Introduction to the Genetics of Complex Disease

Size: px
Start display at page:

Download "Introduction to the Genetics of Complex Disease"

Transcription

1 Introduction to the Genetics of Complex Disease Jeremiah M. Scharf, MD, PhD Departments of Neurology, Psychiatry and Center for Human Genetic Research Massachusetts General Hospital

2 Breakthroughs in Genome Science 2001 Human Genome Project: Sequence 2005 HapMap Project: Common Variation Genomes Project: Rare Variation 2012 ENCODE Project: Function

3 Patterns of Inheritance: Single Gene Disorders Dominant Example: Huntington Disease Single gene causes disease Disease requires one copy of mutation Recessive Example: Sickle Cell Anemia Single gene causes disease Disease requires two copies of mutation

4 Complex Disorders Inheritance pattern: multifactorial or complex Not due to single gene Several or many genes may contribute Each may have small effect by itself Effects may depend on interaction with environment and other genes (epistasis)

5 Complex Disease Genetics Most common medical illnesses are genetically complex Aggregate in families but don t show Mendelian segregation Multiple genes contribute to disease in each individual Incomplete penetrance and variable expression penetrance = probability of disease given risk genotype Gene-gene and gene-environment interaction

6 Chain of Genetic Research Questions Is the disorder familial? Study Methods Family study How much do genes contribute? Twin and adoption studies What genes are involved? How do genes cause disease? Linkage, association, sequencing Functional and biological studies Adapted from Faraone and Tsuang

7 Does it Run in Families? Compare prevalence (risk) in relatives of affected proband to prevalence in relatives of unaffected controls Recurrence risk ratio: 1 = Risk to first-degree relative of affected Prevalence in general population

8 Familial relative risk (RR) for various neuropsychiatric disorders SNCA Parkin Etc APP PS1 PS2 Mendelian (monogenic) Complex Inheritance genetic + non-genetic ( environmental ) Deterministic Probabilistic Textbook of Neuropsychiatry and Behavioral Neurosciences, 5th Edition. Eds, Yudofsky SC, Hales RE American Psychiatric Publishing, Inc. All rights reserved.

9 Twin Studies: Is it Genetic? Compare concordance in MZ vs DZ twins MZ > DZ implies genetic contribution MZ < 100% implies environmental contribution Heritability (h 2 ): Proportion of phenotypic variance (in a population) attributable to genetic factors.

10 Heritability Caveats A heritability of 60% means that at least one gene operates on the trait that 60% of the individual differences in that population can be attributed to differences in the additive effects of certain genes A heritability of 60% does not mean that the trait of any one individual is 60% determined by his or her genes, 40% determined by his or her environment that environmental interventions can not have striking effects Ignores heterogeneity in mode of inheritance Depends on degree of genetic and environmental variability in the population Courtesy: Shaun Purcell

11 Estimated Heritability Disorder/trait Approx. h 2 Autism 80% Schizophrenia 80% Bipolar Disorder 60-80% Attention Deficit Disorder ~75% Tourette Syndrome 60-80% Inflammatory Bowel Disease 65-75% Multiple Sclerosis 55% Alcohol/drug addiction 55% Major Depression 40% Anxiety Disorders 30-45% Breast Cancer 25%

12 Where are the genes? Molecular Genetic Methods Linkage analysis: examines the coinheritance of the phenotype with markers of known chromosomal location Primary application: genome scans ( Where ) Association analysis: examines correlation between specific genetic variants and presence of the phenotype Primary application: candidate gene and genomewide studies ( Which )

13 Question Linkage vs. Association Linkage Where are the Genes? Association Which Alleles Confer Risk? Best Suited For Mendelian Disease Complex Disease Genomic Scope Subjects Markers Typical Marker Spacing Whole Genome Families Microsatellites or SNPs [Candidate Gene] or Whole Genome Case/control or nuclear families SNPs < 10 Mb < 10 kb

14 Genetic Architecture Landscape of mutations that collectively contribute to disease Major gene Large effect Boston Many genes (polygenic) Small effects Example: Huntington s Disease Example: Height McCarthy et al., 2008; Sullivan et al., 2012

15 Genetic methods target different types of mutations 3 2 Early-onset AD (APP, PS1/2) Cystic Fibrosis LINKAGE VCFS/DiGeorge Williams Syndrome Idiopathic Neurodevelopmental Disorders COPY NUMBER VARIANTS 3 NEXT-GEN SEQUENCING Family-based Case-control 1 Late-onset AD APOE OR Common Disorders Inflammatory Bowel Disease Multiple Sclerosis ASSOCIATION Type 2 Diabetes Schizophrenia McCarthy et al., 2008; Sullivan et al., 2012

16 SINGLE NUCLEOTIDE POLYMORPHISMS (SNPs): Most common form of human genetic variation ACGGCGCGCATCGCTGATCGATGGCTCGTG ACAGCAGCTACGACATGACGCAGCGCCAAC GGGCTAGCTAGCTTTAGTTTCCCCGAAAGCG CGAGCGACGCTCGATCGCTCGATCGACGGC T GCGCATCGCTGATCGATGGCTCGTGACAGC AGCTACGACATGACGCAGCGCCAACGGGCT AGCTAGCTTTAGTTTCCCCGAAAGCGCGAGC GACGCTCGATCGCTCGATCGACGGCGCGCA TCGCTGATCGATGGCTCGTGACAGCAGCTA CGACATGACGCAGCGCCGACGGCGCGCATC GCTGATCGATGGCTCGTGACAGCAGCTACG

17 Association Analysis: Co-inheritance of Alleles and Disease Across Families A G G G G G G G A G A G G G G G A G A A A A A A A G A G A A A A Are alleles more common in cases than controls? Cases Controls A G A G A G G G A A A G A G A A A A G G G G G G A G A G A G Trios Are alleles transmitted to affected offspring more than 50% of time?

18 Association Studies are Like Other Epidemiologic Studies General Question: Is Exposure Associated with Disease? Is smoking associated with MI? Cases (MI+) Controls (MI-) + MI+ MI = 41.0, p <.0001 OR = (120*100)/(50*54) = 4.44

19 Alleles as Exposures A G G G G G G G A G A A A G A A Are alleles more common in cases than controls? G G A G A G G G Cases (MI+) A A A A A G A A Controls (MI-) ie Is G allele associated with MI? MI+ MI- G A = 41.0, p <.0001 OR = (120*100)/(50*54) = 4.44

20 Family-based Association Analysis: Transmission/disequilibrium test Not Transmitted Transmitted 1 a c b d 1 2? 1 Not Transmitted 2? Transmitted c TDT = å (b-c)2 (b+c) 2 TDT = ( ) 2 = ( ) p <.0001

21 Association Study Pitfalls Problem False positives: -Multiple testing (genes x SNPs x phenotypes) -Low prior probability for any SNP (even for the best candidate gene!) Solutions Correct for multiple testing Independent Replication! False negatives: -Modest effects sizes of susceptibility alleles -Vast majority of studies are underpowered -Typical odds ratios for GWAS loci = Detection requires samples of 10s of thousands Increase sample size

22 Association and Linkage Disequilibrium Hirschhorn and Daly, 2005

23 LD and Haplotypes Linkage disequilibrium (LD): correlation in the population between alleles at two loci. ie nonrandom association of alleles at linked loci Haplotype: A series of alleles at linked loci along a single chromosome Haplotype (LD) blocks: genomic regions of LD. The human genome shows a block-like structure with limited haplotype diversity (Gabriel et al. Science, 2002)

24 Haplotype: A-A-T

25 Tag SNPs

26 GWAS Family-based Case-control OR 3 ASSOCIATION McCarthy et al., 2008; Sullivan et al., 2012

27 The GWAS Era Before 2006: only a handful of genes had been found for any common medical disorders like diabetes, heart disease, inflammatory bowel disease, arthritis Since 2006: thousands of confirmed genetic findings for major medical diseases What Happened? Powerful DNA chip technology Computational advances Whole genome analysis Much larger studies

28 Genomewide Association Studies (GWAS) Micro-array based genotyping technique Assays common DNA variants ( SNPs ) that tag blocks of DNA across the human genome mean DNA block size: ~10-20 kb (10-20,000 DNA bases) much finer resolution than linkage studies each chip assays > 1 million SNP markers in a single experiment

29 Genomewide Association Study (GWAS) DNA Microarray (DNA-Chip) with 500K - 5M SNPs covering the genome Allele frequencies usually >5% Examine for each SNP: allele frequency differences between cases and controls correlation between allele count and quantitative trait Threshold for significance: p < 5 x 10-8

30 Published Genome-Wide Associations through 05/2013 Published GWA at p 5X10-8

31 Size Matters N = 183,727 Loci: 180 Variance: 10% N = 249,796 Loci: 32 Variance: 2.5%

32 # GWAS Loci # of cases Schizophrenia: ~ 4 / 1,000 Crohn s: ~ 10 genes / 1,000 cases Adult Height: ~ 3/ 1,000 (Bipolar Disorder: ~ 1 gene/ 1,000 cases)

33 Key Plots Summarizing GWAS Manhattan plot Q-Q plot Regional plot

34 So, you found an association. Is it due to? True association with causal variant? Spurious association due to confounding? (population stratification) Linkage disequilibrium with nearby causal variant? Chance indexed by p value--but beware multiple testing!

35 Population Genetics Study of allele frequency distribution and change

36 Hardy-Weinberg Equilibrium large population no mutation no selection random mating no migration [A] = p [a] = q p + q =1 [AA] = p 2 [Aa] = 2pq [aa] = q 2 frequencies remain stable

37 With genome-wide SNP data, population structure can be detectable to very fine scales... Novembre et al (2008)

38 Population Stratification Differences in allele frequencies between cases and controls due to systematic differences in ancestry rather than association of genes with disease.

39 Population Allele Differences Can Confound Association Studies Does A/G SNP in CNR1 gene cause MI? Cases recruited from MGH patients: 55% European-American 20% African-American Controls recruited from volunteers 85% European American 5% African American G A A G G G G G G G A G A A A G A A European American.7.3 G G A G A G G G A A A A A G A A African American.4.6 Cases (MI+) Controls (MI-) p <.0001

40 Association Causality Ioannidis et al. 2009, Nature Rev Genet

41 2 COPY NUMBER VARIANTS McCarthy et al., 2008; Sullivan et al., 2012

42 Copy Number Variation Structural variations of > 1kb Low copy repeats are common mechanism: Highly homologous sequence elements arising from segmental duplication E.g. cause of psychiatric illness VCFS/DiGeorge syndrome - microdeletion on 22q: 20-30% incidence of psychotic illness Autism - de novo CNVs in >10% of sporadic cases?

43 Large, rare CNVs are found across neurodevelopmental disorders From Morrow, JAACAP 2010

44 Next-Generation Sequencing 2001: $3 billion : <$1,000

45

46 Bras et al. Nature Rev Neurosci, 2012

47 Related Methods: The -omics Functional Genomics - a field of molecular biology that attempts to make use of the vast wealth of data produced by genomic projects to describe gene and protein functions and interactions. Focuses on dynamic aspects such as gene transcription, translation, and proteinprotein interactions, as opposed to the static aspects of the genomic information such as DNA sequence or structures. Transcriptomics (expression profiling)- examines the expression level of mrnas in a given cell population, often using high-throughput techniques based on microarray technology. Proteomics- examines the full complement of proteins and their structure, quantity, and function Metabolomics- examines the whole set of small-molecule metabolites (such as metabolic intermediates, hormones and other signalling molecules, and secondary metabolites) to be found within a biological sample or organism Interactomics- examines the whole set of molecular interactions in cells

48 ENCODE Project

49 Nature 518, (19 February 2015) doi: /nature14248 RoadMap Epigenomics Consortium, Nature 2015

50 Genomics In Silico Bioinformatics: Research, development, or application of computational tools and approaches for expanding the use of biological, medical, behavioral or health data, including those to acquire, store, organize, archive, analyze, or visualize such data. Computational Biology: The development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, behavioral, and social systems. NIH BISTIC definition

51 Systems Biology: The Big Picture Oltvai, Science, 2002

52 Translating Genetic Findings to Novel Therapies How Do We Get There From Here?

53 Skin cells Induced Stem Cells Neurons Glia Animal Models Confirmed Genetic Variants Biological Characterization Develop Functional Assays Small Molecule Screening Preclinical and Safety Studies Proof-of-Concept Trials Larger Clinical Trials

54 Summary Most common diseases are complex Aggregate in families with non-mendelian patterns of inheritance Multiple genes of varying effect +/- Gene-gene interaction (epistasis), gene-environment interaction Association analysis is most common method for identifying susceptibility alleles Interpret with care: Beware false positives Replication is essential Exome and whole genome sequencing now feasible and successful in identifying rare variants related to Mendelian and complex disorders Ultimately, whole genome sequencing may become the preferred approach

55 Brief Break?

Dan Koller, Ph.D. Medical and Molecular Genetics

Dan Koller, Ph.D. Medical and Molecular Genetics Design of Genetic Studies Dan Koller, Ph.D. Research Assistant Professor Medical and Molecular Genetics Genetics and Medicine Over the past decade, advances from genetics have permeated medicine Identification

More information

CS2220 Introduction to Computational Biology

CS2220 Introduction to Computational Biology CS2220 Introduction to Computational Biology WEEK 8: GENOME-WIDE ASSOCIATION STUDIES (GWAS) 1 Dr. Mengling FENG Institute for Infocomm Research Massachusetts Institute of Technology mfeng@mit.edu PLANS

More information

Quantitative genetics: traits controlled by alleles at many loci

Quantitative genetics: traits controlled by alleles at many loci Quantitative genetics: traits controlled by alleles at many loci Human phenotypic adaptations and diseases commonly involve the effects of many genes, each will small effect Quantitative genetics allows

More information

Genetics and Genomics in Medicine Chapter 8 Questions

Genetics and Genomics in Medicine Chapter 8 Questions Genetics and Genomics in Medicine Chapter 8 Questions Linkage Analysis Question Question 8.1 Affected members of the pedigree above have an autosomal dominant disorder, and cytogenetic analyses using conventional

More information

GENOME-WIDE ASSOCIATION STUDIES

GENOME-WIDE ASSOCIATION STUDIES GENOME-WIDE ASSOCIATION STUDIES SUCCESSES AND PITFALLS IBT 2012 Human Genetics & Molecular Medicine Zané Lombard IDENTIFYING DISEASE GENES??? Nature, 15 Feb 2001 Science, 16 Feb 2001 IDENTIFYING DISEASE

More information

An Introduction to Quantitative Genetics I. Heather A Lawson Advanced Genetics Spring2018

An Introduction to Quantitative Genetics I. Heather A Lawson Advanced Genetics Spring2018 An Introduction to Quantitative Genetics I Heather A Lawson Advanced Genetics Spring2018 Outline What is Quantitative Genetics? Genotypic Values and Genetic Effects Heritability Linkage Disequilibrium

More information

MULTIFACTORIAL DISEASES. MG L-10 July 7 th 2014

MULTIFACTORIAL DISEASES. MG L-10 July 7 th 2014 MULTIFACTORIAL DISEASES MG L-10 July 7 th 2014 Genetic Diseases Unifactorial Chromosomal Multifactorial AD Numerical AR Structural X-linked Microdeletions Mitochondrial Spectrum of Alterations in DNA Sequence

More information

Genetics and Pharmacogenetics in Human Complex Disorders (Example of Bipolar Disorder)

Genetics and Pharmacogenetics in Human Complex Disorders (Example of Bipolar Disorder) Genetics and Pharmacogenetics in Human Complex Disorders (Example of Bipolar Disorder) September 14, 2012 Chun Xu M.D, M.Sc, Ph.D. Assistant professor Texas Tech University Health Sciences Center Paul

More information

Lecture 20. Disease Genetics

Lecture 20. Disease Genetics Lecture 20. Disease Genetics Michael Schatz April 12 2018 JHU 600.749: Applied Comparative Genomics Part 1: Pre-genome Era Sickle Cell Anaemia Sickle-cell anaemia (SCA) is an abnormality in the oxygen-carrying

More information

BST227 Introduction to Statistical Genetics. Lecture 4: Introduction to linkage and association analysis

BST227 Introduction to Statistical Genetics. Lecture 4: Introduction to linkage and association analysis BST227 Introduction to Statistical Genetics Lecture 4: Introduction to linkage and association analysis 1 Housekeeping Homework #1 due today Homework #2 posted (due Monday) Lab at 5:30PM today (FXB G13)

More information

Introduction to linkage and family based designs to study the genetic epidemiology of complex traits. Harold Snieder

Introduction to linkage and family based designs to study the genetic epidemiology of complex traits. Harold Snieder Introduction to linkage and family based designs to study the genetic epidemiology of complex traits Harold Snieder Overview of presentation Designs: population vs. family based Mendelian vs. complex diseases/traits

More information

Imaging Genetics: Heritability, Linkage & Association

Imaging Genetics: Heritability, Linkage & Association Imaging Genetics: Heritability, Linkage & Association David C. Glahn, PhD Olin Neuropsychiatry Research Center & Department of Psychiatry, Yale University July 17, 2011 Memory Activation & APOE ε4 Risk

More information

Association mapping (qualitative) Association scan, quantitative. Office hours Wednesday 3-4pm 304A Stanley Hall. Association scan, qualitative

Association mapping (qualitative) Association scan, quantitative. Office hours Wednesday 3-4pm 304A Stanley Hall. Association scan, qualitative Association mapping (qualitative) Office hours Wednesday 3-4pm 304A Stanley Hall Fig. 11.26 Association scan, qualitative Association scan, quantitative osteoarthritis controls χ 2 test C s G s 141 47

More information

5/2/18. After this class students should be able to: Stephanie Moon, Ph.D. - GWAS. How do we distinguish Mendelian from non-mendelian traits?

5/2/18. After this class students should be able to: Stephanie Moon, Ph.D. - GWAS. How do we distinguish Mendelian from non-mendelian traits? corebio II - genetics: WED 25 April 2018. 2018 Stephanie Moon, Ph.D. - GWAS After this class students should be able to: 1. Compare and contrast methods used to discover the genetic basis of traits or

More information

Nature Genetics: doi: /ng Supplementary Figure 1

Nature Genetics: doi: /ng Supplementary Figure 1 Supplementary Figure 1 Illustrative example of ptdt using height The expected value of a child s polygenic risk score (PRS) for a trait is the average of maternal and paternal PRS values. For example,

More information

What can genetic studies tell us about ADHD? Dr Joanna Martin, Cardiff University

What can genetic studies tell us about ADHD? Dr Joanna Martin, Cardiff University What can genetic studies tell us about ADHD? Dr Joanna Martin, Cardiff University Outline of talk What do we know about causes of ADHD? Traditional family studies Modern molecular genetic studies How can

More information

Genetics of common disorders with complex inheritance Bettina Blaumeiser MD PhD

Genetics of common disorders with complex inheritance Bettina Blaumeiser MD PhD Genetics of common disorders with complex inheritance Bettina Blaumeiser MD PhD Medical Genetics University Hospital & University of Antwerp Programme Day 6: Genetics of common disorders with complex inheritance

More information

Introduction to Genetics and Genomics

Introduction to Genetics and Genomics 2016 Introduction to enetics and enomics 3. ssociation Studies ggibson.gt@gmail.com http://www.cig.gatech.edu Outline eneral overview of association studies Sample results hree steps to WS: primary scan,

More information

Tutorial on Genome-Wide Association Studies

Tutorial on Genome-Wide Association Studies Tutorial on Genome-Wide Association Studies Assistant Professor Institute for Computational Biology Department of Epidemiology and Biostatistics Case Western Reserve University Acknowledgements Dana Crawford

More information

Welcome to the Genetic Code: An Overview of Basic Genetics. October 24, :00pm 3:00pm

Welcome to the Genetic Code: An Overview of Basic Genetics. October 24, :00pm 3:00pm Welcome to the Genetic Code: An Overview of Basic Genetics October 24, 2016 12:00pm 3:00pm Course Schedule 12:00 pm 2:00 pm Principles of Mendelian Genetics Introduction to Genetics of Complex Disease

More information

IS IT GENETIC? How do genes, environment and chance interact to specify a complex trait such as intelligence?

IS IT GENETIC? How do genes, environment and chance interact to specify a complex trait such as intelligence? 1 IS IT GENETIC? How do genes, environment and chance interact to specify a complex trait such as intelligence? Single-gene (monogenic) traits Phenotypic variation is typically discrete (often comparing

More information

American Psychiatric Nurses Association

American Psychiatric Nurses Association Francis J. McMahon International Society of Psychiatric Genetics Johns Hopkins University School of Medicine Dept. of Psychiatry Human Genetics Branch, National Institute of Mental Health* * views expressed

More information

CURRENT GENETIC TESTING TOOLS IN NEONATAL MEDICINE. Dr. Bahar Naghavi

CURRENT GENETIC TESTING TOOLS IN NEONATAL MEDICINE. Dr. Bahar Naghavi 2 CURRENT GENETIC TESTING TOOLS IN NEONATAL MEDICINE Dr. Bahar Naghavi Assistant professor of Basic Science Department, Shahid Beheshti University of Medical Sciences, Tehran,Iran 3 Introduction Over 4000

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics Table of contents Chromosome DNA Protein synthesis Mutation Genetic disorder Relationship between genes and cancer Genetic testing Technical concern 2 All living organisms consist

More information

QTs IV: miraculous and missing heritability

QTs IV: miraculous and missing heritability QTs IV: miraculous and missing heritability (1) Selection should use up V A, by fixing the favorable alleles. But it doesn t (at least in many cases). The Illinois Long-term Selection Experiment (1896-2015,

More information

Mendelian & Complex Traits. Quantitative Imaging Genomics. Genetics Terminology 2. Genetics Terminology 1. Human Genome. Genetics Terminology 3

Mendelian & Complex Traits. Quantitative Imaging Genomics. Genetics Terminology 2. Genetics Terminology 1. Human Genome. Genetics Terminology 3 Mendelian & Complex Traits Quantitative Imaging Genomics David C. Glahn, PhD Olin Neuropsychiatry Research Center & Department of Psychiatry, Yale University July, 010 Mendelian Trait A trait influenced

More information

Introduction to genetic variation. He Zhang Bioinformatics Core Facility 6/22/2016

Introduction to genetic variation. He Zhang Bioinformatics Core Facility 6/22/2016 Introduction to genetic variation He Zhang Bioinformatics Core Facility 6/22/2016 Outline Basic concepts of genetic variation Genetic variation in human populations Variation and genetic disorders Databases

More information

MOLECULAR EPIDEMIOLOGY Afiono Agung Prasetyo Faculty of Medicine Sebelas Maret University Indonesia

MOLECULAR EPIDEMIOLOGY Afiono Agung Prasetyo Faculty of Medicine Sebelas Maret University Indonesia MOLECULAR EPIDEMIOLOGY GENERAL EPIDEMIOLOGY General epidemiology is the scientific basis of public health Descriptive epidemiology: distribution of disease in populations Incidence and prevalence rates

More information

Interaction of Genes and the Environment

Interaction of Genes and the Environment Some Traits Are Controlled by Two or More Genes! Phenotypes can be discontinuous or continuous Interaction of Genes and the Environment Chapter 5! Discontinuous variation Phenotypes that fall into two

More information

Missing Heritablility How to Analyze Your Own Genome Fall 2013

Missing Heritablility How to Analyze Your Own Genome Fall 2013 Missing Heritablility 02-223 How to Analyze Your Own Genome Fall 2013 Heritability Heritability: the propor>on of observed varia>on in a par>cular trait (as height) that can be agributed to inherited gene>c

More information

BST227: Introduction to Statistical Genetics

BST227: Introduction to Statistical Genetics BST227: Introduction to Statistical Genetics Lecture 11: Heritability from summary statistics & epigenetic enrichments Guest Lecturer: Caleb Lareau Success of GWAS EBI Human GWAS Catalog As of this morning

More information

Practical challenges that copy number variation and whole genome sequencing create for genetic diagnostic labs

Practical challenges that copy number variation and whole genome sequencing create for genetic diagnostic labs Practical challenges that copy number variation and whole genome sequencing create for genetic diagnostic labs Joris Vermeesch, Center for Human Genetics K.U.Leuven, Belgium ESHG June 11, 2010 When and

More information

p e r s p e c t i v e

p e r s p e c t i v e n e u r o g e n o m i c s Genome-scale neurogenetics: methodology and meaning Steven A McCarroll 1,2, Guoping Feng 1,3,4 & Steven E Hyman 1,5 Genetic analysis is currently offering glimpses into molecular

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Kerby Shedden, Ph.D., 2010 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

More information

Statistical power and significance testing in large-scale genetic studies

Statistical power and significance testing in large-scale genetic studies STUDY DESIGNS Statistical power and significance testing in large-scale genetic studies Pak C. Sham 1 and Shaun M. Purcell 2,3 Abstract Significance testing was developed as an objective method for summarizing

More information

Human Genetics 542 Winter 2018 Syllabus

Human Genetics 542 Winter 2018 Syllabus Human Genetics 542 Winter 2018 Syllabus Monday, Wednesday, and Friday 9 10 a.m. 5915 Buhl Course Director: Tony Antonellis Jan 3 rd Wed Mapping disease genes I: inheritance patterns and linkage analysis

More information

Chapter 1 : Genetics 101

Chapter 1 : Genetics 101 Chapter 1 : Genetics 101 Understanding the underlying concepts of human genetics and the role of genes, behavior, and the environment will be important to appropriately collecting and applying genetic

More information

Human Genetics 542 Winter 2017 Syllabus

Human Genetics 542 Winter 2017 Syllabus Human Genetics 542 Winter 2017 Syllabus Monday, Wednesday, and Friday 9 10 a.m. 5915 Buhl Course Director: Tony Antonellis Module I: Mapping and characterizing simple genetic diseases Jan 4 th Wed Mapping

More information

Ascertainment Through Family History of Disease Often Decreases the Power of Family-based Association Studies

Ascertainment Through Family History of Disease Often Decreases the Power of Family-based Association Studies Behav Genet (2007) 37:631 636 DOI 17/s10519-007-9149-0 ORIGINAL PAPER Ascertainment Through Family History of Disease Often Decreases the Power of Family-based Association Studies Manuel A. R. Ferreira

More information

Genome-wide Association Analysis Applied to Asthma-Susceptibility Gene. McCaw, Z., Wu, W., Hsiao, S., McKhann, A., Tracy, S.

Genome-wide Association Analysis Applied to Asthma-Susceptibility Gene. McCaw, Z., Wu, W., Hsiao, S., McKhann, A., Tracy, S. Genome-wide Association Analysis Applied to Asthma-Susceptibility Gene McCaw, Z., Wu, W., Hsiao, S., McKhann, A., Tracy, S. December 17, 2014 1 Introduction Asthma is a chronic respiratory disease affecting

More information

Genetics of Behavior (Learning Objectives)

Genetics of Behavior (Learning Objectives) Genetics of Behavior (Learning Objectives) Recognize that behavior is multi-factorial with genetic components Understand how multi-factorial traits are studied. Explain the terms: incidence, prevalence,

More information

The Inheritance of Complex Traits

The Inheritance of Complex Traits The Inheritance of Complex Traits Differences Among Siblings Is due to both Genetic and Environmental Factors VIDEO: Designer Babies Traits Controlled by Two or More Genes Many phenotypes are influenced

More information

ISPG Residency Education Taskforce

ISPG Residency Education Taskforce ISPG Residency Education Taskforce What does genetics have to do with psychiatry? - psychiatric illnesses run in families - the major psychiatric disorders have a high heritability - specific genes may

More information

Genetics of Behavior (Learning Objectives)

Genetics of Behavior (Learning Objectives) Genetics of Behavior (Learning Objectives) Recognize that behavior is multi-factorial with genetic components Understand how multi-factorial traits are studied. Explain the terms: prevalence, incidence,

More information

Chapter 18 Genetics of Behavior. Chapter 18 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning

Chapter 18 Genetics of Behavior. Chapter 18 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning Chapter 18 Genetics of Behavior Behavior Most human behaviors are polygenic and have significant environmental influences Methods used to study inheritance include Classical methods of linkage and pedigree

More information

New Enhancements: GWAS Workflows with SVS

New Enhancements: GWAS Workflows with SVS New Enhancements: GWAS Workflows with SVS August 9 th, 2017 Gabe Rudy VP Product & Engineering 20 most promising Biotech Technology Providers Top 10 Analytics Solution Providers Hype Cycle for Life sciences

More information

Chapter 4 PEDIGREE ANALYSIS IN HUMAN GENETICS

Chapter 4 PEDIGREE ANALYSIS IN HUMAN GENETICS Chapter 4 PEDIGREE ANALYSIS IN HUMAN GENETICS Chapter Summary In order to study the transmission of human genetic traits to the next generation, a different method of operation had to be adopted. Instead

More information

DOES THE BRCAX GENE EXIST? FUTURE OUTLOOK

DOES THE BRCAX GENE EXIST? FUTURE OUTLOOK CHAPTER 6 DOES THE BRCAX GENE EXIST? FUTURE OUTLOOK Genetic research aimed at the identification of new breast cancer susceptibility genes is at an interesting crossroad. On the one hand, the existence

More information

Multifactorial Inheritance

Multifactorial Inheritance S e s s i o n 6 Medical Genetics Multifactorial Inheritance and Population Genetics J a v a d J a m s h i d i F a s a U n i v e r s i t y o f M e d i c a l S c i e n c e s, Novemb e r 2 0 1 7 Multifactorial

More information

During the hyperinsulinemic-euglycemic clamp [1], a priming dose of human insulin (Novolin,

During the hyperinsulinemic-euglycemic clamp [1], a priming dose of human insulin (Novolin, ESM Methods Hyperinsulinemic-euglycemic clamp procedure During the hyperinsulinemic-euglycemic clamp [1], a priming dose of human insulin (Novolin, Clayton, NC) was followed by a constant rate (60 mu m

More information

Challenges of CGH array testing in children with developmental delay. Dr Sally Davies 17 th September 2014

Challenges of CGH array testing in children with developmental delay. Dr Sally Davies 17 th September 2014 Challenges of CGH array testing in children with developmental delay Dr Sally Davies 17 th September 2014 CGH array What is CGH array? Understanding the test Benefits Results to expect Consent issues Ethical

More information

Today s Topics. Cracking the Genetic Code. The Process of Genetic Transmission. The Process of Genetic Transmission. Genes

Today s Topics. Cracking the Genetic Code. The Process of Genetic Transmission. The Process of Genetic Transmission. Genes Today s Topics Mechanisms of Heredity Biology of Heredity Genetic Disorders Research Methods in Behavioral Genetics Gene x Environment Interactions The Process of Genetic Transmission Genes: segments of

More information

QTL Studies- Past, Present and Future. David Evans

QTL Studies- Past, Present and Future. David Evans QTL Studies Past, Present and Future David Evans Genetic studies of complex diseases have not met anticipated success Glazier et al, Science (2002) 298:23452349 Korstanje & Pagan (2002) Nat Genet Korstanje

More information

Update on the Genetics of Autism and Rett syndrome

Update on the Genetics of Autism and Rett syndrome Update on the Genetics of Autism and Rett syndrome Mark E. S. Bailey Lecturer in Molecular Genetics Molecular Genetics, FBLS University of Glasgow M.Bailey@bio.gla.ac.uk 0141 330 5994 Research interests

More information

Lecture 1 Mendelian Inheritance

Lecture 1 Mendelian Inheritance Genes Mendelian Inheritance Lecture 1 Mendelian Inheritance Jurg Ott Gregor Mendel, monk in a monastery in Brünn (now Brno in Czech Republic): Breeding experiments with the garden pea: Flower color and

More information

Cognitive, affective, & social neuroscience

Cognitive, affective, & social neuroscience Cognitive, affective, & social neuroscience Time: Wed, 10:15 to 11:45 Prof. Dr. Björn Rasch, Division of Cognitive Biopsychology University of Fribourg 1 Content } 5.11. Introduction to imaging genetics

More information

Title: Pinpointing resilience in Bipolar Disorder

Title: Pinpointing resilience in Bipolar Disorder Title: Pinpointing resilience in Bipolar Disorder 1. AIM OF THE RESEARCH AND BRIEF BACKGROUND Bipolar disorder (BD) is a mood disorder characterised by episodes of depression and mania. It ranks as one

More information

Global variation in copy number in the human genome

Global variation in copy number in the human genome Global variation in copy number in the human genome Redon et. al. Nature 444:444-454 (2006) 12.03.2007 Tarmo Puurand Study 270 individuals (HapMap collection) Affymetrix 500K Whole Genome TilePath (WGTP)

More information

Taking a closer look at trio designs and unscreened controls in the GWAS era

Taking a closer look at trio designs and unscreened controls in the GWAS era Taking a closer look at trio designs and unscreened controls in the GWAS era PGC Sta8s8cal Analysis Call, November 4th 015 Wouter Peyrot, MD, Psychiatrist in training, PhD candidate Professors Brenda Penninx,

More information

LTA Analysis of HapMap Genotype Data

LTA Analysis of HapMap Genotype Data LTA Analysis of HapMap Genotype Data Introduction. This supplement to Global variation in copy number in the human genome, by Redon et al., describes the details of the LTA analysis used to screen HapMap

More information

The genetics of complex traits Amazing progress (much by ppl in this room)

The genetics of complex traits Amazing progress (much by ppl in this room) The genetics of complex traits Amazing progress (much by ppl in this room) Nick Martin Queensland Institute of Medical Research Brisbane Boulder workshop March 11, 2016 Genetic Epidemiology: Stages of

More information

Whole-genome detection of disease-associated deletions or excess homozygosity in a case control study of rheumatoid arthritis

Whole-genome detection of disease-associated deletions or excess homozygosity in a case control study of rheumatoid arthritis HMG Advance Access published December 21, 2012 Human Molecular Genetics, 2012 1 13 doi:10.1093/hmg/dds512 Whole-genome detection of disease-associated deletions or excess homozygosity in a case control

More information

Research Article Power Estimation for Gene-Longevity Association Analysis Using Concordant Twins

Research Article Power Estimation for Gene-Longevity Association Analysis Using Concordant Twins Genetics Research International, Article ID 154204, 8 pages http://dx.doi.org/10.1155/2014/154204 Research Article Power Estimation for Gene-Longevity Association Analysis Using Concordant Twins Qihua

More information

Extra Review Practice Biology Test Genetics

Extra Review Practice Biology Test Genetics Mendel fill in the blanks: Extra Review Practice Biology Test Genetics Mendel was an Austrian monk who studied genetics primarily using plants. He started with plants that produced offspring with only

More information

Sequencing studies implicate inherited mutations in autism

Sequencing studies implicate inherited mutations in autism NEWS Sequencing studies implicate inherited mutations in autism BY EMILY SINGER 23 JANUARY 2013 1 / 5 Unusual inheritance: Researchers have found a relatively mild mutation in a gene linked to Cohen syndrome,

More information

White Paper Guidelines on Vetting Genetic Associations

White Paper Guidelines on Vetting Genetic Associations White Paper 23-03 Guidelines on Vetting Genetic Associations Authors: Andro Hsu Brian Naughton Shirley Wu Created: November 14, 2007 Revised: February 14, 2008 Revised: June 10, 2010 (see end of document

More information

Human Genetics (Learning Objectives)

Human Genetics (Learning Objectives) Human Genetics (Learning Objectives) Recognize Mendel s contribution to the field of genetics. Review what you know about a karyotype: autosomes and sex chromosomes. Understand and define the terms: characteristic,

More information

The Foundations of Personalized Medicine

The Foundations of Personalized Medicine The Foundations of Personalized Medicine Jeremy M. Berg Pittsburgh Foundation Professor and Director, Institute for Personalized Medicine University of Pittsburgh Personalized Medicine Physicians have

More information

Ch. 23 The Evolution of Populations

Ch. 23 The Evolution of Populations Ch. 23 The Evolution of Populations 1 Essential question: Do populations evolve? 2 Mutation and Sexual reproduction produce genetic variation that makes evolution possible What is the smallest unit of

More information

Alzheimer Disease and Complex Segregation Analysis p.1/29

Alzheimer Disease and Complex Segregation Analysis p.1/29 Alzheimer Disease and Complex Segregation Analysis Amanda Halladay Dalhousie University Alzheimer Disease and Complex Segregation Analysis p.1/29 Outline Background Information on Alzheimer Disease Alzheimer

More information

Genes, Diseases and Lisa How an advanced ICT research infrastructure contributes to our health

Genes, Diseases and Lisa How an advanced ICT research infrastructure contributes to our health Genes, Diseases and Lisa How an advanced ICT research infrastructure contributes to our health Danielle Posthuma Center for Neurogenomics and Cognitive Research VU Amsterdam Most human diseases are heritable

More information

Single Gene (Monogenic) Disorders. Mendelian Inheritance: Definitions. Mendelian Inheritance: Definitions

Single Gene (Monogenic) Disorders. Mendelian Inheritance: Definitions. Mendelian Inheritance: Definitions Single Gene (Monogenic) Disorders Mendelian Inheritance: Definitions A genetic locus is a specific position or location on a chromosome. Frequently, locus is used to refer to a specific gene. Alleles are

More information

Goal: To identify the extent to which different aspects of psychopathology might be in some way inherited

Goal: To identify the extent to which different aspects of psychopathology might be in some way inherited Key Dates TH Mar 30 Unit 19; Term Paper Step 2 TU Apr 4 Begin Biological Perspectives, Unit IIIA and 20; Step 2 Assignment TH Apr 6 Unit 21 TU Apr 11 Unit 22; Biological Perspective Assignment TH Apr 13

More information

UNIT 6 GENETICS 12/30/16

UNIT 6 GENETICS 12/30/16 12/30/16 UNIT 6 GENETICS III. Mendel and Heredity (6.3) A. Mendel laid the groundwork for genetics 1. Traits are distinguishing characteristics that are inherited. 2. Genetics is the study of biological

More information

Complex Multifactorial Genetic Diseases

Complex Multifactorial Genetic Diseases Complex Multifactorial Genetic Diseases Nicola J Camp, University of Utah, Utah, USA Aruna Bansal, University of Utah, Utah, USA Secondary article Article Contents. Introduction. Continuous Variation.

More information

RACP Congress 2017 Genetics of Intellectual Disability and Autism: Past Present and Future 9 th May 2017

RACP Congress 2017 Genetics of Intellectual Disability and Autism: Past Present and Future 9 th May 2017 RACP Congress 2017 Genetics of Intellectual Disability and Autism: Past Present and Future 9 th May 2017 Why causation? Explanation for family Prognosis Recurrence risk and reproductive options Guide medical

More information

What is the relationship between genes and chromosomes? Is twinning genetic or can a person choose to have twins?

What is the relationship between genes and chromosomes? Is twinning genetic or can a person choose to have twins? WHAT WILL YOU KNOW? What is the relationship between genes and chromosomes? Is twinning genetic or can a person choose to have twins? How could a person have the gene for something that is never apparent?

More information

Pre-AP Biology Unit 7 Genetics Review Outline

Pre-AP Biology Unit 7 Genetics Review Outline Unit 7 Genetics Review Outline Pre-AP Biology 2017-2018 LT 1 - I can explain the relationships among alleles, genes, chromosomes, genotypes, and phenotypes. This target covers application of the vocabulary

More information

SEX. Genetic Variation: The genetic substrate for natural selection. Sex: Sources of Genotypic Variation. Genetic Variation

SEX. Genetic Variation: The genetic substrate for natural selection. Sex: Sources of Genotypic Variation. Genetic Variation Genetic Variation: The genetic substrate for natural selection Sex: Sources of Genotypic Variation Dr. Carol E. Lee, University of Wisconsin Genetic Variation If there is no genetic variation, neither

More information

9/25/ Some traits are controlled by a single gene. Selective Breeding: Observing Heredity

9/25/ Some traits are controlled by a single gene. Selective Breeding: Observing Heredity Chapter 7 Learning Outcomes Explain the concept of a single-gene trait Describe Mendel s contributions to the field of genetics Be able to define the terms gene, allele, dominant, recessive, homozygous,

More information

INTRODUCTION TO GENETIC EPIDEMIOLOGY (EPID0754) Prof. Dr. Dr. K. Van Steen

INTRODUCTION TO GENETIC EPIDEMIOLOGY (EPID0754) Prof. Dr. Dr. K. Van Steen INTRODUCTION TO GENETIC EPIDEMIOLOGY (EPID0754) Prof. Dr. Dr. K. Van Steen DIFFERENT FACES OF GENETIC EPIDEMIOLOGY 1 Basic epidemiology 1.a Aims of epidemiology 1.b Designs in epidemiology 1.c An overview

More information

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders Lecture 17: Human Genetics I. Types of Genetic Disorders A. Single gene disorders B. Multifactorial traits 1. Mutant alleles at several loci acting in concert C. Chromosomal abnormalities 1. Physical changes

More information

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Genetics The study of heredity Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Father of Genetics: Gregor Mendel original pea plant (input) offspring

More information

What#are#the#different#types#of#mutations#&#phenotypic#effects?#Give#an#example#of#a#disease#for#each.#

What#are#the#different#types#of#mutations#&#phenotypic#effects?#Give#an#example#of#a#disease#for#each.# Mutation#Classifications:# a. Location# #understand#the#differences#and#consequences.# # o Germinal* *gametes,*inherited* o Somatic* *other*cells,*not*generally*inherited* o Autosomal* *within*genes*on*autosomes*

More information

Take a look at the three adult bears shown in these photographs:

Take a look at the three adult bears shown in these photographs: Take a look at the three adult bears shown in these photographs: Which of these adult bears do you think is most likely to be the parent of the bear cubs shown in the photograph on the right? How did you

More information

How many disease-causing variants in a normal person? Matthew Hurles

How many disease-causing variants in a normal person? Matthew Hurles How many disease-causing variants in a normal person? Matthew Hurles Summary What is in a genome? What is normal? Depends on age What is a disease-causing variant? Different classes of variation Final

More information

You submitted this quiz on Mon 6 May :02 PM IST (UTC +0530). You got a score of out of Your Answer Score Explanation

You submitted this quiz on Mon 6 May :02 PM IST (UTC +0530). You got a score of out of Your Answer Score Explanation Feedback Midterm You submitted this quiz on Mon 6 May 2013 10:02 PM IST (UTC +0530). You got a score of 32.00 out of 32.00. Question 1 DNA is Unchangeable Organized into 46 homologous chromosomes A type

More information

Interaction of Genes and the Environment

Interaction of Genes and the Environment Some Traits Are Controlled by Two or More Genes! Phenotypes can be discontinuous or continuous Interaction of Genes and the Environment Chapter 5! Discontinuous variation Phenotypes that fall into two

More information

Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17

Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17 Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17 INTRODUCTION - Our genes underlie every aspect of human health, both in function and

More information

Jumping on the Train of Personalized Medicine: A Primer for Non-Geneticist Clinicians: Part 2. Fundamental Concepts in Genetic Epidemiology

Jumping on the Train of Personalized Medicine: A Primer for Non-Geneticist Clinicians: Part 2. Fundamental Concepts in Genetic Epidemiology Send Orders for Reprints to reprints@benthamscience.net Current Psychiatry Reviews, 2014, 10, 101-117 101 Jumping on the Train of Personalized Medicine: A Primer for Non-Geneticist Clinicians: Part 2.

More information

Mendelian Inheritance. Jurg Ott Columbia and Rockefeller Universities New York

Mendelian Inheritance. Jurg Ott Columbia and Rockefeller Universities New York Mendelian Inheritance Jurg Ott Columbia and Rockefeller Universities New York Genes Mendelian Inheritance Gregor Mendel, monk in a monastery in Brünn (now Brno in Czech Republic): Breeding experiments

More information

Lab Activity Report: Mendelian Genetics - Genetic Disorders

Lab Activity Report: Mendelian Genetics - Genetic Disorders Name Date Period Lab Activity Report: Mendelian Genetics - Genetic Disorders Background: Sometimes genetic disorders are caused by mutations to normal genes. When the mutation has been in the population

More information

Non-Mendelian inheritance

Non-Mendelian inheritance Non-Mendelian inheritance Focus on Human Disorders Peter K. Rogan, Ph.D. Laboratory of Human Molecular Genetics Children s Mercy Hospital Schools of Medicine & Computer Science and Engineering University

More information

Multifactorial Inheritance. Prof. Dr. Nedime Serakinci

Multifactorial Inheritance. Prof. Dr. Nedime Serakinci Multifactorial Inheritance Prof. Dr. Nedime Serakinci GENETICS I. Importance of genetics. Genetic terminology. I. Mendelian Genetics, Mendel s Laws (Law of Segregation, Law of Independent Assortment).

More information

B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics

B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics The Chromosome theory of inheritance is a basic principle in biology that states genes

More information

Genes and Inheritance (11-12)

Genes and Inheritance (11-12) Genes and Inheritance (11-12) You are a unique combination of your two parents We all have two copies of each gene (one maternal and one paternal) Gametes produced via meiosis contain only one copy of

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance Chapter 6 Patterns of Inheritance Genetics Explains and Predicts Inheritance Patterns Genetics can explain how these poodles look different. Section 10.1 Genetics Explains and Predicts Inheritance Patterns

More information

Meiotic Mistakes and Abnormalities Learning Outcomes

Meiotic Mistakes and Abnormalities Learning Outcomes Meiotic Mistakes and Abnormalities Learning Outcomes 5.6 Explain how nondisjunction can result in whole chromosomal abnormalities. (Module 5.10) 5.7 Describe the inheritance patterns for strict dominant

More information

Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China

Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China Association study of suppressor with morphogenetic effect on genitalia protein 6 (SMG6) polymorphisms and schizophrenia symptoms in the Han Chinese population Hongyan Yu 1,, Yongfeng Yang 1,2,3,, Wenqiang

More information

NOTES: : HUMAN HEREDITY

NOTES: : HUMAN HEREDITY NOTES: 14.1-14.2: HUMAN HEREDITY Human Genes: The human genome is the complete set of genetic information -it determines characteristics such as eye color and how proteins function within cells Recessive

More information