Advance in circadian rhythm genetics in mammals

Size: px
Start display at page:

Download "Advance in circadian rhythm genetics in mammals"

Transcription

1 Chinese Bulletin of Life Sciences Vol. 16, No. 2 Apr., (2004) , Q41 A Advance in circadian rhythm genetics in mammals XU Zu-Yuan 1,2 (1 Beijing Genomics Institute, Institute of Genetics and Developmental Biology,Chinese Academy of Sciences, Beijing , China; 2 College of Life Science, Yangtze University, Jingzhou , China) Abstract: The circadian clock is a self-sustaining oscillator that has a period of about 24 hours and can synchronize itself to changing environmental conditionals to optimize an organisms performance. Besides their own regulation, clock genes can influence biochemical processes by modulating specific genes of biochemical pathways. Developments in the last few years using genetics and molecular biological tools have led to a new understanding of the molecular basis of the circadian clock in mammals. We review here these advances and the prospects for using the homologues as candidate genes in studies of human disorders in the circadian timing system. Key words: circadian rhythm; clock genes; entrainment; clock-controlled genes 24 (central clock) (SCN) 30 (entrainment) (1967 )

2 105 (CACGTG) [5] 1 ( ) 1.1 period 1971 Konopka [1] period (d) 1984 d period 1997 ( m, h) [2~4] period (m1 m3) iod E PER bhlh/pas E bhlh/pas m1 m3 [6~9] m1 mcry1 mrna SCN m1 mcry1 m3 m1 m1 m3 m3 -/- m1 mcry1 mrna m3 1.2 Cryptochrome Cry (mcry1 mcry2) SCN mcry1 RNA [10~13] mcry2 SCN m1 1 mcry1 mcry2 mcry1 -/- 24 mcry2 -/- 24 mcry1/mcry2 SCN m1 [12] mcry1 mcry2 mcry (mcry1 mcry2) -E mcry mper mper [13] 1.3 clock 1997 [14~15] 5 100kb 24 bhlh/pas( - - /PAS) 19 5' 3 A-T m E m - 19 m : m [16] 1.4 m (MOP3) [16~18] m SCN m1 mdbp (D ) m [18] CYCLE BMAL2(Mop9) 1.5 CK1ε 1988 [19] tau (CK1ε) [20~21] CK1ε ddbt PER PER NPAS2(MOP4) [22]

3 106 NPAS2 m1 mcry1 NPAS2 mrna dtim mtim 2 / CRY [23] bhlh-pas m1 m3 mcry1 mcry2 dclock m [15,18] mpers (mper1 mper2 mper3) mcrys (mcry1 mcry2) mper2 (mper1 mper3 ) mcrys / ms mcrys mper2 m [13] m1 mcry1 (M- ), mcry2 (E- ) M-E m1 [6] 3 (entrainment) ( ) 3.1 / CRYs [26] Ca [24] mpers mpers CK1ε mcrys m, m mper2 mcry1 mcry2 m1 (m1 CT4~6 CT9~12) Daan [25] M-E ( ) SCN 1 2 Cry1 Cry2 Cry1/ Cry2 CREB MAP [27] 3.2 / 16 [29] Balsalobre [28]

4 [34] (retinoic acid) McNamara [30] RARα / Rev-erbα Rev-erbβ MOP4/ h1 Rev-erbα -6 camp CREB MAP DBP E4BP4 -α [31] 5 [32] Tau 4 (output pathways) [33] Panda EST 650 ( [34] (DSPS) 24 - (ASPS) [35] 80~ ~ ~85 [33] ( 24 ) 2001 Toh [36] (ASPS) 4 19: h2 A-G CK1ε CK1ε hclock [37] 21~28 5%

5 108 [1] Konopka R J, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA, 1971, 68: 2112~2116 [2] Sun Z S, Albrecht U, Zhuchenko O, et al. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell, 1997, 90: 1003~1011 [3] Albrecht U, Sun Z S, Eichele G, et al. A differential response of two putative mammalian circadian regulators, m1 and, to light. Cell, 1997, 91: 1055~1064 [4] Tei H, Okamura H, Shigeyoshi Y, et al. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature, 1997, 389: 512~516 [5] Hao H P, Allen D L, Hardin P E. A circadian enhancer mediates PER-dependent mrna cycling in Drosophila melanogaster. Mol Cell Biol, 1997, 17: 3687~3693 [6] Zheng B H, Albrecht U, Kaasik K, et al. Nonredundant roles of the m1 and genes in the mammalian circadian clock. Cell, 2001, 105(5): 683~694 [7] Zylka M J, Shearman L P, Weaver D R, et al. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron, 1998, 20: 1103~1110 [8] Bae K, Jin X W, Maywood E S, et al. Differential functions of m1,, and m3 in the SCN circadian clock. Neuron, 2001, 30(2): 525~536 [9] Shearman L P, Jin X W, Lee C, et al. Targeted disruption of the m3 gene: subtle effects on circadian clock function. Mol Cell Biol, 2000, 20: 6269~6275 [10] Hsu D S, Zhao X D, Zhao Y, et al. A putative human bluelight photoreceptors hcry1 and hcry2 are flavoproteins. Biochemistry, 1996, 35(14): 13871~13877 [11] van der Horst G T J, Muijtjens M, Kobayashi K, et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature, 1999, 398: 627~630 [12] Okamura H, Miyake S, Sumi Y, et al. Photic induction of m1 and in Cry-deficient mice lacking a biological clock. Science, 1999, 286: 2531~2534 [13] Kume K, Zylka M J, Sriram S, et al. mcry1 and mcry2 are essential components of the negative limb of the circadian clock feedback loop. Cell, 98(2): 193~205 [14] Vitaterna M H, King D P, Chang A M, et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science, 1994, 264: 719~725 [15] King D P, Zhao Y L, Sangoram A M, et al. Positional cloning of the mouse circadian clock gene. Cell, 1997, 89(4): 641~653 [16] Gekakis N, Staknis D, Nguyen H B, et al. Role of the protein in the mammalian circadian mechanism. Science, 1998, 280: 1564~1569 [17] Hogenesch J B, Gu Y Z, Jain S, et al. The basic-helix-loophelix-pas orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA, 1998, 95(10): 5474~5479 [18] Bunger M K, Wilsbacher L D, Moran S M, et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell, 2000, 103:1009~1017 [19] Ralph M R, Menaker M. A mutation of the circadian system in golden hamsters. Science, 1998, 241: 1225~1227 [20] Lowrey P L, Shimomura K, Antoch M P, et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science, 2000, 288: 483~492 [21] Kloss B, Price J L, Saez L, et al. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase 1ε. Cell, 1998, 94: 97~107 [22] Reick M, Garcia J A, Dudley C, et al. NPAS2: an analog of clock operative in the mammalian forebrain. Science, 2001, 293: 506~509 [23] Edery I. Circadian rhythms in a nutshell. Physiol Genomics, 2000, 3: 59~74 [24] Rutter J, Reick M, McKnight S L. Metabolism and the control of circadian rhythms. Annu Rev Biochem, 2002, 71: 307~331 [25] Daan S, Albrecht U, van der Horst G T J, et al. Assembling a clock for all seasons: are there M and E oscillators in the genes? J Biol Rhythms, 2001, 16: 105~116 [26] Albrecht U. Invited review: regulation of mammalian circadian clock genes. J Appl Physiol, 2002, 92(3): 1348~1355 [27] Ginty D D, Kornhauser J M, Thompson M A, et al. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science, 1993, 260 (5105): 238~241 [28] Yamazaki S, Numano R, Abe M, et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science, 2000, 288(5466): 682~685 [29] Balsalobre A, Brown S A, Marcacci L, et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science, 2000, 289(5488): 2344~2347 [30] McNamara P, Seo S P, Rudic R D, et al. Regulation of and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell, 2001, 105(7): 877~889 [31] Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell, 1998, 93(6): 929~937 [32] Stokkan K. A, Yamazaki S, Tei H, et al. Entrainment of the circadian clock in the liver by feeding. Science,2001, 291 (5503): 490~493 [33] Panda S, Antoch M P, Miller B H, et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell, 2002, 109(3): 307~320 [34] Delaunay F, Laudet V. Circadian clock and microarrays: mammalian genome gets rhythm. Trends Genet, 2002, 18 (12): 595~597 [35] Jones C R, Campbell S S, Zone S E, et al. Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat Med, 1999, 5: 1062~1065 [36] Toh K L, Jones C R, He Y, et al. An h2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science, 2001, 291: 1040~1043 [37] Iwase T, Kajimura N, Uchiyama M, et al. Mutation screening of the human Clock gene in circadian rhythm sleep disorders. Psychiatry Res, 2002, 109: 121~128

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Table 2 Mouse circadian s and observed circadian and physiological phenotypes. Gene Circadian phenotype Ref. Associated physiological abnormality Ref. Bmal1/Mop3 (Arntl) Loss-of-circadian

More information

The Human PER1 Gene is Inducible by Interleukin-6

The Human PER1 Gene is Inducible by Interleukin-6 Journal of Molecular Neuroscience Copyright 2002 Humana Press Inc. All rights of any nature whatsoever reserved. ISSN0895-8696/02/18:105 110/$11.25 The Human PER1 Gene is Inducible by Interleukin-6 Dirk

More information

Oscillation and Light Induction of timeless mrna in the Mammalian Circadian Clock

Oscillation and Light Induction of timeless mrna in the Mammalian Circadian Clock The Journal of Neuroscience, 1999, Vol. 19 RC15 1of6 Oscillation and Light Induction of timeless mrna in the Mammalian Circadian Clock Shelley A. Tischkau, 1 Jeffrey A. Barnes, 1 Fang-Ju Lin, 2 Edith M.

More information

Entrainment of the circadian clock in humans: mechanism and implications for sleep disorders.

Entrainment of the circadian clock in humans: mechanism and implications for sleep disorders. Impulse: The Premier Journal for Undergraduate Publications in the Neurosciences Entrainment of the circadian clock in humans: mechanism and implications for sleep disorders. David Metcalfe Warwick Medical

More information

All mammalian cells investigated to date seem to possess

All mammalian cells investigated to date seem to possess Clock Genes in the Heart Characterization and Attenuation With Hypertrophy Martin E. Young, Peter Razeghi, Heinrich Taegtmeyer Abstract We investigated whether the heart, like other mammalian organs, possesses

More information

Molecular Signals of Mammalian Circadian Clock

Molecular Signals of Mammalian Circadian Clock Kobe J. Med. Sci., Vol. 50, No. 4, pp. 101-109, 2004 Molecular Signals of Mammalian Circadian Clock JING ZHANG, XIN DONG, YOSHITO FUJIMOTO, and HITOSHI OKAMURA Division of Molecular Brain Science, Department

More information

Molecular mechanism of cell-autonomous circadian gene. expression of Period2, a crucial regulator of the mammalian

Molecular mechanism of cell-autonomous circadian gene. expression of Period2, a crucial regulator of the mammalian Molecular mechanism of cell-autonomous circadian gene expression of Period2, a crucial regulator of the mammalian circadian clock Makoto Akashi*, Tomoko Ichise*, Takayoshi Mamine and Toru Takumi* *Osaka

More information

Time after time: inputs to and outputs from the mammalian circadian oscillators

Time after time: inputs to and outputs from the mammalian circadian oscillators 632 Review Time after time: inputs to and outputs from the mammalian circadian oscillators David Morse and Paolo Sassone-Corsi Oscillating levels of clock gene transcripts in the suprachiasmatic nucleus

More information

Clicker Question. The Need to Decompose. Mechanism and Reduction: Decomposing Circadian Clocks

Clicker Question. The Need to Decompose. Mechanism and Reduction: Decomposing Circadian Clocks Mechanism and Reduction: Decomposing Circadian Clocks Clicker Question On the Deductive-Nomological (DN) model of reduction, which of the following does not figure in providing the explanation (i.e., is

More information

Transcription Regulation And Gene Expression in Eukaryotes (Cycle G2 # )

Transcription Regulation And Gene Expression in Eukaryotes (Cycle G2 # ) Transcription Regulation And Gene Expression in Eukaryotes (Cycle G2 #13709-01) CIRCADIAN SIGNALING NETWORKS RG. Clerc May 19. 2010 www.fmi.ch/training/teaching Circadian rythms : most physiological processes

More information

Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock

Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock RESEARCH COMMUNICATION Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock Makoto Akashi 1 and Eisuke Nishida 1,2 1 Department of Biophysics, Graduate School of Science

More information

CIRCADIAN SIGNALING NETWORKS

CIRCADIAN SIGNALING NETWORKS Transcription Regulation And Gene Expression in Eukaryotes Cycle G2 (lecture 13709) FS 2014 P. Matthias and RG Clerc Roger G. Clerc 07.05.2014 CIRCADIAN SIGNALING NETWORKS Master pacemaker SCN «Slave clocks»

More information

Molecular and Cellular Endocrinology

Molecular and Cellular Endocrinology Molecular and Cellular Endocrinology 349 (2012) 38 44 Contents lists available at ScienceDirect Molecular and Cellular Endocrinology journal homepage: www.elsevier.com/locate/mce Review The role of clock

More information

The Success of Decomposition

The Success of Decomposition 11/21/11 Mechanism and Levels of Organization: Recomposing and Situating Circadian Clocks The Success of Decomposition Moving beyond per, researchers in the 1990s and early 2000s identified many clock

More information

Neurons and Hormones 1. How do animals perform the right behaviors at the right time? In the right context?

Neurons and Hormones 1. How do animals perform the right behaviors at the right time? In the right context? Neurons and Hormones 1 How do animals perform the right behaviors at the right time? In the right context? Active at night only What if conflicting signals? Magnetic cues are always present But migrate

More information

Biological Clocks. Lu Chen, Ph.D. MCB, UC Berkeley. What is biological clock?

Biological Clocks. Lu Chen, Ph.D. MCB, UC Berkeley. What is biological clock? Biological Clocks Lu Chen, Ph.D. MCB, UC Berkeley 1 What is biological clock? All eukaryotes and some prokaryotes display changes in gene activity, biochemistry, physiology, and behavior that wax and wane

More information

Report. Circadian Clock Gene Bmal1 Is Not Essential; Functional Replacement with its Paralog, Bmal2

Report. Circadian Clock Gene Bmal1 Is Not Essential; Functional Replacement with its Paralog, Bmal2 Current Biology 20, 316 321, February 23, 2010 ª2010 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2009.12.034 Circadian Clock Gene Bmal1 Is Not Essential; Functional Replacement with its Paralog,

More information

Review. The Network of Time: Understanding the Molecular Circadian System. Till Roenneberg and Martha Merrow

Review. The Network of Time: Understanding the Molecular Circadian System. Till Roenneberg and Martha Merrow Current Biology, Vol. 13, R198 R207, March 4, 2003, 2003 Elsevier Science Ltd. All rights reserved. PII S0960-9822(03)00124-6 The Network of Time: Understanding the Molecular Circadian System Review Till

More information

Scientific Background Discoveries of Molecular Mechanisms Controlling the Circadian Rhythm

Scientific Background Discoveries of Molecular Mechanisms Controlling the Circadian Rhythm Scientific Background Discoveries of Molecular Mechanisms Controlling the Circadian Rhythm The 2017 Nobel Prize in Physiology or Medicine is awarded to Jeffrey C. Hall, Michael Rosbash and Michael W. Young

More information

MOLECULAR BASES OF CIRCADIAN RHYTHMS

MOLECULAR BASES OF CIRCADIAN RHYTHMS Annu. Rev. Cell Dev. Biol. 2001. 17:215 53 Copyright c 2001 by Annual Reviews. All rights reserved MOLECULAR BASES OF CIRCADIAN RHYTHMS Stacey L. Harmer, Satchidananda Panda, and Steve A. Kay Department

More information

Light and Glutamate-Induced Degradation of the Circadian Oscillating Protein BMAL1 during the Mammalian Clock Resetting

Light and Glutamate-Induced Degradation of the Circadian Oscillating Protein BMAL1 during the Mammalian Clock Resetting The Journal of Neuroscience, October 15, 2000, 20(20):7525 7530 Light and Glutamate-Induced Degradation of the Circadian Oscillating Protein BMAL1 during the Mammalian Clock Resetting Teruya Tamaru, 1

More information

T. WU 1, Y. NI 1, F. ZHUGE 1, Z. FU 1. Introduction

T. WU 1, Y. NI 1, F. ZHUGE 1, Z. FU 1. Introduction Physiol. Res. 59: 581-590, 2010 Resetting Process of Peripheral Circadian Gene Expression after the Combined Reversal of Feeding Schedule and Light/Dark Cycle Via a 24-h Light Period Transition in Rats

More information

Signaling components that drive circadian rhythms Garrick K Wang* and Amita Sehgal

Signaling components that drive circadian rhythms Garrick K Wang* and Amita Sehgal 331 Signaling components that drive circadian rhythms Garrick K Wang* and Amita Sehgal In the past year, knowledge of how information is relayed in the regulation of circadian rhythms has advanced considerably.

More information

Molecular components of the mammalian circadian clock

Molecular components of the mammalian circadian clock doi:10.1093/hmg/ddl207 R271 R277 Molecular components of the mammalian circadian clock Caroline H. Ko 1,3 and Joseph S. Takahashi 1,2, * 1 Department of Neurobiology and Physiology, 2 Howard Hughes Medical

More information

Functional central rhythmicity and light entrainment, but not liver and muscle rhythmicity, are Clock independent

Functional central rhythmicity and light entrainment, but not liver and muscle rhythmicity, are Clock independent Am J Physiol Regul Integr Comp Physiol 291: R1172 R1180, 2006. First published May 18, 2006; doi:10.1152/ajpregu.00223.2006. Functional central rhythmicity and light entrainment, but not liver and muscle

More information

Strong Resetting of the Mammalian Clock by Constant Light Followed by Constant Darkness

Strong Resetting of the Mammalian Clock by Constant Light Followed by Constant Darkness The Journal of Neuroscience, November 12, 2008 28(46):11839 11847 11839 Behavioral/Systems/Cognitive Strong Resetting of the Mammalian Clock by Constant Light Followed by Constant Darkness Rongmin Chen,

More information

Biological Clocks. Lu Chen, Ph.D. MCB, UC Berkeley. Why Does Melatonin Now Outsell Vitamin C??

Biological Clocks. Lu Chen, Ph.D. MCB, UC Berkeley. Why Does Melatonin Now Outsell Vitamin C?? Biological Clocks Lu Chen, Ph.D. MCB, UC Berkeley 1 Why Does Melatonin Now Outsell Vitamin C?? Wake / sleep complaints are extremely prevalent. Much melatonin is consumed in an attempt to overcome the

More information

mcry1 and mcry2 Are Essential Components of the Negative Limb of the Circadian Clock Feedback Loop

mcry1 and mcry2 Are Essential Components of the Negative Limb of the Circadian Clock Feedback Loop Cell, Vol. 98, 193 205, July 23, 1999, Copyright 1999 by Cell Press mcry1 and mcry2 Are Essential Components of the Negative Limb of the Circadian Clock Feedback Loop Kazuhiko Kume,* # Mark J. Zylka,*

More information

The dominant circadian pacemaker in the mammalian brain is

The dominant circadian pacemaker in the mammalian brain is The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes Jennifer A. Mohawk, Matthew L. Baer, and Michael Menaker 1 Department of Biology, University of Virginia, Charlottesville

More information

Stochastic simulations

Stochastic simulations Stochastic simulations Application to circadian clocks Didier Gonze Circadian rhythms Circadian rhythms allow living organisms to live in phase with the alternance of day and night... Circadian rhythms

More information

Phenotypic Rescue of a Peripheral Clock Genetic Defect via SCN Hierarchical Dominance

Phenotypic Rescue of a Peripheral Clock Genetic Defect via SCN Hierarchical Dominance Cell, Vol. 110, 107 117, July 12, 2002, Copyright 2002 by Cell Press Phenotypic Rescue of a Peripheral Clock Genetic Defect via SCN Hierarchical Dominance Matthew P. Pando, 1,3 David Morse, 1,4 Nicolas

More information

Circadian Rhythms in Isolated Brain Regions

Circadian Rhythms in Isolated Brain Regions The Journal of Neuroscience, January 1, 2002, 22(1):350 356 Circadian Rhythms in Isolated Brain Regions Michikazu Abe, 1 * Erik D. Herzog, 1 * Shin Yamazaki, 1 Marty Straume, 1 Hajime Tei, 2 Yoshiyuki

More information

Circadian Rhythms in Physiology and Behavior. The Persistence of Memory, Salvador Dali, 1931

Circadian Rhythms in Physiology and Behavior. The Persistence of Memory, Salvador Dali, 1931 Circadian Rhythms in Physiology and Behavior The Persistence of Memory, Salvador Dali, 1931 Homeostasis and Rhythms? Homeostasis (Bernard, 1878): All the vital mechanisms, however varied they may be, have

More information

Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice

Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice Am J Physiol Regul Integr Comp Physiol 285: R57 R67, 2003. First published March 20, 2003; 10.1152/ajpregu.00023.2003. Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice SiNae

More information

The ins and outs of circadian timekeeping Steven A Brown* and Ueli Schibler

The ins and outs of circadian timekeeping Steven A Brown* and Ueli Schibler 588 The ins and outs of circadian timekeeping Steven A Brown* and Ueli Schibler Recent research in Drosophila and in mammals has generated fascinating new models for how circadian clocks in these organisms

More information

Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters

Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters c Indian Academy of Sciences REVIEW ARTICLE Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters MALCOLM VON SCHANTZ Faculty of Heath and Medical Sciences, University

More information

Molecular Clocks in Mouse Skin

Molecular Clocks in Mouse Skin See related commentary on pg ORIGINAL ARTICLE Molecular Clocks in Mouse Skin Miki Tanioka,,, Hiroyuki Yamada,, Masao Doi,, Hideki Bando, Yoshiaki Yamaguchi, Chikako Nishigori and Hitoshi Okamura, Clock

More information

Cellular DBP and E4BP4 proteins are critical for determining the period length of the circadian oscillator

Cellular DBP and E4BP4 proteins are critical for determining the period length of the circadian oscillator FEBS Letters 55 () 7 journal homepage: www.febsletters.org Cellular and proteins are critical for determining the period length of the circadian oscillator Daisuke Yamajuku,, Yasutaka Shibata, Masashi

More information

Stochastic simulations

Stochastic simulations Circadian rhythms Stochastic simulations Circadian rhythms allow living organisms to live in phase with the alternance of day and night... Application to circadian clocks Didier Gonze Circadian rhythms

More information

Eicosapentaenoic Acid Reverses the Oleic Acid-induced Reduction in Per1 mrna Expression in Cultured Rat Hepatocytes

Eicosapentaenoic Acid Reverses the Oleic Acid-induced Reduction in Per1 mrna Expression in Cultured Rat Hepatocytes 8 Ivyspring International Publisher Research Paper Journal of Biomedicine 2018; 3: 8-12. doi: 10.7150/jbm.23267 Eicosapentaenoic Acid Reverses the Oleic Acid-induced Reduction in Per1 mrna Expression in

More information

The Nobel Assembly at Karolinska Institutet has today decided to award. the 2017 Nobel Prize in Physiology or Medicine. jointly to

The Nobel Assembly at Karolinska Institutet has today decided to award. the 2017 Nobel Prize in Physiology or Medicine. jointly to The Nobel Assembly at Karolinska Institutet has today decided to award the 2017 Nobel Prize in Physiology or Medicine jointly to Jeffrey C. Hall, Michael Rosbash and Michael W. Young for their discoveries

More information

The tim SL Mutant Affects a Restricted Portion of the Drosophila melanogaster Circadian Cycle

The tim SL Mutant Affects a Restricted Portion of the Drosophila melanogaster Circadian Cycle JO RutURNAL ila et al. OF / tim BIO SL LOGICAL MUTANT RHYTHMS / October 1998 The tim SL Mutant Affects a Restricted Portion of the Drosophila melanogaster Circadian Cycle Joan E. Rutila, * Olga Maltseva,

More information

Altered Entrainment and Feedback Loop Function Effected by a Mutant Period Protein

Altered Entrainment and Feedback Loop Function Effected by a Mutant Period Protein The Journal of Neuroscience, February 1, 2000, 20(3):958 968 Altered Entrainment and Feedback Loop Function Effected by a Mutant Period Protein Peter Schotland, Melissa Hunter-Ensor, Todd Lawrence, and

More information

A PER/TIM/DBT Interval Timer for Drosophila s Circadian Clock

A PER/TIM/DBT Interval Timer for Drosophila s Circadian Clock A PER/TIM/DBT Interval Timer for Drosophila s Circadian Clock L. SAEZ,* P. MEYER, AND M.W. YOUNG* *Laboratory of Genetics, The Rockefeller University, New York, New York 10021; Department of Microbiology,

More information

What Is There Left to Learn about the Drosophila Clock?

What Is There Left to Learn about the Drosophila Clock? What Is There Left to Learn about the Drosophila Clock? J. BLAU, F. BLANCHARD, B. COLLINS, D. DAHDAL, A. KNOWLES, D. MIZRAK, AND M. RUBEN Department of Biology, New York University, New York, New York

More information

Circadian Gene Expression in the Suprachiasmatic Nucleus

Circadian Gene Expression in the Suprachiasmatic Nucleus Circadian Gene Expression in the Suprachiasmatic Nucleus 901 Circadian Gene Expression in the Suprachiasmatic Nucleus M U Gillette and S-H Tyan, University of Illinois at Urbana-Champaign, Urbana, IL,

More information

Transcription Regulation And Gene Expression in Eukaryotes FS 2016 Graduate Course G2

Transcription Regulation And Gene Expression in Eukaryotes FS 2016 Graduate Course G2 Transcription Regulation And Gene Expression in Eukaryotes FS 2016 Graduate Course G2 P. Matthias and RG Clerc Pharmazentrum Hörsaal 2 16h15-18h00 CIRCADIAN SIGNALING NETWORKS Master pacemaker SCN «slave

More information

University of Groningen. Life before the Clock Roenneberg, Till; Merrow, Martha. Published in: Journal of Biological Rhythms

University of Groningen. Life before the Clock Roenneberg, Till; Merrow, Martha. Published in: Journal of Biological Rhythms University of Groningen Life before the Clock Roenneberg, Till; Merrow, Martha Published in: Journal of Biological Rhythms DOI: 10.1177/0748730402238231 IMPORTANT NOTE: You are advised to consult the publisher's

More information

Interactions of polymorphisms in different clock genes associated with circadian phenotypes in humans

Interactions of polymorphisms in different clock genes associated with circadian phenotypes in humans Universidade de São Paulo Biblioteca Digital da Produção Intelectual - BDPI Escola de Artes, Ciências e Humanidades - EACH Artigos e Materiais de Revistas Científicas - EACH 2010 Interactions of polymorphisms

More information

Two period Homologs: Circadian Expression and Photic Regulation in the Suprachiasmatic Nuclei

Two period Homologs: Circadian Expression and Photic Regulation in the Suprachiasmatic Nuclei Neuron, Vol. 19, 1261 1269, December, 1997, Copyright 1997 by Cell Press Two period Homologs: Circadian Expression and Photic Regulation in the Suprachiasmatic Nuclei Lauren P. Shearman,* Mark J. Zylka,*

More information

Circadian Clock-Controlled Regulation of cgmp Protein Kinase G in the Nocturnal Domain

Circadian Clock-Controlled Regulation of cgmp Protein Kinase G in the Nocturnal Domain The Journal of Neuroscience, August 20, 2003 23(20):7543 7550 7543 Behavioral/Systems Circadian Clock-Controlled Regulation of cgmp Protein Kinase G in the Nocturnal Domain Shelley A. Tischkau, 1 E. Todd

More information

Nonredundant Roles of the mper1 and mper2 Genes in the Mammalian Circadian Clock

Nonredundant Roles of the mper1 and mper2 Genes in the Mammalian Circadian Clock Cell, Vol. 105, 683 694, June 1, 2001, Copyright 2001 by Cell Press Nonredundant Roles of the mper1 and mper2 Genes in the Mammalian Circadian Clock Binhai Zheng, 1,5 Urs Albrecht, 2,7 Krista Kaasik, 1

More information

PROMOTER ANALYSIS OF MAMMALIAN CLOCK CONTROLLED GENES

PROMOTER ANALYSIS OF MAMMALIAN CLOCK CONTROLLED GENES 65 PROMOTER ANALYSIS OF MAMMALIAN CLOCK CONTROLLED GENES KATARZYNA BOŻEK1 SZYMON M. KIE LBASA 2 k.bozek@biologie.hu-berlin.de kielbasa@molgen.mpg.de ACHIM KRAMER 3 HANSPETER HERZEL 1 achim.kramer@charite.de

More information

Circadian Molecular Clocks Tick along Ontogenesis

Circadian Molecular Clocks Tick along Ontogenesis Physiol. Res. 57 (Suppl. 3): S139-S148, 2008 MINIREVIEW Circadian Molecular Clocks Tick along Ontogenesis A. SUMOVÁ, Z. BENDOVÁ, M. SLÁDEK, R. EL-HENNAMY, K. MATĚJŮ, L. POLIDAROVÁ, S. SOSNIYENKO, H. ILLNEROVÁ

More information

Welcome to Bi !

Welcome to Bi ! Welcome to Bi156 2012! Professors: Paul Patterson (php@caltech.edu) Kai Zinn (zinnk@caltech.edu) TAs: Janna Nawroth Yanan Sui ysui@caltech.edu Student presentations Select a topic

More information

Biological rhythms. Types of biological rhythms

Biological rhythms. Types of biological rhythms Biological rhythms Types of biological rhythms 2/33 what do we call rhythm in a living organism? physiological events occurring at approximately regular times internally controlled rhythms: breathing,

More information

Phase Shifts of Circadian Transcripts in Rat Suprachiasmatic Nucleus

Phase Shifts of Circadian Transcripts in Rat Suprachiasmatic Nucleus The Second International Symposium on Optimization and Systems Biology (OSB 08) Lijiang, China, October 31 November 3, 2008 Copyright 2008 ORSC & APORC, pp. 109 114 Phase Shifts of Circadian Transcripts

More information

Dietmar Weinert Institute of Zoology, Martin-Luther-University Halle-Wittenberg, Halle, Germany

Dietmar Weinert Institute of Zoology, Martin-Luther-University Halle-Wittenberg, Halle, Germany Chronobiology International, 22(2): 179 205, (2005) Copyright # 2005 Taylor & Francis, Inc. ISSN 0742-0528 print/1525-6073 online DOI: 10.1081/CBI-200053473 REVIEW ONTOGENETIC DEVELOPMENT OF THE MAMMALIAN

More information

Peripheral Circadian Oscillators

Peripheral Circadian Oscillators Peripheral Circadian Oscillators Interesting Mechanisms and Powerful Tools LUDMILA CUNINKOVA AND STEVEN A. BROWN Institute for Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland The

More information

Modeling Rhythms on Differents Levels: Cells, Tissues, and Organisms

Modeling Rhythms on Differents Levels: Cells, Tissues, and Organisms Modeling Rhythms on Differents Levels: Cells, Tissues, and Organisms Hanspeter Herzel Institute for Theoretical Biology (ITB) Charité and Humboldt University Berlin Molecular Chronobiology SCN-neuron nucleus

More information

Peripheral Clocks: Keeping Up with the Master Clock

Peripheral Clocks: Keeping Up with the Master Clock Peripheral Clocks: Keeping Up with the Master Clock E. KOWALSKA AND S.A. BROWN University of Zurich, Institute for Pharmacology and Toxicology, 8057 Zurich, Switzerland Circadian clocks influence most

More information

Mechanisms by which circadian rhythm disruption may lead to cancer

Mechanisms by which circadian rhythm disruption may lead to cancer Review Articles South African Journal of Science 105, November/December 2009 415 Mechanisms by which circadian rhythm disruption may lead to cancer M. Beckett and L.C. Roden* Humans have evolved in a rhythmic

More information

Expression of haper1 and habmal1 in Syrian hamsters: Heterogeneity of transcripts and oscillations in the periphery

Expression of haper1 and habmal1 in Syrian hamsters: Heterogeneity of transcripts and oscillations in the periphery University of Massachusetts Amherst ScholarWorks@UMass Amherst Biology Department Faculty Publication Series Biology 4 Expression of haper1 and habmal1 in Syrian hamsters: Heterogeneity of transcripts

More information

From Reduction Back to Higher Levels

From Reduction Back to Higher Levels From Reduction Back to Higher Levels William Bechtel (bechtel@mechanism.ucsd.edu) Department of Philosophy-0119, UCSD La Jolla, CA 92093-0119 USA Adele Abrahamsen (aabrahamsen@ucsd.edu) Center for Research

More information

Biological Rhythms. Today s lecture

Biological Rhythms. Today s lecture Biological Rhythms (a review of general endocrinology) 35 Neuroendocrine control: homeostatic responses and biological rhythms. A role for anticipation or feed-forward mechanisms or scheduled events. Biological

More information

A CLOCKWORK WEB: CIRCADIAN TIMING IN BRAIN AND PERIPHERY, IN HEALTH AND DISEASE

A CLOCKWORK WEB: CIRCADIAN TIMING IN BRAIN AND PERIPHERY, IN HEALTH AND DISEASE A CLOCKWORK WEB: CIRCADIAN TIMING IN BRAIN AND PERIPHERY, IN HEALTH AND DISEASE Michael H. Hastings, Akhilesh B. Reddy and Elizabeth S. Maywood The hypothalamic suprachiasmatic nuclei (SCN) are our principal

More information

CHAPTER12. Synthesis

CHAPTER12. Synthesis CHAPTER12 Synthesis 149 Chapter 12 The tau mutation and non-circadian rhythms Biological rhythms cover a wide range of frequencies, from milliseconds to years. In this thesis we have shown that an allele

More information

Molecular Architecture of the Circadian Clock in Mammals

Molecular Architecture of the Circadian Clock in Mammals Molecular Architecture of the Circadian Clock in Mammals Joseph S. Takahashi Abstract The circadian clock mechanism in animals involves an autoregulatory transcriptional feedback loop in which CLOCK and

More information

SERIES ARTICLE Circadian Rhythms

SERIES ARTICLE Circadian Rhythms Circadian Rhythms 3. Circadian Timing Systems: How are they Organized? Koustubh M Vaze and Vijay Kumar Sharma (left) Koustubh Vaze is a Research Associate in the Evolutionary and Organismal Biology Unit,

More information

Key words: antisense oligonucleotide; circadian rhythm; firing rhythm; mper1; phase shift; suprachiasmatic nucleus

Key words: antisense oligonucleotide; circadian rhythm; firing rhythm; mper1; phase shift; suprachiasmatic nucleus The Journal of Neuroscience, February 1, 1999, 19(3):1115 1121 Inhibition of Light- or Glutamate-Induced mper1 Expression Represses the Phase Shifts into the Mouse Circadian Locomotor and Suprachiasmatic

More information

Mammalian Circadian Clock: The Roles of Transcriptional Repression and Delay

Mammalian Circadian Clock: The Roles of Transcriptional Repression and Delay Mammalian Circadian Clock: The Roles of Transcriptional Repression and Delay Yoichi Minami, Koji L. Ode, and Hiroki R. Ueda Abstract The circadian clock is an endogenous oscillator with a 24-h period.

More information

The Drosophila melanogaster life cycle

The Drosophila melanogaster life cycle The Drosophila melanogaster life cycle Eclosion The first phenotype described in Drosophila as an endogenous rhythm (1954): Number of eclosed flies Hamblen et al., Gene3cs 1998 rhythm with a periodicity

More information

Simulation of Drosophila Circadian Oscillations, Mutations, and Light Responses by a Model with VRI, PDP-1, and CLK

Simulation of Drosophila Circadian Oscillations, Mutations, and Light Responses by a Model with VRI, PDP-1, and CLK Title: Simulation of Drosophila Circadian Oscillations, Mutations, and Light Responses by a Model with VRI, PDP-1, and CLK Authors: Paul Smolen, Paul E. Hardin *, Brian S. Lo, Douglas A. Baxter, and John

More information

Expression of Clock and Clock-Driven Genes in the Rat Suprachiasmatic Nucleus during Late Fetal and Early Postnatal Development

Expression of Clock and Clock-Driven Genes in the Rat Suprachiasmatic Nucleus during Late Fetal and Early Postnatal Development Expression of Clock and Clock-Driven Genes in the Rat Suprachiasmatic Nucleus during Late Fetal and Early Postnatal Development Zuzana Kováčiková, 1 Martin Sládek, 1 Zdenka Bendová, Helena Illnerová, and

More information

A Serum Shock Induces Circadian Gene Expression in Mammalian Tissue Culture Cells

A Serum Shock Induces Circadian Gene Expression in Mammalian Tissue Culture Cells Cell, Vol. 93, 929 937, June 12, 1998, Copyright 1998 by Cell Press A Serum Shock Induces Circadian Gene Expression in Mammalian Tissue Culture Cells Aurélio Balsalobre, Francesca Damiola, and Ueli Schibler*

More information

Multiple circadian transcriptional elements cooperatively regulate cell-autonomous transcriptional oscillation of Period3, a mammalian clock gene

Multiple circadian transcriptional elements cooperatively regulate cell-autonomous transcriptional oscillation of Period3, a mammalian clock gene JBC Papers in Press. Published on August 15, 2017 as Manuscript M117.806836 The latest version is at http://www.jbc.org/cgi/doi/10.1074/jbc.m117.806836 Multiple circadian transcriptional elements cooperatively

More information

Circadian Clocks: Setting Time By Food

Circadian Clocks: Setting Time By Food YOUNG INVESTIGATOR PERSPECTIVES Journal of Neuroendocrinology 19, 127 137 ª 2006 The Author. Journal Compilation ª 2006 Blackwell Publishing Ltd Circadian Clocks: Setting Time By Food J. Mendoza Institut

More information

Molecular Cogs of the Insect Circadian Clock

Molecular Cogs of the Insect Circadian Clock ZOOLOGICAL SCIENCE 20: 947 955 (2003) 2003 Zoological Society of Japan [REVIEW] Molecular Cogs of the Insect Circadian Clock Naoto Shirasu 1, Yasuyuki Shimohigashi 1, Yoshiya Tominaga 2, and Miki Shimohigashi

More information

Physiology of the Mammalian Circadian System Alan M. Rosenwasser Fred W. Turek

Physiology of the Mammalian Circadian System Alan M. Rosenwasser Fred W. Turek 29 Physiology of the Mammalian Circadian System Alan M. Rosenwasser Fred W. Turek ABSTRACT Our understanding of the physiology of the mammalian circadian system has increased enormously in just the past

More information

METABOLISM AND THE CONTROL OF CIRCADIAN RHYTHMS

METABOLISM AND THE CONTROL OF CIRCADIAN RHYTHMS Annu. Rev. Biochem. 2002. 71:307 31 DOI: 10.1146/annurev.biochem.71.090501.142857 Copyright 2002 by Annual Reviews. All rights reserved First published as a Review in Advance on March 19, 2002 METABOLISM

More information

An Abrupt Shift in the Day/Night Cycle Causes Desynchrony in the Mammalian Circadian Center

An Abrupt Shift in the Day/Night Cycle Causes Desynchrony in the Mammalian Circadian Center The Journal of Neuroscience, July 9, 2003 23(14):6141 6151 6141 Behavioral/Systems/Cognitive An Abrupt Shift in the Day/Night Cycle Causes Desynchrony in the Mammalian Circadian Center Mamoru Nagano, 1

More information

There is growing recognition of the critical contribution

There is growing recognition of the critical contribution Glucocorticoid Signaling Synchronizes the Liver Circadian Transcriptome Akhilesh B. Reddy, 1 Elizabeth S. Maywood, 1 Natasha A. Karp, 2 Verdun M. King, 3 Yusuke Inoue, 4 Frank J. Gonzalez, 4 Kathryn S.

More information

Feeding Cues Alter Clock Gene Oscillations and Photic Responses in the Suprachiasmatic Nuclei of Mice Exposed to a Light/Dark Cycle

Feeding Cues Alter Clock Gene Oscillations and Photic Responses in the Suprachiasmatic Nuclei of Mice Exposed to a Light/Dark Cycle 1514 The Journal of Neuroscience, February 9, 2005 25(6):1514 1522 Behavioral/Systems/Cognitive Feeding Cues Alter Clock Gene Oscillations and Photic Responses in the Suprachiasmatic Nuclei of Mice Exposed

More information

Sleep-Wake Cycle I Brain Rhythms. Reading: BCP Chapter 19

Sleep-Wake Cycle I Brain Rhythms. Reading: BCP Chapter 19 Sleep-Wake Cycle I Brain Rhythms Reading: BCP Chapter 19 Brain Rhythms and Sleep Earth has a rhythmic environment. For example, day and night cycle back and forth, tides ebb and flow and temperature varies

More information

cryptochrome genes, circadian rhythm, mole rat

cryptochrome genes, circadian rhythm, mole rat 10.1177/0748730403260622 JOURNALOF Avivi et al. / MOLE BIOLOGICALRHYTHMS RAT S CRY GENES / February 2004 ARTICLE Circadian Genes in a Blind Subterranean Mammal III: Molecular Cloning and Circadian Regulation

More information

Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans

Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans Kenneth P. Wright, Jr.*, Rod J Hughes, Richard E. Kronauer, Derk-Jan Dijk, and Charles A.

More information

Simulation of Drosophila Circadian Oscillations, Mutations, and Light Responses by a Model with VRI, PDP-1, and CLK

Simulation of Drosophila Circadian Oscillations, Mutations, and Light Responses by a Model with VRI, PDP-1, and CLK 2786 Biophysical Journal Volume 86 May 2004 2786 2802 Simulation of Drosophila Circadian Oscillations, Mutations, and Light Responses by a Model with VRI, PDP-1, and CLK Paul Smolen, Paul E. Hardin,* Brian

More information

In mammals, a circadian pacemaker located in the suprachiasmatic

In mammals, a circadian pacemaker located in the suprachiasmatic PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues Seung-Hee Yoo*, Shin Yamazaki, Phillip L. Lowrey*, Kazuhiro Shimomura*,

More information

Report. Lack of Food Anticipation in Per2 Mutant Mice

Report. Lack of Food Anticipation in Per2 Mutant Mice Current Biology 16, 2016 2022, October 24, 2006 ª2006 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2006.08.053 Lack of Food Anticipation in Per2 Mutant Mice Report Céline A. Feillet, 1,2 Jürgen A.

More information

In Vivo Disruption of Xenopus

In Vivo Disruption of Xenopus The Journal of Neuroscience, March 1, 2002, 22(5):1600 1607 In Vivo Disruption of Xenopus CLOCK in the Retinal Photoreceptor Cells Abolishes Circadian Melatonin Rhythmicity without Affecting Its Production

More information

LESSON 4.5 WORKBOOK How do circuits regulate their output?

LESSON 4.5 WORKBOOK How do circuits regulate their output? DEFINITIONS OF TERMS Homeostasis tendency to relatively stable equilibrium. Feed-forward inhibition control mechanism whereby the output of one pathway inhibits the activity of another pathway. Negative

More information

BIO333 Comparative Physiology and Pharmacology of Sleep. Genetics of Sleep December 3, Raphaelle Winsky-Sommerer, PhD, PD

BIO333 Comparative Physiology and Pharmacology of Sleep. Genetics of Sleep December 3, Raphaelle Winsky-Sommerer, PhD, PD BIO333 Comparative Physiology and Pharmacology of Sleep Genetics of Sleep December 3, 2011 Raphaelle Winsky-Sommerer, PhD, PD r.winsky-sommerer@surrey.ac.uk Genetics of Sleep Quantitative traits are determined

More information

Circadian Rhythm Disturbances: What Happens When Your Biological Clock Is In The Wrong Time Zone

Circadian Rhythm Disturbances: What Happens When Your Biological Clock Is In The Wrong Time Zone Circadian Rhythm Disturbances: What Happens When Your Biological Clock Is In The Wrong Time Zone Steven A. Thau MD Chief, Pulmonary, Sleep Department. Phelps Hospital, Northwell Health Internal Clock Examples

More information

Transcriptional Feedback Loop Regulation, Function, and Ontogeny in Drosophila

Transcriptional Feedback Loop Regulation, Function, and Ontogeny in Drosophila Transcriptional Feedback Loop Regulation, Function, and Ontogeny in Drosophila J. BENITO, H. ZHENG, F.S. NG, AND P.E. HARDIN Center for Research on Biological Clocks, Department of Biology, Texas A&M University,

More information

Circadian Transcription Contributes to Core Period Determination in Drosophila

Circadian Transcription Contributes to Core Period Determination in Drosophila Circadian Transcription Contributes to Core Period Determination in Drosophila Sebastian Kadener 1,3, Jerome S. Menet 2,3, Rebecca Schoer 1,3, Michael Rosbash 1,2,3* PLoS BIOLOGY 1 Department of Biology,

More information

The role of circadian rhythm in breast cancer

The role of circadian rhythm in breast cancer Review Article The role of circadian rhythm in breast cancer Shujing Li, Xiang Ao, Huijian Wu The School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China Corresponding

More information

Modulation of mper1 gene expression by anxiolytic drugs in mouse cerebellum

Modulation of mper1 gene expression by anxiolytic drugs in mouse cerebellum British Journal of Pharmacology (1999) 128, 1616 1622 ã 1999 Stockton Press All rights reserved 0007 1188/99 $15.00 http://www.stockton-press.co.uk/bjp Modulation of mper1 gene expression by anxiolytic

More information

The Circadian Clock: Regulating the Rhythm of Life

The Circadian Clock: Regulating the Rhythm of Life The Circadian Clock: Regulating the Rhythm of Life Christopher G. Gomez 1 1BIOC 462aH, University of Arizona Abstract The human body follows a daily cycle of sleep, of hunger which is independent of the

More information

Daily injection of insulin attenuated impairment of liver circadian clock oscillation in the streptozotocin-treated diabetic mouse

Daily injection of insulin attenuated impairment of liver circadian clock oscillation in the streptozotocin-treated diabetic mouse FEBS Letters 572 (2004) 206 210 FEBS 28689 Daily injection of insulin attenuated impairment of liver circadian clock oscillation in the streptozotocin-treated diabetic mouse Koji Kuriyama, Kei Sasahara,

More information

BioNSi: A Discrete Biological Network Simulator Tool

BioNSi: A Discrete Biological Network Simulator Tool BioNSi: A Discrete Biological Network Simulator Tool Amir Rubinstein 1, Noga Bracha 1, Liat Rudner 1, Noga Zucker 1, Hadas E. Sloin 2, and Benny Chor 1 1 Blavatnik School of Computer Science, Tel Aviv

More information