Neutrons. ρ σ. where. Neutrons act like photons in the sense that they are attenuated as. Unlike photons, neutrons interact via the strong interaction

Size: px
Start display at page:

Download "Neutrons. ρ σ. where. Neutrons act like photons in the sense that they are attenuated as. Unlike photons, neutrons interact via the strong interaction"

Transcription

1 Neutrons Neutrons act like photons in the sense that they are attenuated as I = I 0 e μx where Unlike photons, neutrons interact via the strong interaction μ = The cross sections are much smaller than those of the electromagnetic interaction because of the short range of the nuclear (strong) force The cross sections are O( barns) N Av A ρ σ tot 1

2 Neutrons Neutrons can be classified by their kinetic energy High energy (> 10 MeV) Fast (500 kev 10 MeV) Intermediate (1 kev 500 kev) Resonance (1 ev 1 kev) Epithermal (0.025 ev 1 ev) Thermal (slow) ~ ev = kt Cold (< kt) 2

3 Resonance Neutrons 238 U cross sections 3

4 Neutrons There are a variety of neutron interactions with nuclei from low to high energy these are (n,γ) neutron capture (n, n) elastic scattering (n,n ) inelastic scattering (n,p), (n,α) charged particle emission (n,f) fission (n,x) hadronic shower production 4

5 Neutrons High energy neutrons produce hadronic showers Important for calorimetry in particle physics Fast neutrons interact principally by elastic scattering Resonance neutrons can produce resonances (long-lived excited states) Thermal neutrons are captured Cross section ~ 1/v (1/v law is good to ~ 1000 ev) 5

6 Neutrons Cross section falls as 1/v at low energies 6

7 Neutrons Neutrons are usually detected by the charged particles they produce Recoil nucleus Proton Alpha particle Fission fragments Note these particles are heavy and thus produce significant ionization Neutrons (high LET radiation) Photons (low LET radiation) 7

8 Neutron Elastic Scattering Elastic scattering is the most important process for slowing down neutrons Using KE and momentum conservation one can show that the maximum energy that a neutron of mass m and kinetic energy E 0 can transfer to a nucleus of mass M in an elastic collision is 4mM Q max = ( M + m) 2 E 0 8

9 Neutron Elastic Scattering Some examples of the maximum fractional energy loss by a neutron How would you design a shield for neutrons? Nucleus 1 H 2 H 4 He 16 O 56 Fe 238 U Q max /E

10 Neutron Inelastic Scattering Inelastic total cross section for iron 10

11 Neutrons Thermal neutron detectors are based on the detection of slow alphas or protons through 10 B+ 1 n 7 Li * + 4 α 6 Li+ 1 n 3 H + 4 α 3 He+ 1 n 3 H + 1 p 235 U, 239 Pu fission 11

12 Neutrons 12

13 Neutron Detectors BF 3 and 3 He proportional counters Large cross sections (3840 and 5330 barns for thermal neutrons) Q-value released determines kinetic energy of daughters through energy and momentum conservation Gas detectors show the wall effect if they are of limited size No information about the energy spectrum of the incident neutrons is possible 13

14 3 He Proportional Counter Principle of operation 14

15 3 He Proportional Counter Wall effect gives a characteristic energy spectrum that can be used for gamma ray discrimination 15

16 Neutron Detectors Neutron inorganic scintillators All daughter products are absorbed But so are photons so poor discrimination 16

17 Neutron Detectors Fast neutrons can be detected by Moderation to thermal energies Bonner spheres Recoil proton in hydrogen (more common) Organic scintillators Can use proton TOF to determine 17

18 Bonner Spheres 6 LiI scintillator 18

19 Bonner Spheres 19

20 Neutron Detectors CVD (Chemical Vapor Deposition) diamond detectors For extreme radiation environments Fusion installations (ITER and NIF) HEP experiments (slhc) Proton and carbon-beam therapy monitoring Both polycrystalline and single crystal CVD is possible 20

21 CVD Diamond mm pcvd diamond films using CO 2 /CH 4 plasmas 21

22 CVD Diamond Principle of operation 22

23 Pros CVD Diamond Intrinsically radiation hard Low dielectric constant so very fast (ns) charge collection Atomic number close to tissue Low Z means less sensitivity to gamma rays Cons High energy needed to produce electron-hole pair 13.2 ev for diamond versus 3.6 ev for silicon Small signal requires preamplification close to the detector Several types of electron/hole traps in the diamond film Response reproducibility of films 23

24 Neutron Therapy Can neutrons be used for radiation therapy? Depth dose for a 66 MeV proton beam incident on a Be target (equivalent to 8 MV photon beam) 24

25 Positives Neutron Therapy High-LET radiation High RBE radiation (1.5-5)? Relative Biological Effect == ratio of doses required to achieve the same biological effect Smaller doses, shorter treatment time More effective on radioresistant tumors Low oxygen tension tumors Repair of radiation damage Negatives Unclear if systematic studies support these positives 25

26 Neutron Therapy RBE 26

27 Neutron Therapy Soft tissue sarcoma 27

28 Boron Neutron Capture Therapy Proposed by Locher in 1936, only a few years after the discovery of the neutron Idea is to treat (kill) individual tumor cells, mainly gliomas (brain tumor) Tag tumor cells with boron ( 10 B) (~20 μg / g) Irradiate with epithermal neutrons (0.5 ev 1 kev) Produce high LET and high RBE products which kill the individual cell * 4 7 * B + n B He+ Li MeV 28

29 Boron Neutron Capture Therapy The BNCT reaction The heavy daughters travel 5-9 μm which is O(cell diameter) 29

30 Boron Neutron Capture Therapy Radiation dose delivered to tumor and normal tissues are High LET decay products of 11 B and 7 Li High LET protons from 14 N(n,p) 14 C Low LET photons from 1 H(n,γ) 2 H 30

31 Boron Neutron Capture Therapy Examples of boron delivery agents 31

32 Boron Neutron Therapy Capture Concentration of BPA 32

33 Boron Neutron Therapy Capture Still in trials mainly for gioblastoma multiforme 33

34 Boron Neutron Capture Therapy Still in trials mainly for gioblastoma multiforme 34

35 35 Neutrons Fast neutrons can be problematic in shielding or calorimetry because they only elastic scatter How best to shield a fast neutron? polyethylene or lead? Using momentum and energy conservation for m 1 and m 2 elastic scattering 1 finds 0 large finds = + = = f m m f m m m m m T T T f i f i

36 Neutrons Activation energy for fission 36

37 Neutrons Inelastic total cross section for iron 37

Neutron Interactions Part 2. Neutron shielding. Neutron shielding. George Starkschall, Ph.D. Department of Radiation Physics

Neutron Interactions Part 2. Neutron shielding. Neutron shielding. George Starkschall, Ph.D. Department of Radiation Physics Neutron Interactions Part 2 George Starkschall, Ph.D. Department of Radiation Physics Neutron shielding Fast neutrons Slow down rapidly by scatter in hydrogenous materials, e.g., polyethylene, paraffin,

More information

Neutron Detection Spring 2002

Neutron Detection Spring 2002 Neutron Detection 22.104 Spring 2002 Neutrons vs. X-rays Ideal Large Detector Pulse Height Neutron Interactions Total Cross section for Moderators Neutron Slowing Down Neutron Histories in Moderated Detector

More information

Chapter Introduction

Chapter Introduction Chapter 1 Introduction Malignancy is a life-threatening condition in which tumor cells are of a highly invasive character and penetrate normal organs and exhibit an obstinate resistance against cancer

More information

V. 4. Design and Benchmark Experiment for Cyclotron-based Neutron Source for BNCT

V. 4. Design and Benchmark Experiment for Cyclotron-based Neutron Source for BNCT CYRIC Annual Report 2002 V. 4. Design and Benchmark Experiment for Cyclotron-based Neutron Source for BNCT Yonai S., ItogaT., Nakamura T., Baba M., Yashima, H. Yokobori H. *, and Tahara Y. ** Cyclotron

More information

Today, I will present the second of the two lectures on neutron interactions.

Today, I will present the second of the two lectures on neutron interactions. Today, I will present the second of the two lectures on neutron interactions. 1 The main goal of this lecture is to tell you a little about clinical neutron therapy, first with fast neutron beams, and

More information

THE HIGH-CURRENT DEUTERON ACCELERATOR FOR THE NEUTRON THERAPY. S.V. Akulinichev, A. V. Andreev, V.M. Skorkin

THE HIGH-CURRENT DEUTERON ACCELERATOR FOR THE NEUTRON THERAPY. S.V. Akulinichev, A. V. Andreev, V.M. Skorkin THE HIGH-CURRENT DEUTERON ACCELERATOR FOR THE NEUTRON THERAPY S.V. Akulinichev, A. V. Andreev, V.M. Skorkin Institute for Nuclear Research of the RAS, Russia THE PROJECT OF NEUTRON SOURCES FOR THE NEUTRON

More information

THERMOLUMINESCENT (TL) DOSIMETRY OF SLOW-NEUTRON FIELDS AT RADIOTHERAPY DOSE LEVEL

THERMOLUMINESCENT (TL) DOSIMETRY OF SLOW-NEUTRON FIELDS AT RADIOTHERAPY DOSE LEVEL THERMOLUMINESCENT (TL) DOSIMETRY OF SLOW-NEUTRON FIELDS AT RADIOTHERAPY DOSE LEVEL G. Gambarini Dipartimento di Fisica dell Università, Milano, Italy e-mail grazia.gambarini http://users.unimi.it/~frixy/

More information

Distribution of Water Phantom BNCT Kartini Research Reactor Based Using PHITS

Distribution of Water Phantom BNCT Kartini Research Reactor Based Using PHITS Indonesian Journal of Physics and Nuclear Applications Volume 3, Number 2, June 2018, p. 43-48 e-issn 2550-0570, FSM UKSW Publication Distribution of Water Phantom BNCT Kartini Research Reactor Based Using

More information

Neutron - a tool in the cancer treatment - C. Paunoiu

Neutron - a tool in the cancer treatment - C. Paunoiu Neutron - a tool in the cancer treatment - C. Paunoiu 146 5/17/2009 The neutron -a a tool in the cancer treatment Dr.Constantin PĂUNOIU, constantin.paunoiu@nuclear.ro http://www.nuclear.ro biological material

More information

BIOLOGICAL EFFECTS OF

BIOLOGICAL EFFECTS OF BIOLOGICAL EFFECTS OF RADIATION Natural Sources of Radiation Natural background radiation comes from three sources: Cosmic Radiation Terrestrial Radiation Internal Radiation 2 Natural Sources of Radiation

More information

Optimization of an accelerator-based epithermal neutron source for neutron capture therapy

Optimization of an accelerator-based epithermal neutron source for neutron capture therapy Applied Radiation and Isotopes 61 (2004) 1009 1013 Optimization of an accelerator-based epithermal neutron source for neutron capture therapy O.E. Kononov a, *, V.N. Kononov a, M.V. Bokhovko a, V.V. Korobeynikov

More information

Radioactivity. Alpha particles (α) :

Radioactivity. Alpha particles (α) : Radioactivity It is the property of an element that causes it to emit radiation Discovered by Becquerel (1896) Radiation comes from the nucleus of the atom There are three types of radiation : alpha particles

More information

Djoko S. Pudjorahardjo, Widarto, Isman Mulyadi T

Djoko S. Pudjorahardjo, Widarto, Isman Mulyadi T Indonesian Journal of Physics and NuclearApplications Volume 3, Number 1, February 2018, p. 15-20 e-issn 2550-0570, FSM UKSWPublication 2549-046X, FSM UKSWPublication Detail Engineering Design of Compact

More information

A Feasibility Study of the SLOWPOKE-2 Reactor as a Neutron Source for Boron Neutron Cancer Treatment

A Feasibility Study of the SLOWPOKE-2 Reactor as a Neutron Source for Boron Neutron Cancer Treatment A Feasibility Study of the SLOWPOKE- Reactor as a Neutron Source for Boron Neutron Cancer Treatment Introduction M.J. McCall, M. Pierre Royal Military College of Canada, Kingston, Ontario, Canada K7K 7B4

More information

Progress in Reactor and Accelerator Based BNCT at Kyoto University Research Reactor Institute

Progress in Reactor and Accelerator Based BNCT at Kyoto University Research Reactor Institute Progress in Reactor and Accelerator Based BNCT at Kyoto University Research Reactor Institute Yoshinori Sakurai 1 Kyoto University Research Reactor Institute Asashiro-nishi 2-1010, Kumatori-cho, Sennan-gun,

More information

Radiation physics and radiation protection. University of Szeged Department of Nuclear Medicine

Radiation physics and radiation protection. University of Szeged Department of Nuclear Medicine Radiation physics and radiation protection University of Szeged Department of Nuclear Medicine Radiation doses to the population 1 Radiation doses to the population 2 Sources of radiation 1 Radiation we

More information

Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy

Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy IL NUOVO CIMENTO 38 C (2015) 179 DOI 10.1393/ncc/i2015-15179-9 Colloquia: UCANS-V Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy I. Porras( 1 ),J.Praena(

More information

Study on Microdosimetry for Boron Neutron Capture Therapy

Study on Microdosimetry for Boron Neutron Capture Therapy Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.242-246 (2011) ARTICLE Study on Microdosimetry for Boron Neutron Capture Therapy Tetsuya MUKAWA 1,*, Tetsuo MATSUMOTO 1 and Koji NIITA 2 1 Tokyo City

More information

Presented by Dr. Amir H. Mohagheghi. Annual RMCC Workshop Middle East Scientific Institute for Security (MESIS) Amman, Jordan June 17-19, 2013

Presented by Dr. Amir H. Mohagheghi. Annual RMCC Workshop Middle East Scientific Institute for Security (MESIS) Amman, Jordan June 17-19, 2013 Neutron Activation Analysis and Dosimetry based on reports by R. Burrows, A. Mohagheghi, and D. Ward: Personnel Nuclear Accident Dosimetry at Sandia National Laboratories SAND96-2204, SAND2011-6416 Presented

More information

The physics of boron neutron capture therapy: an emerging and innovative treatment for glioblastoma and melanoma

The physics of boron neutron capture therapy: an emerging and innovative treatment for glioblastoma and melanoma Physics and Astronomy Department Physics and Astronomy Comps Papers Carleton College Year 2005 The physics of boron neutron capture therapy: an emerging and innovative treatment for glioblastoma and melanoma

More information

III. Proton-therapytherapy. Rome SB - 5/5 1

III. Proton-therapytherapy. Rome SB - 5/5 1 Outline Introduction: an historical review I Applications in medical diagnostics Particle accelerators for medicine Applications in conventional radiation therapy II III IV Hadrontherapy, the frontier

More information

Introduction. Measurement of Secondary Radiation for Electron and Proton Accelerators. Introduction - Photons. Introduction - Neutrons.

Introduction. Measurement of Secondary Radiation for Electron and Proton Accelerators. Introduction - Photons. Introduction - Neutrons. Measurement of Secondary Radiation for Electron and Proton Accelerators D. Followill, Ph.D. Radiological Physics Center U. T. M. D. Anderson Cancer Center Introduction Patients undergoing radiation therapy

More information

Preliminary study of MAGAT polymer gel dosimetry for boron-neutron capture therapy

Preliminary study of MAGAT polymer gel dosimetry for boron-neutron capture therapy Journal of Physics: Conference Series OPEN ACCESS Preliminary study of MAGAT polymer gel dosimetry for boron-neutron capture therapy To cite this article: Shin-ichiro Hayashi et al 2015 J. Phys.: Conf.

More information

NEUTRONS. 1. Exposure Data

NEUTRONS. 1. Exposure Data NEUTRONS 1. Exposure Data Exposure to neutrons can occur from the nuclear fission reactions usually associated with the production of nuclear energy, from cosmic radiation in the natural environment and

More information

Venue: IEEE NSS/MIC/RTSD Conference, Seoul, South Korea, 27 th October 2013 Workshop: NWK3/RD1 Radiation Protection and Dosimetry

Venue: IEEE NSS/MIC/RTSD Conference, Seoul, South Korea, 27 th October 2013 Workshop: NWK3/RD1 Radiation Protection and Dosimetry Venue: IEEE NSS/MIC/RTSD Conference, Seoul, South Korea, 27 th October 2013 Workshop: NWK3/RD1 Radiation Protection and Dosimetry M. Caresana a, A. Sashala Naik a,c, S. Rollet b, M. Ferrarini a,d a Polytechnic

More information

DPA calculations with FLUKA

DPA calculations with FLUKA DPA calculations with FLUKA A. Lechner, L. Esposito, P. Garcia Ortega, F. Cerutti, A. Ferrari, E. Skordis on behalf of the FLUKA team (CERN) with valuable input from R. Bruce, P.D. Hermes, S. Redaelli

More information

Design of a BSA for Producing Epithermal Neutron for BNCT

Design of a BSA for Producing Epithermal Neutron for BNCT Siam Physics Congress 2015 Design of a BSA for Producing Epithermal Neutron for BNCT M Asnal *, T Liamsuwan 2 and T Onjun 1 1 Sirindhorn International Institute of Technology, Thammasat University 2 Nuclear

More information

Neutron Induced Radiation Damage in BaF 2, LYSO and PWO Scintillation Crystals

Neutron Induced Radiation Damage in BaF 2, LYSO and PWO Scintillation Crystals Neutron Induced Radiation Damage in BaF 2, LYSO and PWO Scintillation Crystals Chen Hu, Fan Yang, Liyuan Zhang, Ren-Yuan Zhu California Institute of Technology Jon Kapustinsky, Ron Nelson and Zhehui Wang

More information

LET, RBE and Damage to DNA

LET, RBE and Damage to DNA LET, RBE and Damage to DNA Linear Energy Transfer (LET) When is stopping power not equal to LET? Stopping power (-de/dx) gives the energy lost by a charged particle in a medium. LET gives the energy absorbed

More information

Option D: Medicinal Chemistry

Option D: Medicinal Chemistry Option D: Medicinal Chemistry Basics - unstable radioactive nuclei emit radiation in the form of smaller particles alpha, beta, positron, proton, neutron, & gamma are all used in nuclear medicine unstable

More information

Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam

Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam University of Chicago CDH Proton Center LET study C. Reft 1, H. Ramirez 2 and M. Pankuch

More information

AN ABSTRACT OF THE THESIS OF. Leanna R. Eller for the degree of Master of Science in Radiation Health Physics

AN ABSTRACT OF THE THESIS OF. Leanna R. Eller for the degree of Master of Science in Radiation Health Physics AN ABSTRACT OF THE THESIS OF Leanna R. Eller for the degree of Master of Science in Radiation Health Physics presented on November 30, 2010. Title: An Investigation on Photoneutron Production from Medical

More information

Basic radiation protection & radiobiology

Basic radiation protection & radiobiology Basic radiation protection & radiobiology By Dr. Mohsen Dashti Patient care & management 202 Wednesday, October 13, 2010 Ionizing radiation. Discussion issues Protecting the patient. Protecting the radiographer.

More information

Physical Bases : Which Isotopes?

Physical Bases : Which Isotopes? Physical Bases : Which Isotopes? S. Gnesin Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland 1/53 Theranostic Bruxelles, 2 Octobrer 2017 Theranostic : use of diagnostic

More information

ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER

ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER Bro. Dr. Collie Miller IARC/WHO Based on trends in the incidence of cancer, the International Agency for Research on Cancer (IARC) and WHO

More information

Single Photon Emission Tomography Approach for Online Patient Dose Assessment in Boron Neutron Capture Therapy

Single Photon Emission Tomography Approach for Online Patient Dose Assessment in Boron Neutron Capture Therapy Single Photon Emission Tomography Approach for Online Patient Dose Assessment in Boron Neutron Capture Therapy Daniel M Minsky a,b,c*, Alejandro Valda a,b, Andrés J Kreiner a,b,c and Alejandro A Burlon

More information

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 2 & 3 Biological Effects of Ionizing Radiation & Commonly Used Radiation Units DR. MOHAMMED MOSTAFA EMAM How does radiation injure people? - High energy radiation

More information

HEAVY PARTICLE THERAPY

HEAVY PARTICLE THERAPY HEAVY PARTICLE THERAPY DR. G.V. GIRI KIDWAI MEMORIAL INSTITUTE OF ONCOLOGY ICRO 2012 BHATINDA HEAVY PARTICLES USED IN A EFFORT TO IMPROVE TUMOR CONTROL, THAT DO NOT RESPOND TO PHOTONS OR ELECTRONS BETTER

More information

Mathematical Optimization Methodology for Neutron Filters

Mathematical Optimization Methodology for Neutron Filters Mathematical Optimization Methodology for Neutron Filters Bachelor Thesis Author: Jos de Wit 4007441 Applied Physics Revieuw committee: Dr.ir. J.L. Kloosterman Dr.ir. M. Rohde November 2012 - July 2013

More information

Real Time Spectrometer for thermal neutrons from Radiotherapic Accelerators

Real Time Spectrometer for thermal neutrons from Radiotherapic Accelerators Real Time Spectrometer for thermal neutrons from Radiotherapic Accelerators Aldo Mozzanica, Università degli Studi di Brescia, INFN sezione di Pavia mozzanica@bs.infn.it 2 Outlines The Boron Neutron Capture

More information

Medical Physics 4 I3 Radiation in Medicine

Medical Physics 4 I3 Radiation in Medicine Name: Date: 1. This question is about radiation dosimetry. Medical Physics 4 I3 Radiation in Medicine Define exposure. A patient is injected with a gamma ray emitter. The radiation from the source creates

More information

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 3, 4 & 5 Biological Effects of Ionizing Radiation & Commonly Used Radiation Units DR. MOHAMMED MOSTAFA EMAM How does radiation injure people? - High energy

More information

Design and Performance Of A Thermal Neutron Beam for Boron Neutron Capture Therapy At The University Of Missouri Research Reactor

Design and Performance Of A Thermal Neutron Beam for Boron Neutron Capture Therapy At The University Of Missouri Research Reactor Design and Performance Of A Thermal Neutron Beam for Boron Neutron Capture Therapy At The University Of Missouri Research Reactor J.D. Brockman J.C. McKibben In situ activation reaction, 10 B(n, a) 7 Li;

More information

Boron Neutron Capture Therapy (BNCT) - Low-Energy Neutron Spectrometer for Neutron Field Characterization - )

Boron Neutron Capture Therapy (BNCT) - Low-Energy Neutron Spectrometer for Neutron Field Characterization - ) Boron Neutron Capture Therapy (BNCT) - Low-Energy Neutron Spectrometer for Neutron Field Characterization - ) Isao MURATA and Tsubasa OBATA Division of Electrical, Electronic and Information Engineering,

More information

COMPARING THE RESPONSES OF TLD 100, TLD 600, TLD 700 AND TLD 400 IN MIXED NEUTRON-GAMMA FIELDS

COMPARING THE RESPONSES OF TLD 100, TLD 600, TLD 700 AND TLD 400 IN MIXED NEUTRON-GAMMA FIELDS 2015 International Nuclear Atlantic Conference - INAC 2015 São Paulo, SP, Brazil, October 4-9, 2015 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-06-9 COMPARING THE RESPONSES OF TLD

More information

Chapter 7. What is Radiation Biology? Ionizing Radiation. Energy Transfer Determinants 09/21/2014

Chapter 7. What is Radiation Biology? Ionizing Radiation. Energy Transfer Determinants 09/21/2014 Chapter 7 Molecular & Cellular Radiation Biology What is Radiation Biology? A branch of biology concerned with how ionizing radiation effects living systems. Biological damage that occurs from different

More information

HEALTH RISKS FROM EXPOSURE TO FAST NEUTRONS. Prof. Marco Durante

HEALTH RISKS FROM EXPOSURE TO FAST NEUTRONS. Prof. Marco Durante HEALTH RISKS FROM EXPOSURE TO FAST NEUTRONS Prof. Marco Durante Risk from neutrons Risk from exposure to fission spectrum neutrons has been extensively studied in the 60 s at nuclear reactors using animal

More information

Lecture 13 Radiation Onclolgy

Lecture 13 Radiation Onclolgy Lecture 13 Radiation Onclolgy Radiation Oncology: Tumors attacked with ionizing radiation Photons (gamma rays) High Energy Electrons Protons Other particles Brachytherapy: implants of beta emitters Ionizing

More information

PHYS 383: Applications of physics in medicine (offered at the University of Waterloo from Jan 2015)

PHYS 383: Applications of physics in medicine (offered at the University of Waterloo from Jan 2015) PHYS 383: Applications of physics in medicine (offered at the University of Waterloo from Jan 2015) Course Description: This course is an introduction to physics in medicine and is intended to introduce

More information

COMPARISON OF RADIOBIOLOGICAL EFFECTS OF CARBON IONS TO PROTONS ON A RESISTANT HUMAN MELANOMA CELL LINE

COMPARISON OF RADIOBIOLOGICAL EFFECTS OF CARBON IONS TO PROTONS ON A RESISTANT HUMAN MELANOMA CELL LINE COMPARISON OF RADIOBIOLOGICAL EFFECTS OF CARBON IONS TO PROTONS ON A RESISTANT HUMAN MELANOMA CELL LINE I. Petrovi a, A. Risti -Fira a, L. Kori anac a, J. Požega a, F. Di Rosa b, P. Cirrone b and G. Cuttone

More information

University of Wollongong. Research Online

University of Wollongong. Research Online University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 1999 Fission converter and metal oxide semiconductor field effect transistor

More information

PHYSICS 2: HSC COURSE 2 nd edition (Andriessen et al) CHAPTER 20 Radioactivity as a diagnostic tool (pages 394-5)

PHYSICS 2: HSC COURSE 2 nd edition (Andriessen et al) CHAPTER 20 Radioactivity as a diagnostic tool (pages 394-5) PHYSICS 2: HSC COURSE 2 nd edition (Andriessen et al) CHAPTER 20 Radioactivity as a diagnostic tool (pages 394-5) 1. (a) A radioisotope is an isotope that is unstable and will emit particles from the nucleus

More information

Radiation Monitoring Instruments

Radiation Monitoring Instruments Radiation Monitoring Instruments This set of slides is based on Chapter 4 authored byg. Rajan, J. Izewska of the IAEA publication (ISBN 92-0-107304-6): Radiation Oncology Physics: A Handbook for Teachers

More information

Nuclear Data for Radiation Therapy

Nuclear Data for Radiation Therapy Symposium on Nuclear Data 2004 Nov. 12, 2004 @ JAERI, Tokai Nuclear Data for Radiation Therapy ~from macroscopic to microscopic~ Naruhiro Matsufuji, Yuki Kase and Tatsuaki Kanai National Institute of Radiological

More information

Proton and heavy ion radiotherapy: Effect of LET

Proton and heavy ion radiotherapy: Effect of LET Proton and heavy ion radiotherapy: Effect of LET As a low LET particle traverses a DNA molecule, ionizations are far apart and double strand breaks are rare With high LET particles, ionizations are closer

More information

Neutron dose evaluation in radiotherapy

Neutron dose evaluation in radiotherapy Neutron dose evaluation in radiotherapy Francesco d Errico University of Pisa, Italy Yale University, USA Radiation therapy with a linear accelerator (LINAC) Photoneutron production in accelerator head

More information

Medical Use of Radioisotopes

Medical Use of Radioisotopes Medical Use of Radioisotopes Therapy Radioisotopes prove to be useful in the application of brachytherapy, the procedure for using temporary irradiation close to the area of disease (i.e. cancer) 10% Medical

More information

Radiation Effects in Life Sciences

Radiation Effects in Life Sciences Radiation Effects in Life Sciences oocyte eggs in uterus spermatheca gonad Quality of Radiation Biological Effects Applications of SSD in Life sciences Nanodosimetry Particle Microscope (pct) vulva Radiation

More information

Introduction. Chapter 15 Radiation Protection. Advisory bodies. Regulatory bodies. Main Principles of Radiation Protection

Introduction. Chapter 15 Radiation Protection. Advisory bodies. Regulatory bodies. Main Principles of Radiation Protection Introduction Chapter 15 Radiation Protection Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. F.M. Khan, The Physics of Radiation Therapy, 4th ed., Chapter

More information

Radiation Dosimetry at the BNL High Flux Beam Reactor and Medical Research Reactor

Radiation Dosimetry at the BNL High Flux Beam Reactor and Medical Research Reactor BNL-66807 1 1 1 1 2 Holden, N.E., Hu, J-P., Greenberg, D.D., Reciniello, R.N., Farrell, K. and Greenwood, L.R. Radiation Dosimetry at the BNL High Flux Beam Reactor and Medical Research Reactor Reference:Holden,N.E.,

More information

Radiation qualities in carbon-ion radiotherapy at NIRS/HIMAC

Radiation qualities in carbon-ion radiotherapy at NIRS/HIMAC Radiation qualities in carbon-ion radiotherapy at NIRS/ Shunsuke YONAI Radiological Protection Section Research Center for Charged Particle Therapy National Institute of Radiological Sciences (NIRS) E-mail:

More information

Radiologic Units: What You Need to Know

Radiologic Units: What You Need to Know Radiologic Units: What You Need to Know TODD VAN AUKEN M.ED. RT (R)(MR) Agenda Greys, Sieverts, Coulombs per kg, & Becquerel's Conventional Units Other Concepts (LET, Q-Factor, Effective Dose, NCRP Report

More information

45 Hr PET Registry Review Course

45 Hr PET Registry Review Course 45 HR PET/CT REGISTRY REVIEW COURSE Course Control Document Timothy K. Marshel, MBA, R.T. (R), (N)(CT)(MR)(NCT)(PET)(CNMT) The PET/CT Training Institute, Inc. SNMMI-TS 028600-028632 45hr CEH s Voice Credits

More information

Influence of Radiation Damage obtained under Fast Charged Particle Irradiation on Plasma-Facing Erosion of Fusion Structural Materials

Influence of Radiation Damage obtained under Fast Charged Particle Irradiation on Plasma-Facing Erosion of Fusion Structural Materials Russian Research Center Kurchatov Institute Influence of Radiation Damage obtained under Fast Charged Particle Irradiation on Plasma-Facing Erosion of Fusion Structural Materials A.I. Ryazanov, V.S. Koidan,

More information

Simulation of the BNCT of Brain Tumors Using MCNP Code: Beam Designing and Dose Evaluation

Simulation of the BNCT of Brain Tumors Using MCNP Code: Beam Designing and Dose Evaluation Iranian Journal of Medical Physics Vol. 9, No. 3, Summer 2012, 183-192 Received: March 06, 2012; Accepted: July 09, 2012 Original Article Simulation of the BNCT of Brain Tumors Using MCNP Code: Beam Designing

More information

Development of LINAC-Based Neutron Source for Boron Neutron Capture Therapy in University of Tsukuba )

Development of LINAC-Based Neutron Source for Boron Neutron Capture Therapy in University of Tsukuba ) Development of LINAC-Based Neutron Source for Boron Neutron Capture Therapy in University of Tsukuba ) Hiroaki KUMADA, Fujio NAITO 1), Kazuo HASEGAWA 2), Hitoshi KOBAYASHI 1), Toshikazu KURIHARA 1), Kenta

More information

IPPE Iron shell transmission experiment with 14 MeV neutron source and its analysis by the Monte-Carlo method

IPPE Iron shell transmission experiment with 14 MeV neutron source and its analysis by the Monte-Carlo method IPPE Iron shell transmission experiment with 14 MeV neutron source and its analysis by the Monte-Carlo method S.P. Simakov 1,2, M.G. Kobozev 1, A.A. Lychagin 1, V.A. Talalaev 1, U. Fischer 2, U. von Möllendorff

More information

Expectations of Physics Knowledge for Certification

Expectations of Physics Knowledge for Certification Expectations of Physics Knowledge for Certification Bhudatt Paliwal, Ph.D. University of Wisconsin Medical School Department of Human Oncology Madison, Wisconsin 53792 USA Guiding Principles Test that

More information

The Therapeutic Ratio in BNCT: Assessment using the Rat 9L Gliosarcoma Brain Tumor and Spinal Cord Models

The Therapeutic Ratio in BNCT: Assessment using the Rat 9L Gliosarcoma Brain Tumor and Spinal Cord Models BNL-63408 The Therapeutic Ratio in BNCT: Assessment using the Rat 9L Gliosarcoma Brain Tumor and Spinal Cord Models J.A. Coderre, G.M. Morris 1, P.L. Micca, M.M. Nawrocky, CD. Fisher, A. Bywaters and J;W.

More information

EPITHERMAL NEUTRON BEAM GENERATOR DESIGN FOR BNCT

EPITHERMAL NEUTRON BEAM GENERATOR DESIGN FOR BNCT 22nd International Congress of Mechanical Engineering (COBEM 2013) November 3-7, 2013, Ribeirão Preto, SP, Brazil Copyright c 2013 by ABCM EPITHERMAL NEUTRON BEAM GENERATOR DESIGN FOR BNCT 1 Wagner Leite

More information

The Principles of Radiation Monitoring and the Radiation Protection System in Hong Kong. H.M.Mok Physicist Radiation Health Unit Department of Health

The Principles of Radiation Monitoring and the Radiation Protection System in Hong Kong. H.M.Mok Physicist Radiation Health Unit Department of Health The Principles of Radiation Monitoring and the Radiation Protection System in Hong Kong H.M.Mok Physicist Radiation Health Unit Department of Health Contents Basic properties of ionising radiation and

More information

Neutron Measurements for Intensity Modulated Radiation Therapy

Neutron Measurements for Intensity Modulated Radiation Therapy SLAC-PUB-8443 April 2 Neutron Measurements for Intensity Modulated Radiation Therapy N. E. Ipe et al. Presented at Chicago 2 World Congress on Medical Physics and Biomedical Engineering, 7/23/2 7/28/2,

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH. Proposal to the ISOLDE and Neutron Time-of-Flight Committee

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH. Proposal to the ISOLDE and Neutron Time-of-Flight Committee EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Proposal to the ISOLDE and Neutron Time-of-Flight Committee 33 S(n,α) 30 Si cross section measurement at n_tof EAR2. [submission date: 03/06/2015] Javier Praena

More information

Indonesian Journal of Physics and Nuclear Applications Volume 2, Number 2, June 2017, p ISSN X, FSM UKSW Publication

Indonesian Journal of Physics and Nuclear Applications Volume 2, Number 2, June 2017, p ISSN X, FSM UKSW Publication Indonesian Journal of Physics and Nuclear Applications Volume 2, Number 2, June 2017, p. 83-90 ISSN 2549-046X, FSM UKSW Publication A Conceptual Design Optimization of Collimator With 181 Ta As Neutron

More information

PRINCIPLES and PRACTICE of RADIATION ONCOLOGY. Matthew B. Podgorsak, PhD, FAAPM Department of Radiation Oncology

PRINCIPLES and PRACTICE of RADIATION ONCOLOGY. Matthew B. Podgorsak, PhD, FAAPM Department of Radiation Oncology PRINCIPLES and PRACTICE of RADIATION ONCOLOGY Matthew B. Podgorsak, PhD, FAAPM Department of Radiation Oncology OUTLINE Physical basis Biological basis History of radiation therapy Treatment planning Technology

More information

TFY4315 STRÅLINGSBIOFYSIKK

TFY4315 STRÅLINGSBIOFYSIKK Norges teknisk-naturvitenskaplige universitet Institutt for fysikk EKSAMENSOPPGÅVER med løysingsforslag Examination papers with solution proposals TFY4315 STRÅLINGSBIOFYSIKK Biophysics of Ionizing Radiation

More information

Study of neutron-dna interaction at the IPEN BNCT Research facility ABSTRACT

Study of neutron-dna interaction at the IPEN BNCT Research facility ABSTRACT Study of neutron-dna interaction at the IPEN BNCT Research facility Maritza Rodriguez Gual 1, Oscar Rodriguez Hoyos 1, Fernando Guzman Martinez 1, Airton Deppman 2, J.D.T.Aruda Neto 2, V.P.Likhachev 2,

More information

Binary therapies in the treatment of cancer

Binary therapies in the treatment of cancer Binary therapies in the treatment of cancer translational research from the physics laboratory to the clinic Stuart Green University Hospital Birmingham and British Institute of Radiology STFC Innovations

More information

GDR in Radiotherapy Treatment Fields with 18 MV Accelerators

GDR in Radiotherapy Treatment Fields with 18 MV Accelerators GDR in Radiotherapy Treatment Fields with 18 MV Accelerators R. R. Martín-Landrove 1, J. Dávila 1, H. R. Vega-Carrillo 2, M. T. Barrera 3, A.J. Kreiner 4, F. Pino 3, H. Barros 3, E. D. Greaves 3 and L.

More information

Title. Author(s)Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; H. CitationJournal of Radiation Research, 56(2): Issue Date

Title. Author(s)Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; H. CitationJournal of Radiation Research, 56(2): Issue Date Title Application of an ultraminiature thermal neutron mon therapy Author(s)Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; H CitationJournal of Radiation Research, 56(2): 391-396 Issue Date 2015-03

More information

7. Radioisotopes in Medicine

7. Radioisotopes in Medicine 7. Radioisotopes in Medicine Radionuclides were first used for therapeutic purposes almost 100 years following the observation by Pierre Curie that radium sources brought into contact with the skin produced

More information

Numerical optimisation of the fission-converter and the filter/moderator arrangement for the Boron Neutron Capture Therapy (BNCT)

Numerical optimisation of the fission-converter and the filter/moderator arrangement for the Boron Neutron Capture Therapy (BNCT) NUKLEONIKA 2003;48(4):177 185 ORIGINAL PAPER Numerical optimisation of the fission-converter and the filter/moderator arrangement for the Boron Neutron Capture Therapy (BNCT) Grzegorz Tracz, Ludwik Dąbkowski,

More information

FINAL TECHNICAL REPORT MICRODOSIMETRY FOR BORON NEUTRON CAPTURE THERAPY DE - FG02-96ER62217

FINAL TECHNICAL REPORT MICRODOSIMETRY FOR BORON NEUTRON CAPTURE THERAPY DE - FG02-96ER62217 FINAL TECHNICAL REPORT MICRODOSIMETRY FOR BORON NEUTRON CAPTURE THERAPY DE - FG02-96ER62217 The specific aims of the research proposal were as follows: (1) To design and construct small vohu-ne tissue

More information

Sources of ionizing radiation Atomic structure and radioactivity Radiation interaction with matter Radiation units and dose Biological effects

Sources of ionizing radiation Atomic structure and radioactivity Radiation interaction with matter Radiation units and dose Biological effects INTRODUCTION TO RADIATION PROTECTION Sources of ionizing radiation Atomic structure and radioactivity Radiation interaction with matter Radiation units and dose Biological effects 3/14/2018 1 Wilhelm C.

More information

VIII. RESEARCH ACTIVITIES

VIII. RESEARCH ACTIVITIES VIII. RESEARCH ACTIVITIES VIII-I. SUMMARY OF RESEARCH ACTIVITIES VIII-I. SUMMARY OF RESEARCH ACTIVITIES VIII-I-1. MEETINGS AND SEMINARS Specialists Meetings Held in the FY 2010 1. Meeting for Neutron Capture

More information

ɣ-ray Induced Radiation Damage in PWO and LSO/LYSO

ɣ-ray Induced Radiation Damage in PWO and LSO/LYSO ɣ-ray Induced Radiation Damage in PWO and LSO/LYSO Rihua Mao, Liyuan Zhang, Ren-yuan Zhu California Institute of Technology October 28, 2009 Paper N32-5, 2009 NSS/MIC at Orlando, USA Introduction Crystal

More information

DETERMINATION OF DOSE FROM LIGHT CHARGED IONS RELEVANT TO HADRON THERAPY USING THE PARTICLE AND HEAVY ION TRANSPORT SYSTEM (PHITS) A Thesis

DETERMINATION OF DOSE FROM LIGHT CHARGED IONS RELEVANT TO HADRON THERAPY USING THE PARTICLE AND HEAVY ION TRANSPORT SYSTEM (PHITS) A Thesis DETERMINATION OF DOSE FROM LIGHT CHARGED IONS RELEVANT TO HADRON THERAPY USING THE PARTICLE AND HEAVY ION TRANSPORT SYSTEM (PHITS) A Thesis by MICHAEL PATRICK BUTKUS Submitted to the Office of Graduate

More information

Radiation Protection Program Update: The Details. July 2010

Radiation Protection Program Update: The Details. July 2010 Radiation Protection Program Update: The Details July 2010 Update Topics 2 Changes mandated by Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection (10 CFR 835) How changes

More information

Neutron Radiotherapy: Past, Present, and Future Directions

Neutron Radiotherapy: Past, Present, and Future Directions Neutron Radiotherapy: Past, Present, and Future Directions Theodore L. Phillips Lecture -- 2014 George E. Laramore Ph.D., M.D. NONE Conflicts of Interest Peter Wootton Professor of Radiation Oncology University

More information

RADIOLOGY AN DIAGNOSTIC IMAGING

RADIOLOGY AN DIAGNOSTIC IMAGING Day 2 p. 1 RADIOLOGY AN DIAGNOSTIC IMAGING Dr hab. Zbigniew Serafin, MD, PhD serafin@cm.umk.pl and Radiation Protection mainly based on: C. Scott Pease, MD, Allen R. Goode, MS, J. Kevin McGraw, MD, Don

More information

Nature of Radiation and DNA damage

Nature of Radiation and DNA damage Nature of Radiation and DNA damage Index 1. What is radiation? 2. Ionizing Radiation 3. Interaction of Gamma-radiation with Matter 4. Radiobiology 5. Direct and Indirect action of radiation 6. Steps of

More information

BORON NEUTRON CAPTURE THERAPY SETUP FOR A LINEAR ACCELERATOR

BORON NEUTRON CAPTURE THERAPY SETUP FOR A LINEAR ACCELERATOR BORON NEUTRON CAPTURE THERAPY SETUP FOR A LINEAR ACCELERATOR C. F. CHIOJDEANU, C. PAVEL, F. CONSTANTIN National Institute for Physics and Nuclear Engineering Horia Hulubei, P.O. Box MG-6, RO-077125 Bucharest-Mãgurele,

More information

Development of a Thermal Neutron Source based on a Medical Electron Linac

Development of a Thermal Neutron Source based on a Medical Electron Linac Development of a Thermal Neutron Source based on a Medical Electron Linac Valeria Monti December 15 th, 2016 Second Year Seminar, XXX cycle Outline E_LiBANS project Physics of the thermal photo-neutron

More information

22.55 Principles of Radiation Interactions Name: Spring 2004 Professor Coderre Exam 2 April 30, 2004

22.55 Principles of Radiation Interactions Name: Spring 2004 Professor Coderre Exam 2 April 30, 2004 22.55 Principles of Radiation Interactions Name: Spring 2004 Professor Coderre Exam 2 April 30, 2004 You have 2 hours to complete this exam. This exam is closed book. Please show all work on the attached

More information

Biological Effects of Radiation KJ350.

Biological Effects of Radiation KJ350. Biological Effects of Radiation KJ350 deborah.oughton@nmbu.no 2111 2005 Radiation Biology Interaction of radiation with biological material Doses (Gy, Sv) and effects Scientific Controversy Radiation Protection

More information

A D-D/D-T Fusion Reaction Based Neutron Generator System for Liver Tumor BNCT

A D-D/D-T Fusion Reaction Based Neutron Generator System for Liver Tumor BNCT A D-D/D-T Fusion Reaction Based Neutron Generator System for Liver Tumor BNCT H. Koivunoro 1, T. P. Lou 1,2, J. Reijonen 1 and K-N Leung 1,2 1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720,

More information

The ARN Critical Dosimetry System. Gregori, B.N.; Papadópulos, S.; Cruzate, J.A.; Equillor, H.E. and Kunst, J.J.

The ARN Critical Dosimetry System. Gregori, B.N.; Papadópulos, S.; Cruzate, J.A.; Equillor, H.E. and Kunst, J.J. The ARN Critical Dosimetry System Gregori, B.N.; Papadópulos, S.; Cruzate, J.A.; Equillor, H.E. and Kunst, J.J. Presentado en: 11 th International Congress on the International Radiation Protection Association.

More information

Thin Beryllium target for 9 Be(d,n)- driven BNCT

Thin Beryllium target for 9 Be(d,n)- driven BNCT Thin Beryllium target for 9 Be(d,n)- driven BNCT M.E.Capoulat 1-3, D.M.Minsky 1-3, L.Gagetti 1-3, M. Suárez Anzorena 1, M.F.del Grosso 1-2, J.Bergueiro 1, D.Cartelli 1-3, M.Baldo 1, W.Castell 1, J.Gomez

More information

Topics covered 7/21/2014. Radiation Dosimetry for Proton Therapy

Topics covered 7/21/2014. Radiation Dosimetry for Proton Therapy Radiation Dosimetry for Proton Therapy Narayan Sahoo Department of Radiation Physics University of Texas MD Anderson Cancer Center Proton Therapy Center Houston, USA Topics covered Detectors used for to

More information

PHY138Y Nuclear and Radiation

PHY138Y Nuclear and Radiation PHY38Y Nuclear and Radiation Professor Tony Key MP40 key@physics.utoronto.ca Announcements MP problems set #4 due Sunday at midnight PS#5 WRITTEN now posted! - do in teams, no Lone Wolves!! NB correction

More information