The Inheritance of Complex Traits

Size: px
Start display at page:

Download "The Inheritance of Complex Traits"

Transcription

1 The Inheritance of Complex Traits

2 Differences Among Siblings Is due to both Genetic and Environmental Factors

3 VIDEO: Designer Babies

4 Traits Controlled by Two or More Genes Many phenotypes are influenced by many gene pairs as well as the environment Phenotypes can be discontinuous or continuous

5 % of individuals % of individuals % of individuals Comparison of Discontinuous and Continuous Phenotypes Dwarf Tall P 1 parental generation Dwarf Tall F 1 generation (a) Pea plants Dwarf Tall F 2 generation

6 % of individuals % of individuals % of individuals Comparison of Discontinuous and Continuous Phenotypes Dwarf Tall P 1 parental generation Intermediate F 1 generation (b) Tobacco plants Dwarf Intermediate F 2 generation Tall

7 Traits Controlled by Two or More Genes (contd.) Discontinuous variation Phenotypes that fall into two or more distinct, nonoverlapping classes (e.g. Mendel s peas) Continuous variation Phenotypic characters that are distributed from one extreme to another in an overlapping fashion (e.g. height in humans)

8 Example of a Continuous phentoype

9 What are Complex Traits? These are determined by the cumulative effects of genes and the influence of environment Polygenic traits Traits controlled by two or more genes Patterns of inheritance that can be measured quantitatively

10 What are Complex Traits? Multifactorial traits Polygenic traits resulting from interactions of two or more genes and one or more environmental factors

11 Keep In Mind Many human diseases are controlled by the action of several genes

12 Polygenic Traits Assessing interactions of genes, environment, and phenotype can be difficult In some cases, only a specific gene and a specific environmental factor causes an effect Polygenic: when several genes (each makes a small contribution) control a phenotype the result is continuous phenotypic variation

13 Polygenic Inheritance Traits are usually quantified by measurement rather than counting Two or more genes contribute to the phenotype Phenotypic expression varies across a wide range Interactions with the environment often participate in creating the phenotype

14 Percentage of men Polygenic Inheritance The distribution of polygenic traits through the population follows a bell-shaped (normal) curve Phenotype (height in inches)

15 A Multifactorial Polygenic Trait: Skin Color Skin color is controlled by 3 or 4 genes and environmental factors leading to a wide range of phenotypes

16 Keep In Mind Environmental factors interact with genes to produce variations in phenotype

17 The Additive Model of Polygenic Inheritance As the number of genes involved increase, the number of phenotypic classes increases

18 % of individuals The Additive Model of Polygenic Inheritance 2 genes F 2 ratio: 1:4:6:4:1 Classes

19 % of individuals The Additive Model of Polygenic Inheritance 3 genes F 2 ratio: 1:6:15:20:15:6:1 Classes

20 % of individuals The Additive Model of Polygenic Inheritance 4 genes F 2 ratio: 1:8:28:56:70:56:28:8:1 Classes

21 The Additive Model of Polygenic Inheritance

22 The Additive Model of Polygenic Inheritance Gametes ABc Gametes ABC AABBCc 7 ft. AbC abc abc AABbCc 6 ft. 9 in. AaBBCc 6 ft. 9 in. AaBbCc 6 ft. 6 in. Abc AABbCc 6 ft. 9 in. AAbbCc 6 ft. 6 in. AaBbCc 6 ft. 6 in. AabbCc 6 ft. 3 in. abc AaBBCc 6 ft. 9 in. AaBbCc 6 ft. 6 in. aabbcc 6 ft. 6 in. aabbcc 6 ft. 3 in. (b) abc AaBbCc 6 ft. 6 in. AabbCc 6 ft. 3 in. aabbcc 6 ft. 3 in. aabbcc 6 ft.

23 A Polygenic Trait: Eye Color Five basic eye colors fit a model with two genes, each with two alleles

24 Regression to the Mean Averaging out the phenotype In a polygenic system, parents with extreme differences in phenotype, tend to have offspring that exhibit a phenotype that is the average of the two parental phenotypes

25 Percentage of offspring Regression to the Mean % 30 25% 25% % 6.25% 6 ft. 6 ft. 3 in. 6 ft. 6 in. 6 ft. 9 in. 7 ft.

26 5.5 Multifactorial Traits Variations in expression of polygenic traits often are due to the action of environmental factors Multifactorial or complex traits are polygenic traits with a strong environmental component

27 Multifactorial Traits Characteristics Traits are polygenic Each gene controlling the trait contributes a small amount to the phenotype Environmental factors interact with the genotype to produce the phenotype

28 Environmental Effects and Phenotype The impact of environment on genotype can cause genetically susceptible individuals to exhibit a trait discontinuously even though there is an underlying continuous distribution of genotypes for the trait

29 The Genetic Revolution: Dissecting Genes and Environment in Spina Bifida Spina Bifida is a common birth defect involving the nervous system Twin studies show a significant genetic component Nutrition (especially folate) has a significant impact on the frequency of occurrence

30 Frequency The Threshold Model Explains the discontinuous distribution of some multifactorial traits Unaffected Affected Threshold Genetic liability

31 Risk of Recurrence In multifactorial phenotypes the risk of recurrence is predicted to decline as the degree of relatedness of the individuals declines

32 Familial Risks for Multifactorial Traits

33 Keep In Mind The genetic contribution to phenotypic variation can be estimated

34 Heritability The degree of phenotypic variation produced by a genotype in a specific population can be estimated by calculating the heritability of a trait

35 Heritability Phenotypic variation is derived from two sources: Genetic variance The phenotypic variance of a trait in a population that is attributed to genotypic differences Environmental variance The phenotypic variance of a trait in a population that is attributed to differences in the environment

36 Heritability of a Trait The degree of phenotypic variation produced by a genotype in a specific population can be estimated by calculating the heritability of a trait

37 Heritability Estimates Heritability is estimated By observing the amount of variation among relatives who have a known fraction of genes in common (known as genetic relatedness) Only for the population under study and the environmental condition in effect at the time of the study

38 Correlation Correlation coefficient The fraction of genes shared by two relatives Identical twins have 100% of their genes in common (correlation coefficient = 1.0) When raised in separate environments identical twins provide an estimate of the degree of environmental influence on gene expression

39 Twin Studies and Multifactorial Traits Monozygotic (MZ) Genetically identical twins derived from a single fertilization involving one egg and one sperm Dizygotic (DZ) Twins derived from two separate and nearly simultaneous fertilizations, each involving one egg and one sperm DZ twins share about 50% of their genes

40 VIDEO: Obesity Genes

41 ANIMATION: Chronology of leptin research To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE

42 Monozygotic (identical) Twins Share a Single Genotype

43 Monozygotic and Dizygotic Twins Monozygotic (MZ) twins Single fertilization event Mitosis (a) Two genetically identical embryos

44 Monozygotic and Dizygotic Twins Dizygotic (DZ) twins Two independent fertilization events Mitosis (b) Two embryos sharing about half their genes

45 Concordance The study of heritablity in twins assumes that MZ twins share all of their genes; DZ twins share half of their genes Concordance Agreement between traits exhibited by both twins In twin studies, the degree of concordance for a trait is compared in MZ and DZ twins reared together or apart The greater the difference, the greater the heritability

46 Concordance in MZ and DZ Twins

47 Keep In Mind Twin studies provide an insight into the interaction of genotypes and environment

48 Concordance, Heritability, and Obesity Concordance can be converted to heritability by statistical methods Twin studies of obesity show a strong heritability component (about 70%)

49 Obesity: Now a National Health Problem

50 Genetic Clues to Obesity: The ob Gene The ob gene encodes the weight-controlling hormone leptin in mice; receptors in the hypothalamus are controlled by the db gene

51 Leptin and Fat Storage The ob gene encodes the hormone Leptin produced by fat cells that signals the brain and ovary As fat levels become depleted, secretion of leptin slows and eventually stops

52 Leptin and Fat Storage Hypothalamus Leptin Conversion of food to energy Resolution of energy consumption Fat cells

53 Human Obesity Genes In humans, mutations in the gene for Leptin (LP) of the Leptin receptor (LEPR) account for about 5% of all cases of obesity Other factors cause the recent explosive increase in obesity

54 Additional Obesity Genes X Y

55 Exploring Genetics Twins, Quintuplets, and Armadillos Some armadillos produce litters of two to six genetically identical, same-sex offspring by embryo splitting, the same way identical multiple births can occur in humans

56 Genetics of Height New technologies allow researchers to survey the genome to detect associations with phenotypes such as height. The use of single nucleotide polymorphisms (SNPs) allows the association between haplotypes and phenotypes. Haplotype: specific combinations of SNPs located close together on a chromosome that are likely inherited as a group.

57 Haplotypes DNA source SNP SNP SNP SNP Reference standard Original haplotype 10,000 nucleotides Person 1 Haplotype 1 Person 2 Haplotype 2 Person 3 Haplotype 3 Person 4 Haplotype 4

58 Distribution of individuals Skin Color and IQ Skin color is characteristic of a polygenic trait P (a) Class

59 Distribution of individuals 5.9 Skin Color and IQ Skin color is characteristic of a polygenic trait F 1 (b) Class

60 Distribution of individuals Skin Color and IQ Skin color is characteristic of a polygenic trait F (c) Class

61 Multifactorial Traits: Skin Color Skin color is controlled by 3 or 4 genes, plus environmental factors KEY 1 gene 2 genes F 1 F 1 (F 2 ) 3 genes 4 genes Skin reflectance at 685 nm.

62 Are Intelligence and IQ Related? Early studies believed that physical dimensions of regions of the brain were a measure of intelligence

63 Are Intelligence and IQ Related? Can intelligence be measured quantitatively? Psychological measurements and the ability to perform specific tasks as a function of age led to the development of the intelligent quotient (IQ) test There is no evidence that intelligence can be measured objectively (like height or weight) Interestingly, IQ measurements do have a significant heritable components

64 IQ Correlation Coefficients Pairs studied Expected value Nonbiological sibling pairs (adopted/natural pairings) (5) 0.0 Nonbiological sibling pairs (adopted/adopted pairings) (6) 0.0 Foster-parent child (12) 0.0 Single-parent offspring reared together (32) 0.5 Single-parent offspring reared apart (4) Siblings reared apart (2) 0.5 Siblings reared together (69) 0.5 Dizygotic twins, opposite sex (18) 0.5 Dizygotic twins, same sex (29) 0.5 Monozygotic twins reared apart (3) 1.0 Monozygotic twins reared together (34) Correlation coefficient 0.5

65 Controversy About IQ and Race IQ test scores can t be equated with intelligence Relative contributions of genetics, environment, social and cultural influences can t be measured Heritability can t be used to estimate genetic variation between populations Heritability measures only variation within a population at the time of measurement Genetic variability within a population is greater than the variability between any two populations

66 Controversy About IQ and Race Both genetic and environmental factors make important contributions to intelligence

67 Intelligence: meaningful measures and the search for genes General cognitive ability An expanded definition of intelligence e.g. verbal and spatial abilities, memory and speed of perception, and reasoning Genes associated with reading disability (dyslexia) and cognitive ability have been discovered by comparing haplotypes

68 Keep In Mind Many multifactorial traits have environmental social and cultural impacts

Interaction of Genes and the Environment

Interaction of Genes and the Environment Some Traits Are Controlled by Two or More Genes! Phenotypes can be discontinuous or continuous Interaction of Genes and the Environment Chapter 5! Discontinuous variation Phenotypes that fall into two

More information

Interaction of Genes and the Environment

Interaction of Genes and the Environment Some Traits Are Controlled by Two or More Genes! Phenotypes can be discontinuous or continuous Interaction of Genes and the Environment Chapter 5! Discontinuous variation Phenotypes that fall into two

More information

Chapter 5 INTERACTIONS OF GENES AND THE ENVIRONMENT

Chapter 5 INTERACTIONS OF GENES AND THE ENVIRONMENT Chapter 5 INTERACTIONS OF GENES AND THE ENVIRONMENT Chapter Summary Up to this point, the traits you have been studying have all been controlled by one pair of genes. However, many traits, including some

More information

MULTIFACTORIAL DISEASES. MG L-10 July 7 th 2014

MULTIFACTORIAL DISEASES. MG L-10 July 7 th 2014 MULTIFACTORIAL DISEASES MG L-10 July 7 th 2014 Genetic Diseases Unifactorial Chromosomal Multifactorial AD Numerical AR Structural X-linked Microdeletions Mitochondrial Spectrum of Alterations in DNA Sequence

More information

Discontinuous Traits. Chapter 22. Quantitative Traits. Types of Quantitative Traits. Few, distinct phenotypes. Also called discrete characters

Discontinuous Traits. Chapter 22. Quantitative Traits. Types of Quantitative Traits. Few, distinct phenotypes. Also called discrete characters Discontinuous Traits Few, distinct phenotypes Chapter 22 Also called discrete characters Quantitative Genetics Examples: Pea shape, eye color in Drosophila, Flower color Quantitative Traits Phenotype is

More information

Quantitative genetics: traits controlled by alleles at many loci

Quantitative genetics: traits controlled by alleles at many loci Quantitative genetics: traits controlled by alleles at many loci Human phenotypic adaptations and diseases commonly involve the effects of many genes, each will small effect Quantitative genetics allows

More information

Multifactorial Inheritance. Prof. Dr. Nedime Serakinci

Multifactorial Inheritance. Prof. Dr. Nedime Serakinci Multifactorial Inheritance Prof. Dr. Nedime Serakinci GENETICS I. Importance of genetics. Genetic terminology. I. Mendelian Genetics, Mendel s Laws (Law of Segregation, Law of Independent Assortment).

More information

Today s Topics. Cracking the Genetic Code. The Process of Genetic Transmission. The Process of Genetic Transmission. Genes

Today s Topics. Cracking the Genetic Code. The Process of Genetic Transmission. The Process of Genetic Transmission. Genes Today s Topics Mechanisms of Heredity Biology of Heredity Genetic Disorders Research Methods in Behavioral Genetics Gene x Environment Interactions The Process of Genetic Transmission Genes: segments of

More information

Genetics of Behavior (Learning Objectives)

Genetics of Behavior (Learning Objectives) Genetics of Behavior (Learning Objectives) Recognize that behavior is multi-factorial with genetic components Understand how multi-factorial traits are studied. Explain the terms: prevalence, incidence,

More information

Dan Koller, Ph.D. Medical and Molecular Genetics

Dan Koller, Ph.D. Medical and Molecular Genetics Design of Genetic Studies Dan Koller, Ph.D. Research Assistant Professor Medical and Molecular Genetics Genetics and Medicine Over the past decade, advances from genetics have permeated medicine Identification

More information

biology Slide 1 of 32 End Show Copyright Pearson Prentice Hall

biology Slide 1 of 32 End Show Copyright Pearson Prentice Hall biology 1 of 32 11-1 The Work of Gregor Mendel 2 of 32 Gregor Mendel s Peas Genetics is the scientific study of heredity. Gregor Mendel was an Austrian monk. His work was important to the understanding

More information

Chapter 3 Outline. I. Becoming Parents

Chapter 3 Outline. I. Becoming Parents Chapter 3 Outline I. Becoming Parents A. Conception 1. Changing Theories of Conception Two-seed theory: (Hippocrates) Joining of male and female seeds. There are no significant anatomical differences between

More information

Introduction to Genetics and Heredity

Introduction to Genetics and Heredity Introduction to Genetics and Heredity Although these dogs have similar characteristics they are each unique! I. Early Ideas About Heredity A. The Theory of Blending Inheritance Each parent contributes

More information

Life-Span Development Thirteenth Edition

Life-Span Development Thirteenth Edition Life-Span Development Thirteenth Edition Natural Selection and Adaptive Behavior Natural Selection: an evolutionary process by which those individuals of a species that are best adapted are the ones that

More information

Genetics of Behavior (Learning Objectives)

Genetics of Behavior (Learning Objectives) Genetics of Behavior (Learning Objectives) Recognize that behavior is multi-factorial with genetic components Understand how multi-factorial traits are studied. Explain the terms: incidence, prevalence,

More information

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Genetics The study of heredity Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Father of Genetics: Gregor Mendel original pea plant (input) offspring

More information

Multifactorial Inheritance

Multifactorial Inheritance S e s s i o n 6 Medical Genetics Multifactorial Inheritance and Population Genetics J a v a d J a m s h i d i F a s a U n i v e r s i t y o f M e d i c a l S c i e n c e s, Novemb e r 2 0 1 7 Multifactorial

More information

Neural Development 1

Neural Development 1 Neural Development 1 Genes versus environment Nature versus nurture Instinct versus learning Interactive theory of development Hair color What language you speak Intelligence? Creativity? http://www.jove.com/science-education/5207/an-introduction-to-developmental-neurobiology

More information

biology Slide 1 of 32

biology Slide 1 of 32 biology 1 of 32 11-1 The Work of Gregor 11-1 The Work of Gregor Mendel Mendel 2 of 32 Gregor Mendel s Peas Gregor Mendel s Peas Genetics is the scientific study of heredity. Gregor Mendel was an Austrian

More information

NOTES: Exceptions to Mendelian Genetics!

NOTES: Exceptions to Mendelian Genetics! NOTES: 11.3 Exceptions to Mendelian Genetics! Beyond Dominant and Recessive Alleles Some alleles are neither dominant nor recessive, and many traits are controlled by multiple alleles OR multiple genes.

More information

What is the relationship between genes and chromosomes? Is twinning genetic or can a person choose to have twins?

What is the relationship between genes and chromosomes? Is twinning genetic or can a person choose to have twins? WHAT WILL YOU KNOW? What is the relationship between genes and chromosomes? Is twinning genetic or can a person choose to have twins? How could a person have the gene for something that is never apparent?

More information

What You ll Learn. Genetics Since Mendel. ! Explain how traits are inherited by incomplete dominance

What You ll Learn. Genetics Since Mendel. ! Explain how traits are inherited by incomplete dominance Genetics Since Mendel GLE 0707.4.4 Predict the probable appearance of offspring based on the genetic characteristics of the parents. What You ll Learn! Explain how traits are inherited by incomplete dominance!

More information

Mendelian Genetics. Gregor Mendel. Father of modern genetics

Mendelian Genetics. Gregor Mendel. Father of modern genetics Mendelian Genetics Gregor Mendel Father of modern genetics Objectives I can compare and contrast mitosis & meiosis. I can properly use the genetic vocabulary presented. I can differentiate and gather data

More information

Meiosis I. Meiosis II. In each empty circle, write the number of chromosomes that would be found in the cell. (1)

Meiosis I. Meiosis II. In each empty circle, write the number of chromosomes that would be found in the cell. (1) 1. The diagram shows stages of meiosis in a human testis. Each circle represents a cell. 46 Meiosis I Meiosis II (a) In each empty circle, write the number of chromosomes that would be found in the cell.

More information

Human Genetics (Learning Objectives)

Human Genetics (Learning Objectives) Human Genetics (Learning Objectives) Recognize Mendel s contribution to the field of genetics. Review what you know about a karyotype: autosomes and sex chromosomes. Understand and define the terms: characteristic,

More information

Genetics Review. Alleles. The Punnett Square. Genotype and Phenotype. Codominance. Incomplete Dominance

Genetics Review. Alleles. The Punnett Square. Genotype and Phenotype. Codominance. Incomplete Dominance Genetics Review Alleles These two different versions of gene A create a condition known as heterozygous. Only the dominant allele (A) will be expressed. When both chromosomes have identical copies of the

More information

AS90163 Biology Describe the transfer of genetic information Part 1 - DNA structure & Cell division

AS90163 Biology Describe the transfer of genetic information Part 1 - DNA structure & Cell division AS90163 Biology Describe the transfer of genetic information Part 1 - DNA structure & Cell division This achievement standard involves the description of the transfer of genetic information. Achievement

More information

C) Show the chromosomes, including the alleles on each, in the F1 hybrid progeny at metaphase of Meiosis 1 and mitosis.

C) Show the chromosomes, including the alleles on each, in the F1 hybrid progeny at metaphase of Meiosis 1 and mitosis. On my honor, this is my work GENETICS 310 EXAM I all, 2017 I. Australian daises have 4 chromosomes (2 pairs). A gene on chromosome 1 affects petal color where M M is magenta, M M is pink and MM flowers

More information

An Introduction to Quantitative Genetics I. Heather A Lawson Advanced Genetics Spring2018

An Introduction to Quantitative Genetics I. Heather A Lawson Advanced Genetics Spring2018 An Introduction to Quantitative Genetics I Heather A Lawson Advanced Genetics Spring2018 Outline What is Quantitative Genetics? Genotypic Values and Genetic Effects Heritability Linkage Disequilibrium

More information

The Work of Gregor Mendel. Guided Reading

The Work of Gregor Mendel. Guided Reading The Work of Gregor Mendel Guided Reading Gregor Mendel 25 min Mendel (pearson) 6 min The Experiments of Gregor Mendel 1. What is Heredity? The delivery of characteristics from parents to offspring 2. What

More information

Genetics PPT Part 1 Biology-Mrs. Flannery

Genetics PPT Part 1 Biology-Mrs. Flannery Genetics PPT Part Biology-Mrs. Flannery In an Abbey Garden Mendel studied garden peas because they were easy to grow, came in many readily distinguishable varieties, had easily visible traits are easily

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance Chapter 6 Patterns of Inheritance Genetics Explains and Predicts Inheritance Patterns Genetics can explain how these poodles look different. Section 10.1 Genetics Explains and Predicts Inheritance Patterns

More information

Patterns of Inheritance

Patterns of Inheritance Patterns of Inheritance Mendel the monk studied inheritance keys to his success: he picked pea plants he focused on easily categorized traits he used true-breeding populations parents always produced offspring

More information

Sexual Reproduction & Inheritance

Sexual Reproduction & Inheritance Sexual Reproduction & Sexual Reproduction & Overview Asexual vs Sexual Reproduction Meiosis Genetic Diversity Mendel & The Laws of Sexual Reproduction Sexual Reproduction Asexual Reproduction Prokaryotes

More information

MOLECULAR EPIDEMIOLOGY Afiono Agung Prasetyo Faculty of Medicine Sebelas Maret University Indonesia

MOLECULAR EPIDEMIOLOGY Afiono Agung Prasetyo Faculty of Medicine Sebelas Maret University Indonesia MOLECULAR EPIDEMIOLOGY GENERAL EPIDEMIOLOGY General epidemiology is the scientific basis of public health Descriptive epidemiology: distribution of disease in populations Incidence and prevalence rates

More information

What creates variation in the offspring of sexually reproducing organisms?

What creates variation in the offspring of sexually reproducing organisms? What creates variation in the offspring of sexually reproducing organisms? 1. genetic recombination during fertilization 2. mitotic division in body cells 62% 3. crossing over in mitosis 4. homologous

More information

GENETIC VARIATION AND PATTERNS OF INHERITANCE. SOURCES OF GENETIC VARIATION How siblings / families can be so different

GENETIC VARIATION AND PATTERNS OF INHERITANCE. SOURCES OF GENETIC VARIATION How siblings / families can be so different 9/22/205 GENETIC VARIATION AND PATTERNS OF INHERITANCE SOURCES OF GENETIC VARIATION How siblings / families can be so different Independent orientation of chromosomes (metaphase I of meiosis) Random fertilization

More information

Bio 102 Practice Problems Mendelian Genetics and Extensions

Bio 102 Practice Problems Mendelian Genetics and Extensions Bio 102 Practice Problems Mendelian Genetics and Extensions Short answer (show your work or thinking to get partial credit): 1. In peas, tall is dominant over dwarf. If a plant homozygous for tall is crossed

More information

Genes and Inheritance

Genes and Inheritance Genes and Inheritance Variation Causes of Variation Variation No two people are exactly the same The differences between people is called VARIATION. This variation comes from two sources: Genetic cause

More information

Behavioral genetics: The study of differences

Behavioral genetics: The study of differences University of Lethbridge Research Repository OPUS Faculty Research and Publications http://opus.uleth.ca Lalumière, Martin 2005 Behavioral genetics: The study of differences Lalumière, Martin L. Department

More information

Chapter 11. Introduction to Genetics

Chapter 11. Introduction to Genetics Chapter 11 Introduction to Genetics A Brief History In the past, people did not understand how traits were inherited, but there were many guesses based on things that could be observed. Two theories emerged.

More information

Unit 7 Section 2 and 3

Unit 7 Section 2 and 3 Unit 7 Section 2 and 3 Evidence 12: Do you think food preferences are passed down from Parents to children, or does the environment play a role? Explain your answer. One of the most important outcomes

More information

An Introduction to Quantitative Genetics

An Introduction to Quantitative Genetics An Introduction to Quantitative Genetics Mohammad Keramatipour MD, PhD Keramatipour@tums.ac.ir ac ir 1 Mendel s work Laws of inheritance Basic Concepts Applications Predicting outcome of crosses Phenotype

More information

Genes and Inheritance (11-12)

Genes and Inheritance (11-12) Genes and Inheritance (11-12) You are a unique combination of your two parents We all have two copies of each gene (one maternal and one paternal) Gametes produced via meiosis contain only one copy of

More information

REVIEW SHEET: Units 11 Meiosis, Fertilization, & Genetics

REVIEW SHEET: Units 11 Meiosis, Fertilization, & Genetics REVIEW SHEET: Units 11 Meiosis, Fertilization, & Genetics ACP BIOLOGY Textbook Reading: Meiosis & Fertilization (Ch. 11.4, 14.1-2) and Classical Genetics (Ch. 11.1-3) Handouts:! NOTES Meiosis & Fertilization!

More information

Chapter 18 Genetics of Behavior. Chapter 18 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning

Chapter 18 Genetics of Behavior. Chapter 18 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning Chapter 18 Genetics of Behavior Behavior Most human behaviors are polygenic and have significant environmental influences Methods used to study inheritance include Classical methods of linkage and pedigree

More information

Gregor Mendel. What is Genetics? the study of heredity

Gregor Mendel. What is Genetics? the study of heredity Gregor Mendel What is Genetics? the study of heredity Gregor Mendel s Peas Pollen: plant s sperm Egg Cells: plants reproductive cells Fertilization: joining of pollen + egg cells develops into embryo in

More information

Unit B2, B2.7. Cell division and inheritance. Stage 1. Ovary. Cell Q. Cell P. Cell R. Cell S. 7 Embryo A B C

Unit B2, B2.7. Cell division and inheritance. Stage 1. Ovary. Cell Q. Cell P. Cell R. Cell S. 7 Embryo A B C Cell division and inheritance 1. A woman gives birth to triplets. Two of the triplets are boys and the third is a girl. The triplets developed from two egg cells released from the ovary at the same time.

More information

UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis

UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis Where are we in this course??? UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis Today we will start with UNIT 2 A. Mendel and the Gene

More information

Honors Biology Test Chapter 9 - Genetics

Honors Biology Test Chapter 9 - Genetics Honors Biology Test Chapter 9 - Genetics 1. The exceptions to the rule that every chromosome is part of a homologous pair are the a. sex chromosomes. c. linked chromosomes. b. autosomes. d. linked autosomes.

More information

The basic methods for studying human genetics are OBSERVATIONAL, not EXPERIMENTAL.

The basic methods for studying human genetics are OBSERVATIONAL, not EXPERIMENTAL. Human Heredity Chapter 5 Human Genetics 5:1 Studying Human Genetics Humans are not good subjects for genetic research because: 1. Humans cannot ethically be crossed in desired combinations. 2. Time between

More information

Notes: Mendelian Genetics

Notes: Mendelian Genetics Notes: Mendelian Genetics Heredity is passing characteristics from one generation to the next. Genetics is the study of heredity. Who was Gregor Mendel? Gregor Mendel is the Father of Modern Genetics.

More information

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall Biology 1 of 31 11 3 Exploring Mendelian 11-3 Exploring Mendelian Genetics Genetics 2 of 31 Independent Assortment Independent Assortment To determine if the segregation of one pair of alleles affects

More information

IS IT GENETIC? How do genes, environment and chance interact to specify a complex trait such as intelligence?

IS IT GENETIC? How do genes, environment and chance interact to specify a complex trait such as intelligence? 1 IS IT GENETIC? How do genes, environment and chance interact to specify a complex trait such as intelligence? Single-gene (monogenic) traits Phenotypic variation is typically discrete (often comparing

More information

Genetic Variation Junior Science

Genetic Variation Junior Science 2018 Version Genetic Variation Junior Science http://img.publishthis.com/images/bookmarkimages/2015/05/d/5/c/d5cf017fb4f7e46e1c21b874472ea7d1_bookmarkimage_620x480_xlarge_original_1.jpg Sexual Reproduction

More information

3. What law of heredity explains that traits, like texture and color, are inherited independently of each other?

3. What law of heredity explains that traits, like texture and color, are inherited independently of each other? Section 2: Genetics Chapter 11 pg. 308-329 Part 1: Refer to the table of pea plant traits on the right. Then complete the table on the left by filling in the missing information for each cross. 6. What

More information

Darwin s dilemma 8/14/2014. Meiosis & Inheritance Lecture 18 Summer Mitosis & Meiosis. The Modern Synthesis

Darwin s dilemma 8/14/2014. Meiosis & Inheritance Lecture 18 Summer Mitosis & Meiosis. The Modern Synthesis Darwin s dilemma 1 Meiosis & Inheritance Lecture 18 Summer 2014 How do organisms pass heritable traits to their offspring? The Modern Synthesis 2 Mitosis & Meiosis 3 1844 - Darwin essay on Natural Selection

More information

10/26/2015. ssyy, ssyy

10/26/2015. ssyy, ssyy Biology 102 Lecture 10: Chromosomes and Sex Inheritance All of our examples of inheritance patterns have focused on single genes Humans have 25,000 genes! Genes on the same chromosome are inherited together

More information

Lab 5: Testing Hypotheses about Patterns of Inheritance

Lab 5: Testing Hypotheses about Patterns of Inheritance Lab 5: Testing Hypotheses about Patterns of Inheritance How do we talk about genetic information? Each cell in living organisms contains DNA. DNA is made of nucleotide subunits arranged in very long strands.

More information

REVIEW SHEET: Units 11 Meiosis, Fertilization, & Genetics

REVIEW SHEET: Units 11 Meiosis, Fertilization, & Genetics REVIEW SHEET: Units 11 Meiosis, Fertilization, & Genetics HONORS BIOLOGY Textbook Reading: Meiosis & Fertilization (Ch. 11.4, 14.1-2) and Classical Genetics (Ch. 11.1-3) Handouts:! NOTES Meiosis & Fertilization!

More information

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism.

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. Unit 6 Genetics 6.1 Genetics You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. HEREDITY: traits that are passed from parents

More information

Page 2. Q1.Figure 1 shows a human body cell. Figure 1. Which part in Figure 1 contains chromosomes? Tick one box. A B C

Page 2. Q1.Figure 1 shows a human body cell. Figure 1. Which part in Figure 1 contains chromosomes? Tick one box. A B C Q1.Figure 1 shows a human body cell. Figure 1 (a) Which part in Figure 1 contains chromosomes? Tick one box. A B C (b) Humans have pairs of chromosomes in their body cells. Draw one line from each type

More information

READING ASSIGNMENT GENETIC ANALYSIS OF DROSOPHILA POPULATIONS I. HOW DO MITOSIS AND MEIOSIS COMPARE?

READING ASSIGNMENT GENETIC ANALYSIS OF DROSOPHILA POPULATIONS I. HOW DO MITOSIS AND MEIOSIS COMPARE? READING ASSIGNMENT GENETIC ANALYSIS OF DROSOPHILA POPULATIONS I. HOW DO MITOSIS AND MEIOSIS COMPARE? II. HOW CAN WE DETERMINE EXPECTED RATIOS OF OFFSPRING? What rules can we learn from Mendel s work with

More information

Genetics & The Work of Mendel. AP Biology

Genetics & The Work of Mendel. AP Biology Genetics & The Work of Mendel Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas u used experimental method u used

More information

Semester 2- Unit 2: Inheritance

Semester 2- Unit 2: Inheritance Semester 2- Unit 2: Inheritance heredity -characteristics passed from parent to offspring genetics -the scientific study of heredity trait - a specific characteristic of an individual genes -factors passed

More information

Genetics of common disorders with complex inheritance Bettina Blaumeiser MD PhD

Genetics of common disorders with complex inheritance Bettina Blaumeiser MD PhD Genetics of common disorders with complex inheritance Bettina Blaumeiser MD PhD Medical Genetics University Hospital & University of Antwerp Programme Day 6: Genetics of common disorders with complex inheritance

More information

Chapter 11 Introduction to Genetics

Chapter 11 Introduction to Genetics Chapter 11 Introduction to Genetics 11.1 Gregor Mendel Genetics is the scientific study of heredity How traits are passed from one generation to the next Mendel Austrian monk (1822) Used Pea Plants (crossed

More information

DNA Review??? gene???

DNA Review??? gene??? DNA Review??? gene??? Human Chromosomes Humans have 23 pairs of chromosomes; 46 all together Females have 23 matched pairs; males have 22 matched and one unmatched pair Gregor Mendel Born in 1822, Austria

More information

8/31/2017. Biology 102. Lecture 10: Chromosomes and Sex Inheritance. Independent Assortment. Independent Assortment. Independent Assortment

8/31/2017. Biology 102. Lecture 10: Chromosomes and Sex Inheritance. Independent Assortment. Independent Assortment. Independent Assortment Biology 102 Lecture 10: Chromosomes and Sex Inheritance All of our examples of inheritance patterns have focused on single genes Humans have 25,000 genes! Genes on the same chromosome are inherited together

More information

Genetic basis of inheritance and variation. Dr. Amjad Mahasneh. Jordan University of Science and Technology

Genetic basis of inheritance and variation. Dr. Amjad Mahasneh. Jordan University of Science and Technology Genetic basis of inheritance and variation Dr. Amjad Mahasneh Jordan University of Science and Technology Segment 1 Hello and welcome everyone. My name is Amjad Mahasneh. I teach molecular biology at Jordan

More information

TECHNIQUE. Parental generation (P) Stamens Carpel 3. RESULTS First filial. offspring (F 1 )

TECHNIQUE. Parental generation (P) Stamens Carpel 3. RESULTS First filial. offspring (F 1 ) TECHNIQUE 2 Parental generation (P) Stamens Carpel 3 4 RESULTS First filial generation offspring (F ) 5 2 EXPERIMENT P Generation (true-breeding parents) Purple flowers White flowers F Generation (hybrids)

More information

The table to the right shows ALL possible alleles for several traits in pea plants. (Please use it to help you answer #1-6 below.)

The table to the right shows ALL possible alleles for several traits in pea plants. (Please use it to help you answer #1-6 below.) QUIZ: MENDEL S LAWS & PUNNETT SQUARES NAME: PERIOD: DATE: MENDEL S LAWS The table to the right shows ALL possible alleles for several traits in pea plants. (Please use it to help you answer #1-6 below.)

More information

Chapter 10 Notes Patterns of Inheritance, Part 1

Chapter 10 Notes Patterns of Inheritance, Part 1 Chapter 10 Notes Patterns of Inheritance, Part 1 I. Gregor Mendel (1822-1884) a. Austrian monk with a scientific background b. Conducted numerous hybridization experiments with the garden pea, Pisum sativum,

More information

Biology Unit 7 Genetics 7:1 Genetics

Biology Unit 7 Genetics 7:1 Genetics Biology Unit 7 Genetics 7:1 Genetics Gregor Mendel: Austrian monk Studied the inheritance of traits in pea plants His work was not recognized until the 20 th century Between 1856 and 1863, Mendel cultivated

More information

14.1 Human Chromosomes pg

14.1 Human Chromosomes pg 14.1 Human Chromosomes pg. 392-397 Lesson Objectives Identify the types of human chromosomes in a karotype. Describe the patterns of the inheritance of human traits. Explain how pedigrees are used to study

More information

Learning Abilities and Disabilities

Learning Abilities and Disabilities CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE Learning Abilities and Disabilities Generalist Genes, Specialist Environments Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry,

More information

Normal enzyme makes melanin (dark pigment in skin and hair) Defective enzyme does not make melanin

Normal enzyme makes melanin (dark pigment in skin and hair) Defective enzyme does not make melanin Genetics Supplement (These supplementary modules, a Genetics Student Handout, and Teacher Preparation Notes with suggestions for implementation are available at http://serendip.brynmawr.edu/sci_edu/waldron/#genetics.

More information

2. Circle the genotypes in the table that are homozygous. Explain how the two different homozygous genotypes result in different phenotypes.

2. Circle the genotypes in the table that are homozygous. Explain how the two different homozygous genotypes result in different phenotypes. Genetics Supplement (These supplementary modules, a Genetics Student Handout, and Teacher Preparation Notes with background information are available at http://serendip.brynmawr.edu/sci_edu/waldron/#genetics.

More information

Extra Review Practice Biology Test Genetics

Extra Review Practice Biology Test Genetics Mendel fill in the blanks: Extra Review Practice Biology Test Genetics Mendel was an Austrian monk who studied genetics primarily using plants. He started with plants that produced offspring with only

More information

Name Date Class. Main Idea. Human traits are controlled by single genes with two alleles, single genes with... a. b. c.

Name Date Class. Main Idea. Human traits are controlled by single genes with two alleles, single genes with... a. b. c. Modern Genetics Name Date Class Modern Genetics Guided Reading and Study Human Inheritance This section explains some patterns of inheritance in humans. It also describes the functions of the sex chromosomes

More information

Semester 2- Unit 2: Inheritance

Semester 2- Unit 2: Inheritance Semester 2- Unit 2: Inheritance heredity -characteristics passed from parent to offspring genetics -the scientific study of heredity trait - a specific characteristic of an individual genes -factors passed

More information

2. Was there a scientific way to predict the outcome of a cross between two parents?

2. Was there a scientific way to predict the outcome of a cross between two parents? Name Date Period Heredity WebQuest DNA from the Beginning Mendelian Genetics Go to http://www.dnaftb.org/dnaftb/1/concept/index.html Children resemble their parents Read the text and answer the following

More information

Name Class Date. Complete each of the following sentences by choosing the correct term from the word bank. sex cells genotype sex chromosomes

Name Class Date. Complete each of the following sentences by choosing the correct term from the word bank. sex cells genotype sex chromosomes Skills Worksheet Chapter Review USING KEY TERMS Complete each of the following sentences by choosing the correct term from the word bank. sex cells genotype sex chromosomes alleles phenotype meiosis 1.

More information

Mendelian Genetics. Activity. Part I: Introduction. Instructions

Mendelian Genetics. Activity. Part I: Introduction. Instructions Activity Part I: Introduction Some of your traits are inherited and cannot be changed, while others can be influenced by the environment around you. There has been ongoing research in the causes of cancer.

More information

Genetics. by their offspring. The study of the inheritance of traits is called.

Genetics. by their offspring. The study of the inheritance of traits is called. Genetics DNA contains the genetic code for the production of. A gene is a part of DNA, which has enough bases to make for many different proteins. These specific proteins made by a gene decide the of an

More information

Unit 4: Reproduction Chapter 6. Meiosis is the basis of sexual reproduction.

Unit 4: Reproduction Chapter 6. Meiosis is the basis of sexual reproduction. Unit 4: Reproduction Chapter 6 Meiosis is the basis of sexual reproduction. Mitosis Recap https://www.youtube.com/watch?v= JayldCyv5eQ Sexual Reproduction Section 6.1: Meiosis Sexual Reproduction: a method

More information

Chapter 9. Patterns of Inheritance. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.

Chapter 9. Patterns of Inheritance. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc. Chapter 9 Patterns of Inheritance Lectures by Gregory Ahearn University of North Florida Copyright 2009 Pearson Education, Inc. 9.1 What Is The Physical Basis Of Inheritance? Inheritance occurs when genes

More information

Thinking About Psychology: The Science of Mind and. Charles T. Blair-Broeker Randal M. Ernst

Thinking About Psychology: The Science of Mind and. Charles T. Blair-Broeker Randal M. Ernst Thinking About Psychology: The Science of Mind and Behavior 2e Charles T. Blair-Broeker Randal M. Ernst Methods Domain Introductory Chapter Module 03 Nature and Nurture in Psychology Module 3: Nature and

More information

IB BIO I Genetics Test Madden

IB BIO I Genetics Test Madden Name Date Multiple Choice 1. What does the genotype X H X h indicate? A. A co-dominant female B. A heterozygous male C. A heterozygous female D. A co-dominant male 2. A pure breeding tall plant with smooth

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

BIO113 Exam 2 Ch 4, 10, 13

BIO113 Exam 2 Ch 4, 10, 13 BIO113 Exam 2 Ch 4, 10, 13 See course outline for specific reading assignments Study notes and focus on terms and concepts The images in the textbook are useful CELLS (pg. 37) The basic unit of life living

More information

Lecture Outline. Darwin s Theory of Natural Selection. Modern Theory of Natural Selection. Changes in frequencies of alleles

Lecture Outline. Darwin s Theory of Natural Selection. Modern Theory of Natural Selection. Changes in frequencies of alleles 1. Basics of Natural Selection Lecture Outline 2. How to test for the key components of natural selection a. Variation b. Heritability c. Can the trait respond to selection? d. What are the selective forces?

More information

Fundamentals of Genetics

Fundamentals of Genetics Fundamentals of Genetics For thousands of years people have known that living things somehow pass on some type of information to their offspring. This was very clear in things that humans selected to breed

More information

Meiosis and Genetics

Meiosis and Genetics Meiosis and Genetics Humans have chromosomes in each cell What pattern do you notice in the human karyotype (a technique that organizes chromosomes by type and size)? Humans are diploid 1 Gametes are produced

More information

VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous chromosome sexual reproduction meiosis

VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous chromosome sexual reproduction meiosis SECTION 6.1 CHROMOSOMES AND MEIOSIS Study Guide KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid

More information

Genetics, Mendel and Units of Heredity

Genetics, Mendel and Units of Heredity Genetics, Mendel and Units of Heredity ¾ Austrian monk and naturalist. ¾ Conducted research in Brno, Czech Republic from 1856-1863 ¾ Curious about how traits were passed from parents to offspring. Gregor

More information

Question 2: Which one of the following is the phenotypic monohybrid ratio in F2 generation? (a) 3:1 (b) 1:2:1 (c) 2:2 (d) 1:3 Solution 2: (a) 3 : 1

Question 2: Which one of the following is the phenotypic monohybrid ratio in F2 generation? (a) 3:1 (b) 1:2:1 (c) 2:2 (d) 1:3 Solution 2: (a) 3 : 1 Class X Genetics Biology A. MULTIPLE CHOICE TYPE: (Select the most appropriate option) Which one of the following has the smallest number of chromosomes? (a) Onion (b) Mouse (c) Monkey (d) Ascaris (d)

More information

Meiotic Mistakes and Abnormalities Learning Outcomes

Meiotic Mistakes and Abnormalities Learning Outcomes Meiotic Mistakes and Abnormalities Learning Outcomes 5.6 Explain how nondisjunction can result in whole chromosomal abnormalities. (Module 5.10) 5.7 Describe the inheritance patterns for strict dominant

More information

Chapter 11 introduction to genetics 11.1 The work of Gregor mendel

Chapter 11 introduction to genetics 11.1 The work of Gregor mendel Chapter 11 introduction to genetics 11.1 The work of Gregor mendel What is inheritance? Two uses of the word inheritance Things that are passed down through generations Factors we get from our parents

More information