Transformation Workshop Albert Kausch University of Rhode Island Maize Transformation NSF Plant Transformation Workshop Albert Kausch University of

More information

2.1 Reproduction At the end of this sequence of lessons I can:

2.1 Reproduction At the end of this sequence of lessons I can: 2.1 Reproduction 1. State that reproduction is the method of producing new offspring 2. State that sexual reproduction involves two parents 3. State that sexual reproduction leads to variation in offspring

More information

Agrobacterium-mediated Sorghum Transformation

Agrobacterium-mediated Sorghum Transformation Agrobacterium-mediated Sorghum Transformation Kimberly Nelson-Vasilchik, Joel Hague, and Albert Kausch The Plant Biotechnology Laboratory University of Rhode Island 530 Liberty Lane West Kingston RI 02892

More information

TITLE: Fast-Track Development of Potato Clones with Pure Amylopectin Starch Used in the Paper, Textile and Food Industries by Using Induced Mutation.

TITLE: Fast-Track Development of Potato Clones with Pure Amylopectin Starch Used in the Paper, Textile and Food Industries by Using Induced Mutation. AGRICULTURAL RESEARCH FOUNDATION FINAL REPORT FUNDING CYCLE 2014 2016 TITLE: Fast-Track Development of Potato Clones with Pure Amylopectin Starch Used in the Paper, Textile and Food Industries by Using

More information

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings Introduction It has been said that an oak is an acorn s way of making more acorns. In a Darwinian view of life, the fitness of an organism is measured only by its ability to replace itself with healthy,

More information

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings Introduction It has been said that an oak is an acorn s way of making more acorns. In a Darwinian view of life, the fitness of an organism is measured only by its ability to replace itself with healthy,

More information

Impact of genotype, age of tree and environmental temperature on androgenesis induction of Aesculus hippocastanum L.

Impact of genotype, age of tree and environmental temperature on androgenesis induction of Aesculus hippocastanum L. African Journal of Biotechnology Vol.9 (26), pp. 4042-4049, 28 June, 2010 Available online at http://www.academicjournals.org/ajb ISSN 1684 5315 2010 Academic Journals Full Length Research Paper Impact

More information

Meiosis I. Meiosis II. In each empty circle, write the number of chromosomes that would be found in the cell. (1)

Meiosis I. Meiosis II. In each empty circle, write the number of chromosomes that would be found in the cell. (1) 1. The diagram shows stages of meiosis in a human testis. Each circle represents a cell. 46 Meiosis I Meiosis II (a) In each empty circle, write the number of chromosomes that would be found in the cell.

More information

Chapter 38 Angiosperm Reproduction and Biotechnology

Chapter 38 Angiosperm Reproduction and Biotechnology Chapter 38 Angiosperm Reproduction and Biotechnology Concept 38.1 Pollination enables gametes to come together within a flower Diploid (2n) sporophytes produce spores by meiosis; these grow into haploid

More information

Bioscience Research Print ISSN: Online ISSN:

Bioscience Research Print ISSN: Online ISSN: Available online freely at www.isisn.org Bioscience Research Print ISSN: 1811-956 Online ISSN: 2218-3973 Journal by Innovative Scientific Information & Services Network RESEARCH ARTICLE BIOSCIENCE RESEARCH,

More information

EFFECT OF VERNALIZATION ON GRAIN FILL DURATION AND GRAIN WEIGHT IN SPRING WHEAT

EFFECT OF VERNALIZATION ON GRAIN FILL DURATION AND GRAIN WEIGHT IN SPRING WHEAT Pak. J. Bot., 43(1): 689-694, 011. EFFECT OF VERNALIZATION ON GRAIN FILL DURATION AND GRAIN WEIGHT IN SPRING WHEAT MUHAMMAD IQBAL 1*, MUHAMMAD FAYYAZ, ARMGHAN SHAHZAD 1, IFTIKHAR AHMED 1, GHULAM M. ALI

More information

In Vitro Culture of Cassava (Manihot esculenta Crantz): Assessment of Cassava Starch from Different Varieties as Gelling Agent in Culture Medium

In Vitro Culture of Cassava (Manihot esculenta Crantz): Assessment of Cassava Starch from Different Varieties as Gelling Agent in Culture Medium International Journal of Applied Agricultural Research ISSN 0973-2683 Volume 4 Number 3 (2009) pp. 261 266 Research India Publications http://www.ripublication.com/ijaar.htm In Vitro Culture of Cassava

More information

Scheme of work Cambridge IGCSE Biology (0610)

Scheme of work Cambridge IGCSE Biology (0610) Scheme of work Cambridge IGCSE Biology (0610) Unit 6: Reproduction in plants Recommended prior knowledge A basic knowledge of cell structure will be helpful, but otherwise the unit requires very little

More information

Are conjoined microspore-derived embryos of canola genetically identical?

Are conjoined microspore-derived embryos of canola genetically identical? Are conjoined microspore-derived embryos of canola genetically identical? Anouska Cousin 1 and Matthew Nelson 1,2 1 Canola Breeders Western Australia Pty Ltd, Locked Bag 888, COMO, WA 6952, Australia 2

More information

Chapter 31: Plant Reproduction

Chapter 31: Plant Reproduction Chapter 31: Plant Reproduction Plants and Pollinators Pollen had evolved by 390 million years ago Sperm packed inside a nutritious package Transferred first by wind currents Later transferred by insects

More information

EVALUATION OF THE REACTION OF TWO CONTRASTING BARLEY (HORDEUM VULGARE L.) CULTIVARS IN RESPONSE TO OSMOTIC STRESS WITH PEG 6000

EVALUATION OF THE REACTION OF TWO CONTRASTING BARLEY (HORDEUM VULGARE L.) CULTIVARS IN RESPONSE TO OSMOTIC STRESS WITH PEG 6000 29 BULG. J. PLANT PHYSIOL., SPECIAL ISSUE 23, 29 294 EVALUATION OF THE REACTION OF TWO CONTRASTING BARLEY (HORDEUM VULGARE L.) CULTIVARS IN RESPONSE TO OSMOTIC STRESS WITH PEG 6 K. Kocheva, G. Georgiev*

More information

Ontwikkeling; bevruchting

Ontwikkeling; bevruchting Ontwikkeling; bevruchting http://www.lima.ohiostate.edu/biology/archive/flowers. html Young Lily anther x40. Four pollen sacs and a cross section of the fillament are visible. Diploid (2N chromosomes)

More information

Lecture 15 Sugarcane ( Saccharum officinarum ) (2n = 80) Selfing Crossing Hybridization methods Coimbatore method lantern

Lecture 15 Sugarcane ( Saccharum officinarum ) (2n = 80) Selfing Crossing Hybridization methods Coimbatore method lantern Lecture 15 Sugarcane (Saccharum officinarum) (2n = 80) Cross pollination is the rule in sugarcane. Self male and female sterility, protogyny and hanging down of anthers away from the stigma at the time

More information

Transglutaminase activity and localization during microspore induction in maize

Transglutaminase activity and localization during microspore induction in maize FORMATEX 27 Transglutaminase activity and localization during microspore induction in maize M. Santos 1, J. Alché,2, M.I. Rodríguez-García 2 and J.M.Torné 1 1 Department of Molecular Genetics, Laboratori

More information

Past Questions on Plant Reproduction

Past Questions on Plant Reproduction Past Questions on Plant Reproduction Name the parts labelled A, B, C, D in figure 1 State one function for each A and B. Figure 1 Name the parts labelled A, B, C, D,E and F in figure 2 What is the function

More information

Plant Reproduction fertilization

Plant Reproduction fertilization Plant Reproduction In the plant kingdom, both sexual and asexual reproduction occur. Recall from Chapter 3 that plants reproduce sexually by sporic reproduction, which is also called alternation of generations.

More information

The Initiation, Multiplication, and Cryopreservation of Fraser Fir (Abies fraseri [Pursh] Poir.) Embryogenic Tissue for Somatic Embryogenesis

The Initiation, Multiplication, and Cryopreservation of Fraser Fir (Abies fraseri [Pursh] Poir.) Embryogenic Tissue for Somatic Embryogenesis Taylor Fischer Honors Research Thesis 11/25/13 The Initiation, Multiplication, and Cryopreservation of Fraser Fir (Abies fraseri [Pursh] Poir.) Embryogenic Tissue for Somatic Embryogenesis Abstract Fraser

More information

Chapter 38. Plant Reproduction. AP Biology

Chapter 38. Plant Reproduction. AP Biology Chapter 38. Plant Reproduction 1 Animal vs. Plant life cycle Animal multicellular 2n Plant multicellular sporophyte 2n gametes 1n spores 1n unicellular gametes 1n multicellular gametophyte 1n 2 Alternation

More information

Isolation of Two Populations of Sperm Cells from the Pollen Tube of Tobacco

Isolation of Two Populations of Sperm Cells from the Pollen Tube of Tobacco Acta Botanica Sinica 2004, 46 (6): 719 723 http://www.chineseplantscience.com Isolation of Two Populations of Sperm Cells from the Pollen Tube of Tobacco QIU Yi-Lan, YANG Yan-Hong, ZHANG Sai-Qun, TIAN

More information

A protocol for repetitive somatic embryogenesis from mature peanut epicotyls

A protocol for repetitive somatic embryogenesis from mature peanut epicotyls Plant Cell Reports (2000) 19:351 357 Q Springer-Verlag 2000 E.L. Little 7 Z.V. Magbanua 7 W.A. Parrott A protocol for repetitive somatic embryogenesis from mature peanut epicotyls Received: 8 February

More information

Johnny Johnny Saichuk Rice Specialist

Johnny Johnny Saichuk Rice Specialist Johnny Saichuk Rice Specialist Rice Spikelets Medium Grain Long Grain lemma palea bracts Stamen Filament Anther Stigma Filaments of stamens Anthers of stamens Stigma of pistil Style of pistil Rice Spikelet

More information

Hybridization between Lycopersicon esculentum Mill. and Lycopersicon pennellii Cor.: Pollen Fertility and Viability in F 1.

Hybridization between Lycopersicon esculentum Mill. and Lycopersicon pennellii Cor.: Pollen Fertility and Viability in F 1. 767 Bulgarian Journal of Agricultural Science, 12 (2006), 767-774 National Centre for Agrarian Sciences Hybridization between Lycopersicon esculentum Mill. and Lycopersicon pennellii Cor.: Pollen Fertility

More information

Chapter 38. Plant Reproduction. AP Biology

Chapter 38. Plant Reproduction. AP Biology Chapter 38. Plant Reproduction 1 Animal vs. Plant life cycle Animal multicellular 2n Plant multicellular sporophyte 2n gametes 1n spores 1n unicellular gametes 1n multicellular gametophyte 1n 2 Alternation

More information

plant reproduction Alternation of Generations chapter 38

plant reproduction Alternation of Generations chapter 38 Alternation of Generations Haploid (n) plant reproduction chapter 38 Diploid (2n) Sporangium Spore dispersal Spore (n) Young Mature (n) ARCHEGONIUM ANTHERIDIUM Sperm Mature Sorus Sporangium sporophyte

More information

Effect of Moisture Content on Pollen Storage of Hevea Clone RRIM 600 and RRIT 251

Effect of Moisture Content on Pollen Storage of Hevea Clone RRIM 600 and RRIT 251 Journal of Materials Science and Engineering B 5 (3-4) (2015) 165-169 doi: 10.17265/2161-6221/2015.3-4.008 D DAVID PUBLISHING Effect of Moisture Content on Pollen Storage of Hevea Clone RRIM 600 and RRIT

More information

POLLEN CRYOPRESERVATION

POLLEN CRYOPRESERVATION COST ction F1104 Sustainable production of high--quality cherries for the European market Workshop: Long Term Preservation of Woody Species by Cryo-Techniques 26 & 27 March, 2015 rea di Ricerca CNR di

More information

The low molecular weight fraction of compounds released from immature wheat pistils supports barley pollen embryogenesis

The low molecular weight fraction of compounds released from immature wheat pistils supports barley pollen embryogenesis ORIGINAL RESEARCH published: 07 July 2015 doi: 10.3389/fpls.2015.00498 The low molecular weight fraction of compounds released from immature wheat pistils supports barley pollen embryogenesis Rico Lippmann,

More information

Unit E: Plant Propagation. Lesson 1: Understanding Sexual Reproduction

Unit E: Plant Propagation. Lesson 1: Understanding Sexual Reproduction Unit E: Plant Propagation Lesson 1: Understanding Sexual Reproduction 1 Vocabulary Cross-pollination Diploid Endosperm Fertilization Gametes Genes Haploid Hybrids Pollination Seed Self-pollination Sexual

More information

Chapter 38: Angiosperm Reproduction and Biotechnology: To Seed or Not to Seed

Chapter 38: Angiosperm Reproduction and Biotechnology: To Seed or Not to Seed Chapter 38: Angiosperm Reproduction and Biotechnology: To Seed or Not to Seed The parasitic plant Rafflesia arnoldi produces huge flowers that produce up to 4 million seeds Many angiosperms reproduce sexually

More information

Biology Class 12 th NCERT Solutions

Biology Class 12 th NCERT Solutions Chapter.2 Sexual Reproduction in Flowering Plants Class XII Subject Biology 1. Name the parts of an angiosperm flower in which development of male and female gametophyte take place. Answer 1. Pollen grains

More information

Sexual Reproduction in Flowering Plants

Sexual Reproduction in Flowering Plants Sexual Reproduction in Flowering Plants Question 1: Name the parts of an angiosperm flower in which development of male and female gametophyte take place. Answer :- The male gametophyte or the pollen grain

More information

Sexual Reproduction in Flowering Plants

Sexual Reproduction in Flowering Plants Sexual Reproduction in Flowering Plants Four main events must occur in order for sexual reproduction to take place. 1. The organism must be developed and mature sexually. 2. Gametogenesis; production of

More information

plant reproduction chapter 40 Alternation of Generations

plant reproduction chapter 40 Alternation of Generations Alternation of Generations plant reproduction chapter 40 Haploid (n) Diploid (2n) Sporangium Spore dispersal Spore (n) Young Mature (n) Archegonium Antheridium Sperm Sporangium Mature sporophyte (2n) New

More information

POLLEN ULTRASTRUCTURE IN ANTHER CULTURES OF DATURA INNOXIA

POLLEN ULTRASTRUCTURE IN ANTHER CULTURES OF DATURA INNOXIA J. Cell Sci. 32, 493-5! 0976) 493 Printed in Great Britain POLLEN ULTRASTRUCTURE IN ANTHER CULTURES OF DATURA INNOXIA III. INCOMPLETE MICROSPORE DIVISION J. M. DUNWELL AND N. SUNDERLAND John Innes Institute,

More information

Multicellular Organisms Homework

Multicellular Organisms Homework Multicellular Organisms Homework NAME: CLASS: Reproduction 1. The diagram shows the parts of a flower. 1a. Name part X (1) 1b. Name the sites of production of both male and female gametes in a flowering

More information

Reprogramming of cassava (Manihot esculenta) microspores towards sporophytic development

Reprogramming of cassava (Manihot esculenta) microspores towards sporophytic development Research Article Reprogramming of cassava (Manihot esculenta) microspores towards sporophytic development P. I. P. Perera 1,2 *, C. A. Ordoñez 1, B. Dedicova 1 and P. E. M. Ortega 1,3 1 Agrobiodiversity

More information

Modes of reproduction Types of cultivar

Modes of reproduction Types of cultivar Modes of reproduction Types of cultivar 2012 What is a Cultivar? Distinctness:.. Shall be clearly distinguishable, by one or more important characteristic, from any other plant variety Uniformity:.. Similar

More information

THE ANTIOXIDANT ACTIVITY OF ANCIENT WHEAT VARIETIES AND MODERN WHEAT VARIETIES

THE ANTIOXIDANT ACTIVITY OF ANCIENT WHEAT VARIETIES AND MODERN WHEAT VARIETIES THE ANTIOXIDANT ACTIVITY OF ANCIENT WHEAT VARIETIES AND MODERN WHEAT VARIETIES DANG KHOA TRAN 1, PETR KONVALINA 1, ONDREJ VLASEK 1, ZDENEK STERBA 2, KAREL SUCHY 3 1 Department of Agroecosystems 2 Department

More information

Kingdom Plantae, Part II - Gymnosperms and Angiosperms

Kingdom Plantae, Part II - Gymnosperms and Angiosperms Kingdom Plantae, Part II - Gymnosperms and Angiosperms I. Introduction Reproduction in the seed plants (Gymnosperms and Angiosperms) has been greatly influenced by the requirements of a terrestrial existence.

More information

A New Method to Prepare Root Tip Chromosomes in Alfalfa1

A New Method to Prepare Root Tip Chromosomes in Alfalfa1 _??_ 1988 by Cytologia; Tokyo Cytologia 53: 641-645, 1988 A New Method to Prepare Root Tip Chromosomes in Alfalfa1 J. S. Song, E. L. Sorensen and G. H. Liang2 Department of Agronomy and USDA-ARS, Kansas

More information

NCERT Solutions for Class 12 Biology Chapter 2

NCERT Solutions for Class 12 Biology Chapter 2 NCERT Solutions for Class 12 Biology Chapter 2 Sexual Reproduction in Flowering Plants Class 12 Chapter 2 Sexual Reproduction in Flowering Plants Exercise Solutions Exercise : Solutions of Questions on

More information

Tissue culture Media preparation

Tissue culture Media preparation Tissue culture Media preparation Plant Physiology Experiments Tissue Culture A technique which small tissue pieces or organs are removed from a donor plant and cultured aseptically on a nutrient medium.

More information

BIOLOGY 3201 REPRODUCTION

BIOLOGY 3201 REPRODUCTION BIOLOGY 3201 REPRODUCTION Asexual vs. Sexual Reproduction MODES OF REPRODUCTION (1) Asexual one parent cell divides into two by mitosis to produce 2 identical cells which are clones of the parent (2) Sexual

More information

Production of doubled haploids in onion: A review

Production of doubled haploids in onion: A review FOCUS Production of doubled haploids in onion: A review A.S. Dhatt and Prerna Thakur Department of Vegetable Science Punjab Agricultural University, Ludhiana -141 004, India E-mail : ajmerdhatt@gmail.com

More information

This paper deals with the stability and mode of transmission of the

This paper deals with the stability and mode of transmission of the BEHAVIOUR AND TRANSMISSION OF SUPERNUMERARY CH RONIOSOMES in AE G1LOPS SPELTO!DES DAN MENDELSON and DANIEL ZOHARY Laboratory of Genetics, The Hebrew University, Jerusalem, Israel 1. INTRODUCTION Received

More information

SCIENCE SPM MODULE 2

SCIENCE SPM MODULE 2 SCIENCE SPM MODULE 2 PAPER 1 1. What is the name of the fine thread-like structure found in the nucleus of the cell? A Gene B Chromosome C Cell membrane D Nuclear membrane 2. The chromosomes present in

More information

High temperature injuries in tomato. V. Fertilization and development of embryo with special reference to the abnormalities caused by high temperature

High temperature injuries in tomato. V. Fertilization and development of embryo with special reference to the abnormalities caused by high temperature High temperature injuries in tomato. V. Fertilization and development of embryo with special reference to the abnormalities caused by high temperature SHUICHI IWAHORI Faculty of Agriculture, University

More information

Dual effects of microwave and salinity stresses on growth and Na + and K + amounts of durum wheat plants

Dual effects of microwave and salinity stresses on growth and Na + and K + amounts of durum wheat plants Available online at www.pelagiaresearchlibrary.com European Journal of Experimental Biology, 2013, 3(2):104-110 ISSN: 2248 9215 CODEN (USA): EJEBAU Dual effects of microwave and salinity stresses on growth

More information

Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine

Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine W.-Y. Su*, W.-W. Cong*, Y.-J. Shu, D. Wang, G.-H. Xu, C.-H. Guo Key Laboratory of Molecular Cytogenetics

More information

Index of Root Carbohydrates Contents for Salt Tolerance in Alfalfa

Index of Root Carbohydrates Contents for Salt Tolerance in Alfalfa 2013 International Conference on Sustainable Environment and Agriculture IPCBEE vol.57 (2013) (2013) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2013. V57. 9 Index of Root Carbohydrates Contents for Salt

More information

Effects of Medium Addition on Ovule Enlargement of Watermelon Nonpollinated

Effects of Medium Addition on Ovule Enlargement of Watermelon Nonpollinated INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560 8530; ISSN Online: 1814 9596 18F 068/201x/00 0 000 000 DOI: 10.17957/IJAB/15.0783 http://www.fspublishers.org Full Length Article Effects

More information

Plant Science 1203L Laboratory 5 - Sexual Reproduction (Pollination and Double Fertilization)

Plant Science 1203L Laboratory 5 - Sexual Reproduction (Pollination and Double Fertilization) Plant Science 1203L Laboratory 5 - Sexual Reproduction (Pollination and Double Fertilization) Today s lab is about sexual reproduction in plants. As with stem or root structure there are numerous definitions

More information

COMPARISON THE EFFECTS OF SPRAYING DIFFERENT AMOUNTS OF NANO ZINCOXIDE AND ZINC OXIDE ON, WHEAT

COMPARISON THE EFFECTS OF SPRAYING DIFFERENT AMOUNTS OF NANO ZINCOXIDE AND ZINC OXIDE ON, WHEAT Received: 05 th May-201 Revised: 27 th June-201 Accepted: 29 th June-201 Research article COMPARISON THE EFFECTS OF SPRAYING DIFFERENT AMOUNTS OF NANO ZINCOXIDE AND ZINC OXIDE ON, WHEAT Isa Afshar 1, Akbar

More information

BARLEY CROSSING METHODS

BARLEY CROSSING METHODS BARLEY CROSSING METHODS Plants for crossing can be grown in the field, or in glasshouses. Indoor grown plants are generally easier to work with and crossing success is often better. The label for each

More information

Onion (Allium cepa) genotoxicity test

Onion (Allium cepa) genotoxicity test Onion (Allium cepa) genotoxicity test 1. Purpose The Allium cepa assay is an efficient test for chemical screening and in situ monitoring for genotoxicity of environmental contaminants. The test has been

More information

The fusion of sperm cells and the function of male germ unit (MGU) of tobacco (Nicotiana tabacum L.)

The fusion of sperm cells and the function of male germ unit (MGU) of tobacco (Nicotiana tabacum L.) Sex Plant Reprod (1998) 11:171 176 Springer-Verlag 1998 ORIGINAL PAPER selor&:hui Qiao Tian Scott D. Russell The fusion of sperm cells and the function of male germ unit (MGU) of tobacco (Nicotiana tabacum

More information

thebiotutor.com 3A Reproduction Time: 55 minutes Total marks available: 55 Total marks achieved: Andy Todd

thebiotutor.com 3A Reproduction Time: 55 minutes Total marks available: 55 Total marks achieved: Andy Todd thebiotutor.com 3A Reproduction Time: 55 minutes Total marks available: 55 Total marks achieved: Q1. Plants and animals can reproduce asexually and sexually. (a) Give an example of a way that plants can

More information

30 Plant Diversity II: The Evolution of Seed Plants

30 Plant Diversity II: The Evolution of Seed Plants CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 30 Plant Diversity II: The Evolution of Seed Plants Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Transforming

More information

INDUCED POLYPOIDY UNDER IN VITRO CONDITIONS AND HIGHLY EFFICACIOUS SCREENING OF HEXAPLOIDS IN PURPLE CONEFLOWER (Echinacea purpurea (L.

INDUCED POLYPOIDY UNDER IN VITRO CONDITIONS AND HIGHLY EFFICACIOUS SCREENING OF HEXAPLOIDS IN PURPLE CONEFLOWER (Echinacea purpurea (L. Tropical Agricultural Research & Extension 19 (1): 2016 INDUCED POLYPOIDY UNDER IN VITRO CONDITIONS AND HIGHLY EFFICACIOUS SCREENING OF HEXAPLOIDS IN PURPLE CONEFLOWER (Echinacea purpurea (L.) Moench)

More information

BIOLOGI UMUM Priyambodo, M.Sc.

BIOLOGI UMUM Priyambodo, M.Sc. BIOLOGI UMUM Priyambodo, M.Sc. KONSEP REPRODUKSI TUMBUHAN KONSEP REPRODUKSI TUMBUHAN Vegetatif vs generatif VEGETATIF VS GENERATIF Menurut pendapat Anda, makanah jenis reproduksi yang lebih baik bagi tumbuhan?

More information

Chapter 38: Angiosperm Reproduction and Biotechnology

Chapter 38: Angiosperm Reproduction and Biotechnology Name: Chapter 38: Angiosperm Reproduction and Biotechnology 38.1 Flowers, double fertilization, and fruits are unique features of the angiosperm life cycle This may be a good time for you to go back and

More information

Unit B2, B2.7. Cell division and inheritance. Stage 1. Ovary. Cell Q. Cell P. Cell R. Cell S. 7 Embryo A B C

Unit B2, B2.7. Cell division and inheritance. Stage 1. Ovary. Cell Q. Cell P. Cell R. Cell S. 7 Embryo A B C Cell division and inheritance 1. A woman gives birth to triplets. Two of the triplets are boys and the third is a girl. The triplets developed from two egg cells released from the ovary at the same time.

More information

The Land Plants. Chapter 23 Part 2

The Land Plants. Chapter 23 Part 2 The Land Plants Chapter 23 Part 2 23.5 Ancient Carbon Treasures In the Carboniferous, plants with ligninreinforced tissues flourished, died, and became compacted into coal, a nonrenewable fossil fuel Lepidodendron,

More information

Embryogenesis in the anthers of different ornamental pepper (Capsicum annuum L.) genotypes

Embryogenesis in the anthers of different ornamental pepper (Capsicum annuum L.) genotypes Embryogenesis in the anthers of different ornamental pepper (Capsicum annuum L.) genotypes P.A. Barroso, M.M. Rêgo, E.R. Rêgo and W.S. Soares Laboratório de Biotecnologia Vegetal, Centro de Ciências Agrárias,

More information

Manihot esculenta Crantz (Cassava)

Manihot esculenta Crantz (Cassava) Manihot esculenta Crantz (Cassava) Developing Haploid Technology Cassava embryo sac Development of gynogenesis in cassava for the production of doubled haploids Zaida Lentini* 1, Maria Wedzony 2, Eddie

More information

TOXICOLOGY PROTOCOLS PROTOCOL 1. SERIAL DILUTIONS. Objective To make a serial dilution for use in dose/response bioassays.

TOXICOLOGY PROTOCOLS PROTOCOL 1. SERIAL DILUTIONS. Objective To make a serial dilution for use in dose/response bioassays. TOXICOLOGY PROTOCOLS PROTOCOL 1. SERIAL DILUTIONS Objective To make a serial dilution for use in dose/response bioassays. Background The idea behind a bioassay is that the test organism will respond in

More information

DETECTİON OF SUNN PEST TOLERANCE IN WHEAT VARIETIES IN CENTRAL ANATOLIAN PLATEU. Dr. Emin DÖNMEZ

DETECTİON OF SUNN PEST TOLERANCE IN WHEAT VARIETIES IN CENTRAL ANATOLIAN PLATEU. Dr. Emin DÖNMEZ DETECTİON OF SUNN PEST TOLERANCE IN WHEAT VARIETIES IN CENTRAL ANATOLIAN PLATEU Dr. Emin DÖNMEZ 1 PARTİCİPANTS OF THE PROJECT Field Crop Research Center ANKARA Anatolian Research Center ESKİŞEHİR Trakya

More information

Tim e-lapse tracking ofbarley androgenesis reveals position-determ ined ce ldeath within pro-em bryos

Tim e-lapse tracking ofbarley androgenesis reveals position-determ ined ce ldeath within pro-em bryos Chapter 2 Tim e-lapse tracking ofbarley androgenesis reveals position-determ ined ce ldeath within pro-em bryos Planta 2004, in press Simone de Faria Maraschin, Marco Vennik, Gerda E.M.Lamers, Herman P.Spaink,

More information

Signaling in the Nitrogen Assimilation Pathway of Arabidopsis Thaliana

Signaling in the Nitrogen Assimilation Pathway of Arabidopsis Thaliana Biochemistry: Signaling in the Nitrogen Assimilation Pathway of Arabidopsis Thaliana 38 CAMERON E. NIENABER ʻ04 Abstract Long recognized as essential plant nutrients and metabolites, inorganic and organic

More information

Plant Life Cycles. Plant life cycles alternate between. producing gametes. Life cycle phases look different among various

Plant Life Cycles. Plant life cycles alternate between. producing gametes. Life cycle phases look different among various Plant Life Cycles Plant life cycles alternate between two cycles: Producing spores and producing gametes A two phase life cycle is called alternation of generations Diploid phase Haploid phase Alternates

More information

An in vivo/vitro embryo culture technique

An in vivo/vitro embryo culture technique Hereditas 77: 219-224 (1974) An in vivo/vitro embryo culture technique ANTHON KRUSE Department of Crop Husbandry and Plant Breeding, Research Station Hojbakkegdrd, Taastrup, Denmark KRUSE, A. 1974. An

More information

Effect of Mannose on Callus Induction and Gro wth of Different Explants Derived from Wheat

Effect of Mannose on Callus Induction and Gro wth of Different Explants Derived from Wheat 27,27 (1) :7 11 Journal of Triticeae Crops 3 1, 1, 1,2 (1.,4 ; 2.,4) :, 158 13,,1 g/ L,,15 g/ L 5 g/ L,55 %, 1 15 g/ L 5 g/ L, PMI/,5 1 15 g/ L,,,,, : ; ;;; :S512. 1 ;S336 : A :192141 (27) 12725 Effect

More information

Core practical 4: Investigate the effect of sucrose concentration on pollen tube growth

Core practical 4: Investigate the effect of sucrose concentration on pollen tube growth Core practical 4 Teacher sheet Core practical 4: Investigate the effect of sucrose concentration on Objectives Observe the growth of pollen grains Develop the skills of planning investigations and carrying

More information

5.5 Genes and patterns of inheritance

5.5 Genes and patterns of inheritance 5.5 Genes and patterns of inheritance Mendel s laws of Inheritance: 1 st Law = The law of segregation of factors states that when any individual produces gametes, the alleles separate, so that each gamete

More information

RESEARCH JOURNAL OF FISHERIES AND HYDROBIOLOGY INTRODUCTION

RESEARCH JOURNAL OF FISHERIES AND HYDROBIOLOGY INTRODUCTION 1 RESEARCH JOURNAL OF FISHERIES AND HYDROBIOLOGY 2015 AENSI Publisher All rights reserved ISSN:1816-9112 Open Access Journal Copyright 2015 by authors and American-Eurasian Network for Scientific Information.

More information

Modes of Reproduction

Modes of Reproduction Modes of Reproduction Very Short answer Questions 1. What is the dominant phase in the life cycle of an angiosperm? A: Sporophyte phase (diploid phase). 2. What is meant by heterospory? Mention the two

More information

Core practical 14: Investigate the effect of gibberellin on the production of amylase in germinating cereals using a starch agar assay

Core practical 14: Investigate the effect of gibberellin on the production of amylase in germinating cereals using a starch agar assay Core practical 14 Teacher sheet Core practical 14: Investigate the effect of gibberellin on the production of amylase in germinating cereals using a starch agar assay Objectives To investigate the effect

More information

Introduction 1. INTRODUCTION

Introduction 1. INTRODUCTION 1. INTRODUCTION Early in their evolution, plants have acquired a life cycle that alternates between a multicellular haploid organism, the gametophyte and a multicellular diploid organism, the sporophyte.

More information

The plant kingdom is in the domain Eukarya and in the supergroup Archaeplastida

The plant kingdom is in the domain Eukarya and in the supergroup Archaeplastida Kingdom Plantae The plant kingdom is in the domain Eukarya and in the supergroup Archaeplastida The closest living relative of plants are in the green algae are charophytes. At one time the had a common

More information

(a) (i) Structures A and B are found in both the animal cell and the bacterial cell. B... (2)

(a) (i) Structures A and B are found in both the animal cell and the bacterial cell. B... (2) 1 The diagrams show an animal cell and a bacterial cell. (a) (i) Structures A and B are found in both the animal cell and the bacterial cell. Use words from the box to name structures A and B. cell membrane

More information