Computer-Aided Detection in Screening CT for

Size: px
Start display at page:

Download "Computer-Aided Detection in Screening CT for"

Transcription

1 Yuan et al. Screening CT for Pulmonary Chest Imaging Original Research C M E D E N T U R I C L I M G I N G JR 2006; 186: X/06/ merican Roentgen Ray Society Y O Ren Yuan 1 Patrick M. Vos 2 Peter L. Cooperberg 2 Yuan R, Vos PM, Cooperberg PL F Keywords: computer-aided detection, CT, low-dose CT, lung cancer, pulmonary nodules DOI: /JR Received December 27, 2004; accepted after revision March 14, Department of Radiology, Vancouver General Hospital, Vancouver, British Columbia, V5Z 1M9 Canada. 2 Department of Radiology, St. Paul s Hospital, 1081 Burrard St., Vancouver, British Columbia, V6Z 1Y6 Canada. ddress correspondence to P. L. Cooperberg. Computer-ided Detection in Screening CT for Pulmonary OBJECTIVE. Our objective was to evaluate the performance of a computer-aided detection (CD) system for pulmonary nodule detection using low-dose screening CT images. MTERILS ND METHODS. One hundred fifty consecutive low-dose screening CT examinations were independently evaluated by a radiologist and a CD pulmonary nodule detection system (R2 Technology) designed to identify nodules larger than 4 mm in maximum long-axis diameter. ll discrepancies between the two techniques were reviewed by one of another two radiologists working in consensus with the initial interpreting radiologist, and a true nodule count was determined. Detected nodules were classified by size, density, and location. The performance of the initial radiologist and the CD system were compared. RESULTS. The radiologist detected 518 nodules and the CD system, 934 nodules. Of the 1,106 separate nodules detected using the two techniques, 628 were classified as true nodules on consensus review. Of the true nodules present, the radiologist detected 518 (82%) of 628 nodules and the CD, 456 (73%) of 628 nodules. ll 518 radiologist-detected nodules were true nodules, and 456 (49%) of 934 of CD-detected nodules were true nodules. The radiologist missed 110 true nodules that were only detected by CD. In six patients, these were the only nodules detected in the examination, changing the imaging follow-up protocol. CD identified 478 lesions that on consensus review were false-positive nodules, a rate of 3.19 (478/150) per patient. CONCLUSION. CD detected 72.6% of true nodules and detected nodules in six (4%) patients not identified by radiologists, changing the imaging follow-up protocol of these subjects. In this study, the combined review of low-dose CT scans by both the radiologist and CD was necessary to identify all nodules. ung cancer is the leading cause L of cancer-related death [1, 2], with the current fatality rate exceeding that of the next three most common cancers (breast, prostate, and colorectal) combined. Multiple studies have shown that low-dose screening helical CT scans can detect peripheral lung cancers at an early stage [2 4]. Because of the prevalence of benign, stable lung nodules in current and former smokers, once a nodule is detected, serial follow-up scans must be performed to detect growth. The introduction of MDCT scanners has led to lung cancer screening studies with a larger number of thinner slices, resulting in the detection of more nodules [5, 6]. This increase in the number of images per CT examination makes the process of CT interpretation more time consuming and tedious for the radiologist. This can lead to decreased detection sensitivity for nodules caused by reviewer fatigue [1, 7 9]. Therefore, computerized methods for nodule detection to assist the radiologist may become important. Recently, computer-aided detection (CD) systems for lung nodules have been developed. Work has already begun to determine if CD can serve as a stand-alone replacement for the radiologist screener, or, if not, can it serve a role as a second pair of eyes to supplement the radiologist screener [1, 7, 8, 10 12]. We evaluated a CD system (ImageChecker CT LN-1000, R2 Technology) at our institution. The purpose of this study was to evaluate the value of this CD system for automated pulmonary nodule detection and potential as a stand-alone or as a supplement to the radiologist. Materials and Methods Image Data Between pril 2003 and February 2004, 150 consecutive patients (85 men, 65 women; mean 1280 JR:186, May 2006

2 Screening CT for Pulmonary Fig. 1 Computer-aided detection workstation user interface. Transaxial section at middle lung zone level contains lesion highlighted by green circle (right image panel). Yellow line indicates anatomic level of displayed section in coronal maximum intensity projection of pulmonary vascular tree (left upper image panel). 3D volume rendering (left lower image panel) of lesion displays anatomic location of lesion and relationship between lesion and surrounding structures (e.g., vessels and pleura). age, 61 ± 13 [SD] years) had low-dose unenhanced CT examinations for lung cancer screening or follow-up of previously detected pulmonary nodules. CT studies were performed on an MDCT scanner (LightSpeed, GE Healthcare) with a single breath-hold of less than 20 sec. cquisition parameters were identical in all patients (high speed mode; 1.5:1 pitch; table speed, 15 mm/sec; 1.25 mm collimation, 120 kvp, 80 ms). The original axial images with a 1.25-mm slice were used for the CD system. Images were reconstructed with 2.5-mm slice thickness for radiologist evaluation. These images were displayed on a conventional Windows-based (Microsoft) workstation with commercially available viewing software (efilm, Merge Technologies) and viewed by a radiologist. The average number of slices per patient at 1.25 mm was 404 (range, slices). utomated Nodule Detection Method The CD system consists of two parts: a CD server and a CD workstation. CT data are transferred from the CT scanner to the CD server over the network using the DICOM protocol. The CD server accepts and analyzes the scans by segmenting the lung parenchyma from the vessels, mediastinum, and chest wall. Other bridging techniques are used to include lesions that may be touching the chest wall. The CD workstation is user controlled. The findings of CD are presented in three windows on the monitor: the original 2D axial images; a lung nodule map (an anteroposterior projection such as a chest X-ray), and a 3D rendering image (Fig. 1). Suspected lesions are circled in green on the nodule map. When a green-circled nodule is clicked with the mouse, the appropriate axial slice will appear, with the suspected nodule encircled in green. lso, the appropriate region on the 3D window appears with the suspected nodule colored green. The 3D image can be rotated and otherwise modified for the radiologist to decide if it is a true nodule or not. The size, volume, and density of the nodule are displayed on the left. nodule can be added by the radiologist and it will be surrounded by a green hexagon. The size, volume, and density are then also determined by the CD system. Radiologist and CD Performance First, all CT examinations were interpreted by a radiology fellow experienced in detection of pulmonary nodules, using a PCS workstation (efilm, Merge Technologies) with a 2.5-mm slice thickness. Then the CT was processed by the CD system. The results of the two techniques were compared, and a final decision was made. If there was a discrepancy between the radiologist and the CD system, consensus was made with another of the two radiologists. The suspected nodules detected by CD were divided into four groups: both-positive (BP) referred to the true nodules detected by both CD and the radiologist, true-positive (TP) referred to the true nodules detected by CD but missed by the radiologist, false-negative (FN) referred to the true nodules detected by the radiologist but missed by CD, and false-positive (FP) referred to the structures detected by CD as a nodule but rejected by the radiologists. The location of the true nodules was classified as follows [7]. subpleural nodule had pleural contact. peripheral nodule was within 2 cm of, but not touching, the pleura. hilar nodule was within 2 cm of the hilum. central nodule was situated between the peripheral and hilar zones. The nodules were separated into the following three groups by diameter: less than 4 mm, greater than or equal to 4 mm but smaller than or equal to 10 mm, and greater than 10 mm. We also classified them into solid pulmonary nodules and nonsolid pulmonary nodules using the peak H of 100 as described by Miller D et al. (presented at the 2003 annual meeting of the Radiological Society of North merica). The performance of the CD system was evaluated in terms of nodule detected (especially additional nodules detected) and the number of false-positives per CT study. The reasons for CD false-negatives and false-positives were analyzed. Results There were 1,106 suspected nodules detected by either CD or radiologists. fter radiologist review, 628 were finally scored as true nodules. Of these, 518 (83%) of 628 nodules were detected by the radiologist and 456 (73%) of 628 were detected by CD. Of those, there were 110 (17.5%) true nodules (Fig. 2), which would have been missed by the radiologist without using the CD system. Importantly, six of the 150 (4%) patients were initially considered as normal by the radiologist and wouldn t have been recommended for follow-up without CD. However, CD missed 172 of 628 true nodules. In 56 (37.3%) of 150 patients, the results of nodule detection (number and location) corresponded between a radiologist and a CD system; of these, 16 patients did not have any nodules. Finally, 478 (51.2%) of 934 of the nodules detected by CD in 122 patients were rejected by the radiologist(s) as false-positives, for a rate of 3.19 (range, 0 26) falsepositives per CT study. JR:186, May

3 Yuan et al. n overview of the size distribution of true nodules and the corresponding detection performance of both techniques is given in Table 1. Of the 115 small nodules (< 4 mm) missed by CD (Table 1), besides the size algorithm limitation, lower density and contact to normal structures (e.g., pleura and vessel) further decreased the detection performance. Thirtyseven nodules had a peak attenuation value of Fig. 2 Transverse CT images with target field of view show solid nodules (green circles) only detected by computer-aided detection (CD) system. C, Small (< 4 mm) central nodule (), moderate (4 mm diameter 10 mm) peripheral nodule (B), and moderate (4 mm diameter 10 mm) nodule at hilum (C) were surrounded by similar-sized vessels, which make them difficult for radiologist to distinguish on 2D image. B C 1282 JR:186, May 2006

4 Screening CT for Pulmonary TBLE 1: Size Distribution and Nodule Detection Performance of Both Techniques Found by Computer-ided Detection and Radiologist(s) Diameter Total (n) Computer-ided Detection Only < 4 mm mm diameter 10 mm > 10 mm Total Fig. 3 Small solid nodules (< 4 mm; CT peak > 100 H) were missed by computeraided detection because of size algorithm. Some were in contact with the pleura () or vessels (B). Radiologist(s) Only B less than 100 H; 34 were in contact with the pleura (Fig. 3) or vessel (Fig. 3B). Fifty moderate nodules (4 mm diameter 10 mm) were missed by CD. Of these, six subpleural nodules were missed because they had pleural contact (Fig. 4). mong 44 of 50 central and peripheral nodules without obvious pleural contact, 21 had lower density (CT peak < 100 H) (Fig. 4B); 11 nodules were attached to a linear pleural tag or the normal intrapulmonary structures, such as fissure (Fig. 4C) and vessel (Fig. 4D) and thereby were excluded by the segmentation algorithm. There was no explanation for the other 12 nodules that were missed (Fig. 4E). Seven large nodules (> 10 mm) were missed by CD because of their continuity with normal structures, such as pleura (Fig. 5), fissure, or vessels. The location of 628 true nodules and the detection performances of both techniques are presented in Table 2. We found the detection performance of the CD system and the radiologist to be complementary (Fig. 6); the CD sensitivity was higher in hilar (100%) and the central area (84%), and the radiologist s sensitivity was higher in the peripheral area (86%) and subpleural area (98%). Of the 22 central nodules missed by CD, six were less than 4 mm. Two of the six were attached to normal structures (Fig. 3B); the other four had low density (CT peak < 100 H), which made them more difficult for CD to identify. With the other 16 central nodules greater than 4 mm, CD failed to detect them, possibly because of their lower density (n =8; CT peak < 100 H), or because they were abutting normal structures (n =6) and were thereby excluded by the segmentation algorithm. No explanation was determined for the remaining two nodules. Thirty-four subpleural nodules were missed by CD presumably because of the segmentation algorithm. In addition, 27 of them were smaller than 4 mm (Fig. 3). There were 116 peripheral nodules missed by CD; 82 (71%) of 116 were smaller than 4 mm (moreover, 31 of 82 had a peak attenuation value < 100 H). mong the remaining 34 (29%) nodules greater than 4 mm, a CT peak of less than 100 H was seen in 13 nodules (Fig. 4B). ttachment to the pleura (Fig. 5), vessel (Fig. 4D), and fissure (Fig. 4C) was seen in another 13 nodules; no obvious reason was found in the remaining eight nodules (Fig. 4E). CT peak greater than or equal to 100 H was seen in 561 (89.3%) of 628 true pulmonary nodules, which is considered to repre- JR:186, May

5 Yuan et al. sent a solid pulmonary nodule (Miller D et al., presented at the 2003 annual meeting of the Radiological Society of North merica). The detection sensitivity of solid pulmonary nodules was 80% (448 of 561 nodules) with CD and 81% for the radiologist (455 of 561 nodules). These are very close. Solid nodules were found only by CD and missed by the radiologist in 106 (18.9%) of 561 nodules (Fig. 2). CD missed 113 (20.1%) of 561 solid nodules. Seventy-eight (70%) of those were less than 4 mm (Fig. 3). mong the remaining 35 (30%) of 113 nodules greater than or equal to 4 mm, attachment to the pleura (Figs. 4 and 5) or fissure (Fig. 4C) and vessels (Fig. 4D) was seen in 23 of 35; no obvious reason was found in the remaining 12 (Fig. 4E). Reasons for the 478 false-positives from CD and thus defined as false-positive (FP) include vessel, 262 (55%); pleural, 114 (24%); B C Fig. 4 Computer-aided detection missed moderate (4 mm diameter 10 mm) nodules (surrounded by green hexagons) that resulted from contact with pleura (), lower density (CT peak < 100 H) (B), or contact with normal intrapulmonary structures (e.g., major fissure [C] and vessel [D]). Some were missed inexplicably (E). (Fig. 4 continues on next page) D 1284 JR:186, May 2006

6 Screening CT for Pulmonary Fig. 4 (continued) Computer-aided detection missed moderate (4 mm diameter 10 mm) nodules (surrounded by green hexagons) that resulted from contact with pleura (), lower density (CT peak < 100 H) (B), or contact with normal intrapulmonary structures (e.g., major fissure [C] and vessel [D]). Some were missed inexplicably (E). TBLE 2: Nodule Location Distribution and Detection Performance of Both Techniques Found by Computer-ided Location n a Computer-ided Detection Only (%) Detection and Radiologist(s) (%) Radiologist(s) Only (%) Hilar nodule 14 8/14 (57.1) 6/14 (42.9) 0/14 (0) Central nodule /141 (32.0) 74/141 (52.4) 22/141 (15.6) Peripheral nodule /386 (14.2) 215/386 (55.7) 116/386 (30.1) Subpleural nodule 87 2/87 (2.3) 51/87 (58.7) 34/87 (39) a Total n = 628. scars, 57 (12%); and others (e.g., bone, ground glass, and chest wall soft tissue), 45 (9%) (Fig. 7). Discussion CD systems hold promise for helping radiologists to increase detection sensitivity. For detecting pulmonary nodules, sensitivity is increased by performing thinner slices with MDCT [8]. Our study shows that compared with a radiologist interpreting a reasonable number of medium-slice thickness (2.5-mm) images, there can be an increased detection of pulmonary nodules in the range of 21.2% by the addition of CD using thinner slices (1.25 mm). wide variation exists in the detection sensitivity by CD of pulmonary nodules in previously published studies [1, 7, 8, 10]. The detection sensitivity was 84% in a study by rmato et al. [1], who used CD retrospectively in 31 patients with missed lung cancer. In Brown et al. [8], CD detected 74% of nodules in 15 patients who had lung cancer. In a study by Wormanns et al. [7], only 38% of nodules were detected in 85 healthy subjects. Goo et al. [10] studied 50 volunteers and found a sensitivity of 65%. In our study, CD had a 73% sensitivity in 150 patients. False-positive rates range from three to 13 per CT study [1, 7, 8, 10]. In our study, there were 3.19 false-positives per study. In our study, there was a high prevalence of nodules (mean, 4.18 per patient). This is because most cases were pulmonary nodule follow-ups of the original screening examinations performed in outside facilities, so very few cases had no nodules. Only 16 of the total 150 patients had no nodules detected, which might be a selection bias. Despite that, there E were six patients whose nodules were only detected by CD. In a screening situation, these patients would have been lost to followup, possibly missing cancers. The high false-negative rate of CD limits its application as a stand-alone technique. Missing true nodules by CD in our study was predominately due to size limitation ( 4 mm), attenuation limitation (CT peak 100 H), and the segmentation algorithm (CD only recognizes nodules entirely surrounded by lung parenchyma). Our results showed that these three factors are interactive in influencing the CD detection performance. However, this CD system still picked up 62 of the total 291 small nodules (< 4 mm) (Table 1). The reason is that although the current CD algorithm targets nodules with diameters greater than 4 mm and less than 30 mm (in which a nodule is more typically described as a mass), the CD algorithm also examines the nodular findings with diameters between 2 and 4 mm. For these smaller nodular findings, a stricter set of criteria on shape (i.e., more spherical) and location (i.e., clearly not part of adjacent structures) are applied to determine whether they are presented as CD findings. Further development of the technology hopefully will overcome these deficits. Our results also showed that CD and the radiologist worked in a complementary fashion in different lung zones because neither of them was able to find every nodule (Fig. 6). The radiologist has little difficulty in finding the peripheral and subpleural nodules even if they are small because there are no vessels of similar size near the pleural surface (Figs. 3 and 4). CD is more sensitive in showing central nodules (Fig. 2), especially hilar nodules among the large vessels, which are prone to be misinterpreted as vessels and overlooked by the radiologist. The high false-positive rate of CD requires the radiologists to look at each suspected nodule to confirm its authenticity. In our study, the false-positive nodules were seen in 122 of the total 150 patients, which contribute to 3.19 false-positive rate per study. lthough the analysis of nodules using one-way system (either by a CD system or a radiologist) was satisfactory in 56 (37.3%) patients of our study, radiologists still needed to look at 46 of 56 CT scans to reject the falsepositive. The causes of false-positives are vessel (54%), pleura (24%), and scar (12%). The others (10%) include consolidation, bone structure, and soft tissue of the chest wall. This has been described in other studies [1, 7, JR:186, May

7 Yuan et al. 8, 10, 12]. The particular software of our CD system facilitates differentiating falsepositives by the 3D-rendering image. The capability to rotate this image facilitates the distinction of a true nodule from the pulmonary vascular tree or pleural thickening. lthough the false-positive rate is a drawback, CD should have a high sensitivity even at the expense of a low specificity. Fig. 5 Computer-aided detection (CD) failed to detect large nodules (> 10 mm), presumably due to segmentation algorithm. contacted pleura (in circle) and normal intrapulmonary structures and therefore were extracted by CD segmentation algorithm. 120% 90% 60% 30% 0% 100% Hilar 43% 84% Central 68% 70% 86% Peripheral CD Radiologist 61% 98% Subpleural Fig. 6 Detection sensitivity between computer-aided detection (CD) and radiologist in nodules at different locations. Fig. 7 Transverse CT section shows computer-aided detection false-positive detections (in circle), which were vessels () or the pleura (B). B 1286 JR:186, May 2006

8 Screening CT for Pulmonary The main characteristic to diagnose malignant nodules is their growth over time [13 18]. lgorithms are already being developed to do temporal comparisons on followup studies. ll previously detected nodules would be automatically assessed to see if they have increased in volume and at what rate. This feature probably will greatly enhance the diagnostic value of CD systems in CT screening for early lung cancer [19]. CD software is useful to supplement radiologists detection performance. However, at present, it is not adequate as a stand-alone procedure. Furthermore, all suspected lesions detected by CD must be interpreted by radiologists to rule out false-positives. In the future, temporal comparison should further improve the usefulness of CD in the early detection of lung cancer. cknowledgment We wish to express appreciation to John Mayo for help in reviewing the manuscript. References 1. rmato SG 3rd, Li F, Giger ML, MacMahon H, Sone S, Doi K. Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program. Radiology 2002; 225: Nawa T, Nakagawa T, Kusano S, Kawasaki Y, Sugawara Y, Nakata H. Lung cancer screening using low-dose spiral CT: results of baseline and 1-year follow-up studies. Chest 2002; 122: Henschke CI, McCauley DI, Yankelevitz DF, et al. Early Lung Cancer ction Project: overall design and findings from baseline screening. Lancet 1999; 354: Diederich S, Wormanns D, Semik M, et al. Screening for early lung cancer with low-dose spiral CT: prevalence in 817 asymptomatic smokers. Radiology 2002; 222: Fischbach F, Knollmann F, Griesshaber V, Freund T, kkol E, Felix R. Detection of pulmonary nodules by multislice computed tomography: improved detection rate with reduced slice thickness. Eur Radiol 2003; 13: Diederich S, Semik M, Lentschig MG, et al. Helical CT of pulmonary nodules in patients with extrathoracic malignancy: CT-surgical correlation. JR 1999; 172: Wormanns D, Fiebich M, Saidi M, Diederich S, Heindel W. utomatic detection of pulmonary nodules at spiral CT: clinical application of a computer-aided diagnosis system. Eur Radiol 2002; 12: Brown MS, Goldin JG, Suh RD, McNitt-Gray MF, Sayre JW, berle DR. Lung micronodules: automated method for detection at thin-section CT: initial experience. Radiology 2003; 226: Li F, Sone S, be H, MacMahon H, rmato SG 3rd, Doi K. Lung cancers missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings. Radiology 2002; 225: Goo JM, Lee JW, Lee HJ, Kim S, Kim JH, Im JG. utomated lung nodule detection at low-dose CT: preliminary experience. Korean J Radiol 2003; 4: rmato SG 3rd, Giger ML, Moran CJ, Blackburn JT, Doi K, MacMahon H. Computerized detection of pulmonary nodules on CT scans. RadioGraphics 1999; 19: wai K, Murao K, Ozawa, et al. Pulmonary nodules at chest CT: effect of computer-aided diagnosis on radiologists performance. Radiology 2004; 230: Shaham D, Guralnik L. The solitary pulmonary nodule: radiologic considerations. Semin Ultrasound CT MR 2000; 21: Yankelevitz DF, Reeves P, Kostis WJ, Zhao B, Henschke CI. Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation. Radiology 2000; 217: Swensen SJ. Functional CT: lung nodule evaluation. RadioGraphics 2000; 20: Yankelevitz DF, Gupta R, Zhao B, Henschke CI. Small pulmonary nodules: evaluation with repeat CT preliminary experience. Radiology 1999; 212: Hasegawa M, Sone S, Takashima S, et al. Growth rate of small lung cancers detected on mass CT screening. Br J Radiol 2000; 73: Wang JC, Sone S, Feng L, et al. Rapidly growing small peripheral lung cancers detected by screening CT: correlation between radiological appearance and pathological features. Br J Radiol 2000; 73: Ko JP, Betke M. Chest CT: automated nodule detection and assessment of change over time preliminary experience. Radiology 2001; 218: JR:186, May

Pulmonary Nodule Volumetric Measurement Variability as a Function of CT Slice Thickness and Nodule Morphology

Pulmonary Nodule Volumetric Measurement Variability as a Function of CT Slice Thickness and Nodule Morphology CT of Pulmonary Nodules Chest Imaging Original Research Myria Petrou 1 Leslie E. Quint 1 in Nan 2 Laurence H. aker 3 Petrou M, Quint LE, Nan, aker LH Keywords: chest, lung disease, MDCT, oncologic imaging,

More information

Small Pulmonary Nodules: Our Preliminary Experience in Volumetric Analysis of Doubling Times

Small Pulmonary Nodules: Our Preliminary Experience in Volumetric Analysis of Doubling Times Small Pulmonary Nodules: Our Preliminary Experience in Volumetric Analysis of Doubling Times Andrea Borghesi, MD Davide Farina, MD Roberto Maroldi, MD Department of Radiology University of Brescia Brescia,

More information

Low-dose CT Lung Cancer Screening Guidelines for Pulmonary Nodules Management Version 2

Low-dose CT Lung Cancer Screening Guidelines for Pulmonary Nodules Management Version 2 Low-dose CT Lung Cancer Screening Guidelines for Pulmonary Nodules Management Version 2 The Committee for Management of CT-screening-detected Pulmonary Nodules 2009-2011 The Japanese Society of CT Screening

More information

Chapter 5. Pulmonary nodules detected at lung cancer screening: Interobserver variability of semiautomated volume measurements

Chapter 5. Pulmonary nodules detected at lung cancer screening: Interobserver variability of semiautomated volume measurements Chapter 5 Pulmonary nodules detected at lung cancer screening: Interobserver variability of semiautomated volume measurements Hester Gietema Ying Wang Dongming Xu Rob van Klaveren Harry de Koning Ernst

More information

Identification of Missed Pulmonary Nodules on Low Dose CT Lung Cancer Screening Studies Using an Automatic Detection System

Identification of Missed Pulmonary Nodules on Low Dose CT Lung Cancer Screening Studies Using an Automatic Detection System Identification of Missed Pulmonary Nodules on Low Dose CT Lung Cancer Screening Studies Using an Automatic Detection System Carol L. Novak *a, Li Fan a, Jianzhong Qian a, Guo-Qing Wei a, David P. Naidich

More information

Guidelines for the Management of Pulmonary Nodules Detected by Low-dose CT Lung Cancer Screening

Guidelines for the Management of Pulmonary Nodules Detected by Low-dose CT Lung Cancer Screening Guidelines for the Management of Pulmonary Nodules Detected by Low-dose CT Lung Cancer Screening 1. Introduction In January 2005, the Committee for Preparation of Clinical Practice Guidelines for the Management

More information

Chapter 6. Hester Gietema Cornelia Schaefer-Prokop Willem Mali Gerard Groenewegen Mathias Prokop. Accepted for publication in Radiology

Chapter 6. Hester Gietema Cornelia Schaefer-Prokop Willem Mali Gerard Groenewegen Mathias Prokop. Accepted for publication in Radiology Chapter 6 Interscan variability of semiautomated volume measurements in intraparenchymal pulmonary nodules using multidetector-row computed tomography: Influence of inspirational level, nodule size and

More information

Small solid noncalcified pulmonary nodules detected by screening chest computed tomography

Small solid noncalcified pulmonary nodules detected by screening chest computed tomography Respiratory Medicine (2007) 101, 1880 1884 Small solid noncalcified pulmonary nodules detected by screening chest computed tomography Sang-Man Jin a,b, Seung-Ho Choi c, Chul-Gyu Yoo a,b, Young-Whan Kim

More information

Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume

Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume Eur Radiol (2012) 22:2076 2084 DOI 10.1007/s00330-012-2437-y CHEST Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume Yingru Zhao

More information

Copyright 2008 Society of Photo Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE, vol. 6915, Medical Imaging 2008:

Copyright 2008 Society of Photo Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE, vol. 6915, Medical Imaging 2008: Copyright 2008 Society of Photo Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE, vol. 6915, Medical Imaging 2008: Computer Aided Diagnosis and is made available as an

More information

Computer-Aided Volumetry of Pulmonary Nodules Exhibiting Ground-Glass Opacity at MDCT

Computer-Aided Volumetry of Pulmonary Nodules Exhibiting Ground-Glass Opacity at MDCT Cardiopulmonary Imaging Original Research Oda et al. MDCT and Volumetry of Pulmonary Nodules Cardiopulmonary Imaging Original Research Computer-Aided Volumetry of Pulmonary Nodules Exhibiting Ground-Glass

More information

Measurement error of spiral CT Volumetry:

Measurement error of spiral CT Volumetry: Measurement error of spiral CT Volumetry: Influence of Low Dose CT Technique 1 Tae Gyu Lee, M.D. 2, Myung Jin Chung, M.D., Sung Bum Cho, M.D. 2, Jae Min Cho, M.D., Seog Joon Kim, M.D. 2, Sang Hyun Baik,

More information

Malignant solitary pulmonary nodules: assessment of mass growth rate and doubling time at follow-up CT

Malignant solitary pulmonary nodules: assessment of mass growth rate and doubling time at follow-up CT Original Article Malignant solitary pulmonary nodules: assessment of mass growth rate and doubling time at follow-up CT Jingxu Li*, Tingting Xia*, Xinguan Yang, Xiao Dong, Jiamin Liang, Nanshan Zhong,

More information

Computer-aided Detection of Peripheral Lung Cancers Missed at CT: ROC Analyses without and with Localization 1

Computer-aided Detection of Peripheral Lung Cancers Missed at CT: ROC Analyses without and with Localization 1 Feng Li, MD, PhD Hidetaka Arimura, PhD Kenji Suzuki, PhD Junji Shiraishi, PhD Qiang Li, PhD Hiroyuki Abe, MD, PhD Roger Engelmann, MS Shusuke Sone, MD, PhD Heber MacMahon, MD Kunio Doi, PhD Published online

More information

Radiation Exposure in Pregnancy. John R. Mayo UNIVERSITY OF BRITISH COLUMBIA

Radiation Exposure in Pregnancy. John R. Mayo UNIVERSITY OF BRITISH COLUMBIA Radiation Exposure in Pregnancy John R. Mayo UNIVERSITY OF BRITISH COLUMBIA Illustrative Clinical Scenario 32 year old female 34 weeks pregnant with recent onset shortness of breath and central chest pain

More information

Methods and validation of nodule measurement in a lung cancer screening Ying, Wang

Methods and validation of nodule measurement in a lung cancer screening Ying, Wang University of Groningen Methods and validation of nodule measurement in a lung cancer screening Ying, Wang IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish

More information

Computer Assisted Radiology and Surgery

Computer Assisted Radiology and Surgery Computer Assisted Radiology and Surgery How Can a Massive Training Artificial Neural Network (MTANN) Be Trained With a Small Number of Cases in the Distinction Between Nodules and Vessels in Thoracic CT?

More information

Pulmonary Nodules: Contrast- Enhanced Volumetric Variation at Different CT Scan Delays

Pulmonary Nodules: Contrast- Enhanced Volumetric Variation at Different CT Scan Delays Cardiopulmonary Imaging Original Research Rampinelli et al. Contrast-Enhanced CT of Pulmonary Nodules Cardiopulmonary Imaging Original Research Cristiano Rampinelli 1 Sara Raimondi 2 Mauro Padrenostro

More information

Copyright 2007 IEEE. Reprinted from 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, April 2007.

Copyright 2007 IEEE. Reprinted from 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, April 2007. Copyright 27 IEEE. Reprinted from 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, April 27. This material is posted here with permission of the IEEE. Such permission of the

More information

Early detection of lung cancer may improve patient mortality. Computed tomography (CT) as a screening tool has been evaluated in several large screeni

Early detection of lung cancer may improve patient mortality. Computed tomography (CT) as a screening tool has been evaluated in several large screeni Note: This copy is for your personal non-commercial use only. To order presentation-ready copies for distribution to your colleagues or clients, contact us at www.rsna.org/rsnarights. Rebecca M. Lindell,

More information

PULMONARY NODULES AND MASSES : DIAGNOSTIC APPROACH AND NEW MANAGEMENT GUIDELINES. https://tinyurl.com/hmpn2018

PULMONARY NODULES AND MASSES : DIAGNOSTIC APPROACH AND NEW MANAGEMENT GUIDELINES. https://tinyurl.com/hmpn2018 PULMONARY NODULES AND MASSES : DIAGNOSTIC APPROACH AND NEW MANAGEMENT GUIDELINES Heber MacMahon MB, BCh Department of Radiology The University of Chicago https://tinyurl.com/hmpn2018 Disclosures Consultant

More information

C2 COMPLETION INSTRUCTIONS

C2 COMPLETION INSTRUCTIONS The C2 Form is completed for each screening exam at T0, T1, and T2. The C2 Form is to be completed by each of the following ACRIN-NLST study staff: the research associate (study coordinator), CT technologist,

More information

LUNG CANCER continues to rank as the leading cause

LUNG CANCER continues to rank as the leading cause 1138 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 9, SEPTEMBER 2005 Computer-Aided Diagnostic Scheme for Distinction Between Benign and Malignant Nodules in Thoracic Low-Dose CT by Use of Massive

More information

Mayo Clinic College of Medicine, Rochester, Minnesota, USA

Mayo Clinic College of Medicine, Rochester, Minnesota, USA The Oncologist Lung Cancer Commentary: CT Screening for Lung Cancer Caveat Emptor JAMES R. JETT,DAVID E. MIDTHUN Mayo Clinic College of Medicine, Rochester, Minnesota, USA Key Words. CT screening Early

More information

Lung nodule volumetry: segmentation algorithms within the same software package cannot be used interchangeably

Lung nodule volumetry: segmentation algorithms within the same software package cannot be used interchangeably Eur Radiol (2010) 20: 1878 1885 DOI 10.1007/s00330-010-1749-z COMPUTED TOMOGRAPHY H. Ashraf B. de Hoop S. B. Shaker A. Dirksen K. S. Bach H. Hansen M. Prokop J. H. Pedersen Lung nodule volumetry: segmentation

More information

Clinical Significance of Lung Nodules Reported on Abdominal CT

Clinical Significance of Lung Nodules Reported on Abdominal CT Cardiopulmonary Imaging Original Research Alpert et al. Significance of Lung Nodules on Abdominal CT Cardiopulmonary Imaging Original Research Jeffrey B. Alpert 1 John P. Fantauzzi Kira Melamud Heather

More information

Effect of CT Image Compression on Computer-assisted Lung Nodule Volume Measurement 1

Effect of CT Image Compression on Computer-assisted Lung Nodule Volume Measurement 1 Computer Applications Radiology Jane P. Ko, MD Jeffrey Chang, MD Elan Bomsztyk, BS James S. Babb, PhD David P. Naidich, MD Henry Rusinek, PhD Published online before print 10.1148/radiol.2371041079 Radiology

More information

Cardiopulmonary Imaging Original Research

Cardiopulmonary Imaging Original Research Cardiopulmonary Imaging Original Research Ebner et al. MIP and CAD Algorithms in CT for Lung Cancer Screening Cardiopulmonary Imaging Original Research Lukas Ebner 1 Justus E. Roos 1 Jared D. Christensen

More information

Chapter 11. Summary and general discussion

Chapter 11. Summary and general discussion Chapter 11 Summary and general discussion Low Dose Computed Tomography of the Chest: Applications and Limitations INTRODUCTION The introduction of spiral, multidetector-row computed tomography (CT) has

More information

LOW DOSE SPIRAL COMPUTERIZED TOMOGRAPHY (LDCT) SCREENING FOR LUNG CANCER

LOW DOSE SPIRAL COMPUTERIZED TOMOGRAPHY (LDCT) SCREENING FOR LUNG CANCER LOW DOSE SPIRAL COMPUTERIZED TOMOGRAPHY (LDCT) SCREENING FOR LUNG CANCER A Technology Assessment INTRODUCTION The California Technology Assessment Forum is requested to review the scientific evidence for

More information

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 4, APRIL

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 4, APRIL IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 4, APRIL 2006 435 On Measuring the Change in Size of Pulmonary Nodules Anthony P. Reeves*, Senior Member, IEEE, Antoni B. Chan, David F. Yankelevitz,

More information

I9 COMPLETION INSTRUCTIONS

I9 COMPLETION INSTRUCTIONS The I9 Form is completed for each screening exam at T0, T1, and T2. At T0 (baseline), the I9 documents comparison review of the baseline screen (C2 Form) with any historical images available. At T1 and

More information

Characterization of the Solitary Pulmonary Nodule: 18 F-FDG PET Versus Nodule-Enhancement CT

Characterization of the Solitary Pulmonary Nodule: 18 F-FDG PET Versus Nodule-Enhancement CT PET vs CT of Solitary Pulmonary Nodules Nuclear Medicine Original Research C D E M N E U T R Y L I M C I G O F I N G Characterization of the Solitary Pulmonary Nodule: 18 F-FDG PET Versus Nodule-Enhancement

More information

CT Screening for Lung Cancer: Frequency and Significance of Part-Solid and Nonsolid Nodules

CT Screening for Lung Cancer: Frequency and Significance of Part-Solid and Nonsolid Nodules Claudia I. Henschke 1 David F. Yankelevitz 1 Rosna Mirtcheva 1 Georgeann McGuinness 2 Dorothy McCauley 1 0lli S. Miettinen 3 for the ELCAP Group Received June 19, 2001; accepted after revision November

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of

More information

Common Blind Spots on Chest CT: Where Are They All Hiding? Part 1 Airways, Lungs, and Pleura

Common Blind Spots on Chest CT: Where Are They All Hiding? Part 1 Airways, Lungs, and Pleura Residents Section Structured Review Wu et al. Common lind Spots on Chest CT Residents Section Structured Review Carol C. Wu 1 Leila Khorashadi 2 Gerald F. bbott 1 Matthew D. Gilman 1 Wu CC, Khorashadi

More information

HRCT Versus Volume Rendering (Three Colors, Three Densities Lung Images) in Diagnosis of Small Airway Disease: A Comparative Study

HRCT Versus Volume Rendering (Three Colors, Three Densities Lung Images) in Diagnosis of Small Airway Disease: A Comparative Study Med. J. Cairo Univ., Vol. 84, No. 1, March: 359-364, 2016 www.medicaljournalofcairouniversity.net HRCT Versus Volume Rendering (Three Colors, Three Densities Lung Images) in Diagnosis of Small Airway Disease:

More information

Prevent Cancer Foundation Quantitative Imaging Workshop XIII

Prevent Cancer Foundation Quantitative Imaging Workshop XIII Status of the Quantitative Imaging Profile Lung Nodule Volume Assessment and Monitoring in Low Dose CT Screening Prevent Cancer Foundation Quantitative Imaging Workshop XIII June 13-14, 2016 David S. Gierada,

More information

GUIDELINES FOR PULMONARY NODULE MANAGEMENT : RECENT CHANGES AND UPDATES

GUIDELINES FOR PULMONARY NODULE MANAGEMENT : RECENT CHANGES AND UPDATES Venice 2017 GUIDELINES FOR PULMONARY NODULE MANAGEMENT : RECENT CHANGES AND UPDATES Heber MacMahon MB, BCh Department of Radiology The University of Chicago Disclosures Consultant for Riverain Medical

More information

May-Lin Wilgus. A. Study Purpose and Rationale

May-Lin Wilgus. A. Study Purpose and Rationale Utility of a Computer-Aided Diagnosis Program in the Evaluation of Solitary Pulmonary Nodules Detected on Computed Tomography Scans: A Prospective Observational Study May-Lin Wilgus A. Study Purpose and

More information

Small Pulmonary Nodules: Volume Measurement at Chest CT Phantom Study 1

Small Pulmonary Nodules: Volume Measurement at Chest CT Phantom Study 1 Jane P. Ko, MD Henry Rusinek, PhD Erika L. Jacobs, MD James S. Babb, PhD Margrit Betke, PhD Georgeann McGuinness, MD David P. Naidich, MD Index terms: Computed tomography (CT), image processing, 60.12117

More information

MEASUREMENT OF EFFECT SOLID TUMOR EXAMPLES

MEASUREMENT OF EFFECT SOLID TUMOR EXAMPLES MEASUREMENT OF EFFECT SOLID TUMOR EXAMPLES Although response is not the primary endpoint of this trial, subjects with measurable disease will be assessed by standard criteria. For the purposes of this

More information

Copyright 2008 Society of Photo Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE, vol. 6915, Medical Imaging 2008:

Copyright 2008 Society of Photo Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE, vol. 6915, Medical Imaging 2008: Copyright 28 Society of Photo Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE, vol. 695, Medical Imaging 28: Computer Aided Diagnosis and is made available as an electronic

More information

Copyright 2007 Society of Photo Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE, volume 6514, Medical Imaging

Copyright 2007 Society of Photo Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE, volume 6514, Medical Imaging Copyright 2007 Society of Photo Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE, volume 6514, Medical Imaging 2007: Computer Aided Diagnosis and is made available as

More information

Volume and Mass Doubling Times of Persistent Pulmonary Subsolid Nodules Detected in Patients without Known Malignancy 1

Volume and Mass Doubling Times of Persistent Pulmonary Subsolid Nodules Detected in Patients without Known Malignancy 1 Note: This copy is for your personal non-commercial use only. To order presentation-ready copies for distribution to your colleagues or clients, contact us at www.rsna.org/rsnarights. Original Research

More information

Role of CT imaging to evaluate solitary pulmonary nodule with extrapulmonary neoplasms

Role of CT imaging to evaluate solitary pulmonary nodule with extrapulmonary neoplasms Original Research Article Role of CT imaging to evaluate solitary pulmonary nodule with extrapulmonary neoplasms Anand Vachhani 1, Shashvat Modia 1*, Varun Garasia 1, Deepak Bhimani 1, C. Raychaudhuri

More information

CT Low Dose Lung Cancer Screening. Part I. Journey to LDCT LCS Program

CT Low Dose Lung Cancer Screening. Part I. Journey to LDCT LCS Program CT Low Dose Lung Cancer Screening Part I Journey to LDCT LCS Program Paul Johnson, M.S., DABHP, DABR Cleveland Clinic September 26, 2015 Lung Caner is No. 1 In Cancer Related Death In The United States

More information

Improvement of Image Quality with ß-Blocker Premedication on ECG-Gated 16-MDCT Coronary Angiography

Improvement of Image Quality with ß-Blocker Premedication on ECG-Gated 16-MDCT Coronary Angiography 16-MDCT Coronary Angiography Shim et al. 16-MDCT Coronary Angiography Sung Shine Shim 1 Yookyung Kim Soo Mee Lim Received December 1, 2003; accepted after revision June 1, 2004. 1 All authors: Department

More information

Outcomes in the NLST. Health system infrastructure needs to implement screening

Outcomes in the NLST. Health system infrastructure needs to implement screening Outcomes in the NLST Health system infrastructure needs to implement screening Denise R. Aberle, MD Professor of Radiology and Bioengineering David Geffen School of Medicine at UCLA 1 Disclosures I have

More information

An Improved Pulmonary Nodule Detection Scheme based on Multi-Layered Filtering and 3d Distance Metrics

An Improved Pulmonary Nodule Detection Scheme based on Multi-Layered Filtering and 3d Distance Metrics An Improved Pulmonary Nodule Detection Scheme based on Multi-Layered Filtering and 3d Distance Metrics Baber Jahangir International Islamic University Islamabad Pakistan Muhammad Imran Shaheed Zulfikar

More information

Loren Ketai, MD; Mathurn Malby, BS; Kirk Jordan, MD; Andrew Meholic, MD; and Julie Locken, MD

Loren Ketai, MD; Mathurn Malby, BS; Kirk Jordan, MD; Andrew Meholic, MD; and Julie Locken, MD Small Nodules Detected on Chest Radiography* Does Size Predict Calcification? Loren Ketai, MD; Mathurn Malby, BS; Kirk Jordan, MD; Andrew Meholic, MD; and Julie Locken, MD Study objectives: To determine

More information

OBJECTIVES. Solitary Solid Spiculated Nodule. What would you do next? Case Based Discussion: State of the Art Management of Lung Nodules.

OBJECTIVES. Solitary Solid Spiculated Nodule. What would you do next? Case Based Discussion: State of the Art Management of Lung Nodules. Organ Imaging : September 25 2015 OBJECTIVES Case Based Discussion: State of the Art Management of Lung Nodules Dr. Elsie T. Nguyen Dr. Kazuhiro Yasufuku 1. To review guidelines for follow up and management

More information

Hypothesis on the Evolution of Cavitary Lesions in Nontuberculous Mycobacterial Pulmonary Infection: Thin-Section CT and Histopathologic Correlation

Hypothesis on the Evolution of Cavitary Lesions in Nontuberculous Mycobacterial Pulmonary Infection: Thin-Section CT and Histopathologic Correlation CT of Nontuberculous Mycobacterial Pulmonary Infection Tae Sung Kim 1 Won-Jung Koh 2 Joungho Han 3 Myung Jin Chung 1 Ju Hyun Lee 1 Kyung Soo Lee 1 O Jung Kwon 2 Kim TS, Koh W-J, Han J, et al. Received

More information

Ultralow Dose Chest CT with MBIR

Ultralow Dose Chest CT with MBIR Ultralow Dose Chest CT with MBIR Ella A. Kazerooni, M.D. Professor & Director Cardiothoracic Radiology Associate Chair for Clinical Affairs University of Michigan Disclosures Consultant: GE Healthcare

More information

Original Article Thoracic Imaging

Original Article Thoracic Imaging Original Article Thoracic Imaging https://doi.org/10.3348/kjr.2018.19.4.803 pissn 1229-6929 eissn 2005-8330 Korean J Radiol 2018;19(4):803-808 Radiological Report of Pilot Study for the Korean Lung Cancer

More information

CT Screening for Lung Cancer for High Risk Patients

CT Screening for Lung Cancer for High Risk Patients CT Screening for Lung Cancer for High Risk Patients The recently published National Lung Cancer Screening Trial (NLST) showed that low-dose CT screening for lung cancer reduces mortality in high-risk patients

More information

VA PARTNERSHIP Increase ACCESS to LUNG SCREENING

VA PARTNERSHIP Increase ACCESS to LUNG SCREENING VA PARTNERSHIP Increase ACCESS to LUNG SCREENING Project PI: Drew Moghanaki, MD, MPH Clinical Co-PI: Claudia Henschke, PhD, MD Technical Co-PI: Rick Avila, MS Sponsored by the Bristol-Myers Squibb Foundation

More information

New Horizons in the Imaging of the Lung

New Horizons in the Imaging of the Lung New Horizons in the Imaging of the Lung Postprocessing. How to do it and when do we need it? Peter M.A. van Ooijen, MSc, PhD Principal Investigator, Radiology, UMCG Discipline Leader Medical Imaging Informatics

More information

LUNG NODULE SEGMENTATION FOR COMPUTER AIDED DIAGNOSIS

LUNG NODULE SEGMENTATION FOR COMPUTER AIDED DIAGNOSIS LUNG NODULE SEGMENTATION FOR COMPUTER AIDED DIAGNOSIS Manjula.T 1 Sheela.S 2 Shanthala.C.P 3 1 Fourth Sem M.Tech (CSE), CIT Gubbi, Tumkur. Email: manjula.t44@gmail.com 2 Asst. Professor, Dept of CSE, CIT

More information

With the introduction of multidetector computed tomography (CT) and the ongoing advances in multidetector CT technology, the detection of small pulmon

With the introduction of multidetector computed tomography (CT) and the ongoing advances in multidetector CT technology, the detection of small pulmon Note: This copy is for your personal non-commercial use only. To order presentation-ready copies for distribution to your colleagues or clients, contact us at www.rsna.org/rsnarights. Effect of Nodule

More information

Automated Detection of Polyps from Multi-slice CT Images using 3D Morphologic Matching Algorithm: Phantom Study

Automated Detection of Polyps from Multi-slice CT Images using 3D Morphologic Matching Algorithm: Phantom Study Automated Detection of Polyps from Multi-slice CT Images using 3D Morphologic Matching Algorithm: Phantom Study Yonghum Na, Jin Sung Kim, Bruce R Whiting, K. Ty Bae Electronic Radiology Laboratory, Mallinckrodt

More information

Capturing Data Elements and the Role of Imaging Informatics

Capturing Data Elements and the Role of Imaging Informatics Capturing Data Elements and the Role of Imaging Informatics William Hsu, PhD Medical Imaging Informatics Group Dept of Radiological Sciences University of California, Los Angeles Disclosures None Overview

More information

Nodular Ground-Glass Opacities on Thin-section CT: Size Change during Follow-up and Pathological Results

Nodular Ground-Glass Opacities on Thin-section CT: Size Change during Follow-up and Pathological Results Nodular Ground-Glass Opacities on Thin-section CT: Size Change during Follow-up and Pathological Results Hyun Ju Lee, MD 1 Jin Mo Goo, MD 1 Chang Hyun Lee, MD 1 Chul-Gyu Yoo, MD 2 Young Tae Kim, MD 3 Jung-Gi

More information

THE BENEFITS OF BIG DATA

THE BENEFITS OF BIG DATA THE BENEFITS OF BIG DATA Disclosures I am a named inventor on a number of patents and patent applications relating to the evaluation of pulmonary nodules on CT scans of the chest which are owned by Cornell

More information

CT Fluoroscopy-Guided vs Multislice CT Biopsy ModeGuided Lung Biopies:a preliminary experience

CT Fluoroscopy-Guided vs Multislice CT Biopsy ModeGuided Lung Biopies:a preliminary experience CT Fluoroscopy-Guided vs Multislice CT Biopsy ModeGuided Lung Biopies:a preliminary experience Poster No.: C-0097 Congress: ECR 2016 Type: Scientific Exhibit Authors: A. Casarin, G. Rech, C. Cicero, A.

More information

Acknowledgments. A Specific Diagnostic Task: Lung Nodule Detection. A Specific Diagnostic Task: Chest CT Protocols. Chest CT Protocols

Acknowledgments. A Specific Diagnostic Task: Lung Nodule Detection. A Specific Diagnostic Task: Chest CT Protocols. Chest CT Protocols Personalization of Pediatric Imaging in Terms of Needed Indication-Based Quality Per Dose Acknowledgments Duke University Medical Center Ehsan Samei, PhD Donald Frush, MD Xiang Li PhD DABR Cleveland Clinic

More information

With the widespread use of computed tomography (CT) in clinical practice and the introduction of CT screening for lung cancer, faint or small nodules

With the widespread use of computed tomography (CT) in clinical practice and the introduction of CT screening for lung cancer, faint or small nodules Note: This copy is for your personal, non-commercial use only. To order presentation-ready copies for distribution to your colleagues or clients, contact us at www.rsna.org/rsnarights. ORIGINAL RESEARCH

More information

General Imaging. Imaging modalities. Incremental CT. Multislice CT Multislice CT [ MDCT ]

General Imaging. Imaging modalities. Incremental CT. Multislice CT Multislice CT [ MDCT ] General Imaging Imaging modalities Conventional X-rays Ultrasonography [ US ] Computed tomography [ CT ] Radionuclide imaging Magnetic resonance imaging [ MRI ] Angiography conventional, CT,MRI Interventional

More information

The latest developments - Automated Breast Volume Scanning. Dr. med. M. Golatta

The latest developments - Automated Breast Volume Scanning. Dr. med. M. Golatta The latest developments - Automated Breast Volume Scanning Dr. med. M. Golatta Automated Breast Volume US: Why? o Mammography is limited in dense breasts: high false negative rate o Many of these tumors

More information

Low-Dose CT: Clinical Studies & the Radiologist Perspective

Low-Dose CT: Clinical Studies & the Radiologist Perspective Low-Dose CT: Clinical Studies & the Radiologist Perspective RD-ASiR RD-MBIR SD-FBP RD=0.35 msv (80% dose reduction) Perry J. Pickhardt, MD UW School of Medicine & Public Health Low-Dose CT: Clinical Overview

More information

Improved image quality of low-dose thoracic CT examinations with a new postprocessing software*

Improved image quality of low-dose thoracic CT examinations with a new postprocessing software* JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 11, NUMBER 3, Summer 2010 Improved image quality of low-dose thoracic CT examinations with a new postprocessing software* Anne Catrine Traegde Martinsen,

More information

Cryptogenic Organizing Pneumonia Diagnosis Approach Based on a Clinical-Radiologic-Pathologic Consensus

Cryptogenic Organizing Pneumonia Diagnosis Approach Based on a Clinical-Radiologic-Pathologic Consensus Cryptogenic Organizing Pneumonia Diagnosis Approach Based on a Clinical-Radiologic-Pathologic Consensus Poster No.: C-1622 Congress: ECR 2012 Type: Scientific Exhibit Authors: C. Cordero Lares, E. Zorita

More information

Copyright 2009 Society of Photo Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE, vol. 7260, Medical Imaging 2009:

Copyright 2009 Society of Photo Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE, vol. 7260, Medical Imaging 2009: Copyright 2009 Society of Photo Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE, vol. 7260, Medical Imaging 2009: Computer Aided Diagnosis and is made available as an

More information

Imaging Decisions Start Here SM

Imaging Decisions Start Here SM Owing to its high resolution and wide anatomic coverage, dynamic first-pass perfusion 320-detector-row CT outperforms PET/CT for distinguishing benign from malignant lung nodules, researchers from Japan

More information

Comparison of High-resolution CT Findings between Miliary Metastases and Miliary Tuberculosis 1

Comparison of High-resolution CT Findings between Miliary Metastases and Miliary Tuberculosis 1 Comparison of High-resolution CT Findings between Miliary Metastases and Miliary Tuberculosis 1 Chan Sung Kim, M.D., Ki-Nam Lee, M.D., Jin Hwa Lee, M.D. Purpose: To compare the findings of high-resolution

More information

With recent advances in diagnostic imaging technologies,

With recent advances in diagnostic imaging technologies, ORIGINAL ARTICLE Management of Ground-Glass Opacity Lesions Detected in Patients with Otherwise Operable Non-small Cell Lung Cancer Hong Kwan Kim, MD,* Yong Soo Choi, MD,* Kwhanmien Kim, MD,* Young Mog

More information

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it. Copyright 2009 IEEE. Reprinted from 31 st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. EMBC 2009. Sept. 2009. This material is posted here with permission

More information

LUNG NODULE SEGMENTATION IN COMPUTED TOMOGRAPHY IMAGE. Hemahashiny, Ketheesan Department of Physical Science, Vavuniya Campus

LUNG NODULE SEGMENTATION IN COMPUTED TOMOGRAPHY IMAGE. Hemahashiny, Ketheesan Department of Physical Science, Vavuniya Campus LUNG NODULE SEGMENTATION IN COMPUTED TOMOGRAPHY IMAGE Hemahashiny, Ketheesan Department of Physical Science, Vavuniya Campus tketheesan@vau.jfn.ac.lk ABSTRACT: The key process to detect the Lung cancer

More information

Copyright 2003 IEEE. Reprinted from IEEE Transactions on Medical Imaging, vol. 22, no. 10, pp , Oct

Copyright 2003 IEEE. Reprinted from IEEE Transactions on Medical Imaging, vol. 22, no. 10, pp , Oct Copyright 2003 IEEE. Reprinted from IEEE Transactions on Medical Imaging, vol. 22, no. 10, pp. 1259-1274, Oct. 2003. This material is posted here with permission of the IEEE. Such permission of the IEEE

More information

Purpose. Methods and Materials

Purpose. Methods and Materials Thin-section CT findings in peripheral lung cancer of 3 cm or smaller: are there any characteristic features for predicting tumor histology or do they depend only on tumor size? Poster No.: C-1893 Congress:

More information

Copyright 2008 Society of Photo Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE, vol. 6915, Medical Imaging 2008:

Copyright 2008 Society of Photo Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE, vol. 6915, Medical Imaging 2008: Copyright 2008 Society of Photo Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE, vol. 6915, Medical Imaging 2008: Computer Aided Diagnosis and is made available as an

More information

Histopathological and CT Imaging Correlation of Various Primary Lung Carcinoma

Histopathological and CT Imaging Correlation of Various Primary Lung Carcinoma IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-issn: 2279-0853, p-issn: 2279-0861.Volume 15, Issue 3 Ver. VII (Mar. 2016), PP 104-110 www.iosrjournals.org Histopathological and CT Imaging Correlation

More information

Segmentation of nodules on chest computed tomography for growth assessment

Segmentation of nodules on chest computed tomography for growth assessment Segmentation of nodules on chest computed tomography for growth assessment William Mullally, a) Margrit Betke, and Jingbin Wang Computer Science Department, Boston University, Boston, Massachusetts 02215

More information

American College Of Radiology ACR Appropriateness Criteria WORK-UP OF THE SOLITARY PULMONARY NODULE

American College Of Radiology ACR Appropriateness Criteria WORK-UP OF THE SOLITARY PULMONARY NODULE This document is provided to you by the American College of Radiology. We strive to deliver this information in a convenient and effective manner. After you finish reviewing the criteria, please provide

More information

Management of Multiple Pure Ground-Glass Opacity Lesions in Patients with Bronchioloalveolar Carcinoma

Management of Multiple Pure Ground-Glass Opacity Lesions in Patients with Bronchioloalveolar Carcinoma ORIGINAL ARTICLE Management of Multiple Pure Ground-Glass Opacity Lesions in Patients with Bronchioloalveolar Carcinoma Hong Kwan Kim, MD,* Yong Soo Choi, MD,* Jhingook Kim, MD, PhD,* Young Mog Shim, MD,

More information

Comparison of CT findings between MDR-TB and XDR-TB

Comparison of CT findings between MDR-TB and XDR-TB Comparison of CT findings between MDR-TB and XDR-TB Poster No.: C-0757 Congress: ECR 2017 Type: Authors: Keywords: DOI: Scientific Exhibit K. Yoon, H. Soohee; Changwon-si/KR Thorax, Lung, Respiratory system,

More information

REVIEW. A practical approach to radiological evaluation of CT lung cancer screening examinations

REVIEW. A practical approach to radiological evaluation of CT lung cancer screening examinations Cancer Imaging (2013) 13(3), 391 399 DOI: 10.1102/1470-7330.2013.9043 REVIEW A practical approach to radiological evaluation of CT lung cancer screening examinations Xueqian Xie a,b, Marjolein A. Heuvelmans

More information

Xiaohuan Pan 1,2 *, Xinguan Yang 1,2 *, Jingxu Li 1,2, Xiao Dong 1,2, Jianxing He 2,3, Yubao Guan 1,2. Original Article

Xiaohuan Pan 1,2 *, Xinguan Yang 1,2 *, Jingxu Li 1,2, Xiao Dong 1,2, Jianxing He 2,3, Yubao Guan 1,2. Original Article Original Article Is a 5-mm diameter an appropriate cut-off value for the diagnosis of atypical adenomatous hyperplasia and adenocarcinoma in situ on chest computed tomography and pathological examination?

More information

Visualization of Normal Pulmonary Fissures on Sagittal Multiplanar Reconstruction MDCT

Visualization of Normal Pulmonary Fissures on Sagittal Multiplanar Reconstruction MDCT Normal Pulmonary Fissures on MDCT Chest Imaging Original Research C D E M N E U T R Y L I M C I G O F I N G Koji Takahashi 1,2 rad Thompson 2 William Stanford 2 Yutaka Sato 2 Kenichi Nagasawa 1 Hiroaki

More information

Lung Cancer Screening: To Screen or Not to Screen?

Lung Cancer Screening: To Screen or Not to Screen? Lung Cancer Screening: To Screen or Not to Screen? Lorriana Leard, MD Co-Director of UCSF Lung Cancer Screening Program Vice Chief of Clinical Activities UCSF Pulmonary, Critical Care, Allergy & Sleep

More information

Sensitivity and Specificity in Detection of Labral Tears with 3.0-T MRI of the Shoulder

Sensitivity and Specificity in Detection of Labral Tears with 3.0-T MRI of the Shoulder Magee and Williams MRI for Detection of Labral Tears Musculoskeletal Imaging Clinical Observations C M E D E N T U R I C L I M G I N G JR 2006; 187:1448 1452 0361 803X/06/1876 1448 merican Roentgen Ray

More information

10/17/2016. Nuts and Bolts of Thoracic Radiology. Objectives. Techniques

10/17/2016. Nuts and Bolts of Thoracic Radiology. Objectives. Techniques Nuts and Bolts of Thoracic Radiology October 20, 2016 Carleen Risaliti Objectives Understand the basics of chest radiograph Develop a system for interpreting chest radiographs Correctly identify thoracic

More information

Pulmonary nodule detection in PET/CT images: Improved approach using combined nodule detection and hybrid FP reduction

Pulmonary nodule detection in PET/CT images: Improved approach using combined nodule detection and hybrid FP reduction Pulmonary nodule detection in PET/CT images: Improved approach using combined nodule detection and hybrid FP reduction Atsushi Teramoto* a, Hiroshi Fujita b, Yoya Tomita c, Katsuaki Takahashi c, Osamu

More information

Proportion and characteristics of transient nodules in a retrospective analysis of pulmonary nodules

Proportion and characteristics of transient nodules in a retrospective analysis of pulmonary nodules Thoracic Cancer ISSN 1759-7706 ORIGINAL ARTICLE Proportion and characteristics of transient nodules in a retrospective analysis of pulmonary nodules Jin-Yeong Yu 1, Boram Lee 1, Sunmi Ju 1, Eun-Young Kim

More information

I8 COMPLETION INSTRUCTIONS

I8 COMPLETION INSTRUCTIONS The I8 Form is completed for each screening exam at T0, T1, and T2. At T0 (baseline), the I8 Form documents comparison review of the baseline screen (DR Form) with any historical images available. At T1

More information

Shodayu Takashima 1 Shusuke Sone 2 Feng Li 1 Yuichiro Maruyama 1 Minoru Hasegawa 1 Tsuyoshi Matsushita 1 Fumiyoshi Takayama 2 Masumi Kadoya 1

Shodayu Takashima 1 Shusuke Sone 2 Feng Li 1 Yuichiro Maruyama 1 Minoru Hasegawa 1 Tsuyoshi Matsushita 1 Fumiyoshi Takayama 2 Masumi Kadoya 1 Small Solitary Pulmonary Nodules ( 1 cm) Detected at Population- Based CT Screening for Lung Cancer: Reliable High-Resolution CT Features of Benign Lesions Shodayu Takashima 1 Shusuke Sone 2 Feng Li 1

More information

An Image Repository for Chest CT

An Image Repository for Chest CT An Image Repository for Chest CT Francesco Frajoli for the Chest CT in Antibody Deficiency Group An Image Repository for Chest CT he Chest CT in Antibody Deficiency Group is an international and interdisciplinary

More information

Multidisciplinary Symposium Screening for Cancer. Proposals for lung cancer screening in the UK

Multidisciplinary Symposium Screening for Cancer. Proposals for lung cancer screening in the UK Cancer Imaging (2001) 2, 6 16 Multidisciplinary Symposium Screening for Cancer Monday 15 October 2001, 10.20 12.45 Proposals for lung cancer screening in the UK Janet E Husband Academic Department of Diagnostic

More information

What to Do with Small Lung Nodules Hanh Vu Nghiem, MD William Beaumont Hospital Royal Oak, Michigan

What to Do with Small Lung Nodules Hanh Vu Nghiem, MD William Beaumont Hospital Royal Oak, Michigan What to Do with Small Lung Nodules Hanh Vu Nghiem, MD William Beaumont Hospital Royal Oak, Michigan Small Lung Nodules What to do with small lung nodules? We biopsy them when requested What are our accuracy

More information

The Location and Size of Pulmonary Embolism in Antineoplastic Chemotherapy Patients 1

The Location and Size of Pulmonary Embolism in Antineoplastic Chemotherapy Patients 1 The Location and Size of Pulmonary Embolism in Antineoplastic Chemotherapy Patients 1 Yun Joo Park, M.D., Woocheol Kwon, M.D., Won-Yeon Lee, M.D. 2, Sang Baek Koh, M.D. 3, Seong Ah Kim, M.D., Myung Soon

More information