Sounds Good to Me. Engagement. Next Generation Science Standards (NGSS)

Size: px
Start display at page:

Download "Sounds Good to Me. Engagement. Next Generation Science Standards (NGSS)"

Transcription

1 Sounds Good to Me Students make a mental model of how frequencies are detected by the cochlear membrane. Using this model, students examine how cochlear implants can be used to help treat deafness. Next Generation Science Standards (NGSS) Science Practices Practice 2: Develop and use models. Disciplinary Core Ideas MS-LS1-D. Each sense receptor responds to different inputs, transmitting them as signals that travel along nerve cells to the brain; the signals are then processed in the brain, resulting in immediate behavior or memories. MS-PS4-A. A simple wave model has a repeating pattern with a specific wavelength, frequency, and amplitude, and mechanical waves need a medium to be transmitted through. This model can explain many phenomena including sound and light. Waves can transmit energy. Engagement Engagement brings students into a topic by connecting the topic to previous material and understandings while offering context. These activities may not be needed for students already very familiar with the concepts in the Exploration. Some relevant starting ideas: Sound is a wave that causes one set of molecules collides with the next set of molecules. Oscillations, the source of sound waves, are repeated motions. Frequency is the number of complete vibrations per unit of time, and is related to pitch in sound. Amplitude is the maximum displacement of the medium from the original position and is related to the loudness of a sound.

2 In these first few short activities, students will review how objects can create vibrations that relate to sound by plucking a meter stick, trying different options to get a sense of what factors control pitch and volume of sound. Activity 1: Natural Frequency Many objects produce a frequency when displaced from their initial position and allowed to vibrate freely. This is called the object s natural frequency, and it is largely independent of the amplitude that the object is struck. Materials (per group): 2 tuning forks with different pitches rubber surface like the heel of a shoe two bowls of water graphite refills (0.5mm - 0.7mm) from a mechanical pencil, paper, tape, magnifying glass and ruler 1. Show students the tuning fork. Hold the tuning fork in your hand with your hand near the single metal bar away from the tines. Strike the tuning fork against the rubber surface firmly, but not so hard as to cause the tines to collide. (If the tuning fork is hit against a hard surface, the tuning fork will also produce a high pitched clang tone. Try to avoid this situation as it confuses students about what kind of sound is produced by a tuning fork.) 2. Show the students the second tuning fork that has longer length tines. Ask students to predict how the sound will be different with the longer tines. Typical answers include that the different tunes are different lengths because they make different pitches. Most will additionally say that the longer tines make for lower frequencies and pitches. 3. Say to the students that they will repeat the experiment, except that they will hit the tuning fork with less force. Ask them to predict how the sound will change if at all.

3 4. Have them repeat the experiment. Most students will discover that the tuning fork will produce the same pitch but lower in volume. 5. Once the students get familiar with producing vibrations in the tuning fork, they can dip the tip of the tuning fork handle into the bowl of water (the water should be perfectly still before they dip the tuning fork into it). They will observe the waves produced in the water by the fork. The teacher should practice this before having students do it. The results can be too messy to see clearly and it takes a little practice to get it right. Once students have perfected their technique, they should compare the waves made with each tuning fork. If the two pitches are not sufficiently different from each other, there won t be a visible difference. The teacher should test out both tuning forks prior to the exploration. 6. Break off a piece of graphite approximately 1-2 centimeters in length, depending on the thickness of the tuning fork tines. The graphite cylinder should be taped onto one of the tines so that the lead is perpendicular to the tine (you can vary your technique and the angle the lead is attached to the tine if needed. See diagram below, originally from Helmholtz, but the results you ll get are unlikely to be as obvious). The student pings the tuning fork (but not where the lead is attached!) and then immediately, but very lightly, drags the lead across a piece of paper (in my experience, the fork is dragged rather quickly across the page but different techniques should be explored). The wave form of the tuning fork should be visible with the magnifying glass. This takes a lot of practice to get right but when it works, it s a beautiful demonstration. It can be a somewhat quantitative exploration if students are able to perfect their technique and make reproducible waves. Although the waves produced are tiny (you really need a magnifying glass to see them), the properties of the wave (amplitude, wavelength) can be measured and the waves produced by the two tuning forks can be compared.

4 Activity 2: Forced Vibration When one vibrating object is placed against another object, the first object can make the second object vibrate with the same frequency as the first object. This situation is called forced vibration. Materials (per group): 2 tuning forks with different pitches rubber surface like the heel of a shoe stiff wooden or plastic surface like a desk top 1. Explain that the students are going to strike the tuning fork against the rubber surface and then place the handle against the table top. Ask them to predict in writing how the volume of sound will change. Typical answers included the volume getting louder, softer, and staying the same. 2. Have students do the experiment. They will discover that the sound gets louder. The vibrations of the tuning fork make the handle vibrate, and placing the handle against the table makes the table vibrate. The table s vibrations added to the tuning fork s vibrations make the sound louder. 3. Some objects will diminish the sound of the tuning fork (something soft, for example). Students should predict what types of materials in their classroom might have this characteristic and test it. Why would some objects increase the loudness and some decrease the loudness? Students should use what they know about the properties of sound to infer the characteristics of the materials that increase the loudness of the tuning fork and those that decrease it. 4. Once students have had these experiences with vibrations and some of their properties, they can begin building the first draft of their model. Exploration

5 Exploration is where students use prior knowledge to investigate ideas through activities to facilitate conceptual change.

6 Activity 3: Uncooked Pasta Has a Natural Frequency The tuning fork has such a high frequency that it is difficult to see how it is moving. We can slow things down by using pasta which has a lower stiffness and so has a lower natural frequency. Materials: Thin spaghetti Marshmallow, gum drop, or clay Stopwatch 1. Have the student place a marshmallow on the end of a piece of thin spaghetti. Hold the end in one hand and pull back gently on the marshmallow and allow it vibrate. 2. Have the students sketch the motion of the spaghetti to vibrating back and forth. Have them compute the number of complete vibrations of the marshmallow in 10 seconds. 3. Have the student pull the spaghetti back a different amount (smaller amplitude). Have them predict how many vibrations will occur in 10 seconds. Most will discover that the marshmallow has the same frequency even at different amplitudes, just like the tuning fork. 4. Students remove the marshmallow from the spaghetti and tear it in half. They return it to the spaghetti. 5. They are asked to predict in writing what will happen to the frequency of the marshmallow when the spaghetti is pulled back again. Most will predict no change in frequency since a change in amplitude didn t change the frequency. 6. The students perform the experiment and discover that the frequency has increased. Students break the spaghetti so that the stick is shorter. They shake pluck the end again, and discover that the shorter pasta also has a higher frequency Activity 4: That Resonates with Me If an object is forced to vibrate at its natural frequency, its amplitude will increase.

7 Materials: Thin spaghetti Marshmallow, gum drop, or clay 1. Have students place a marshmallow on the end of a piece of spaghetti, and have them hold the spaghetti at the bottom and shake the spaghetti back and forth a small distance. Change frequencies of their hands vibrations until they find the same frequency of the spaghetti. They will see the spaghetti move back and forth an increasing distance. This situation is called, resonance. They may even break the spaghetti. 2. Give the students another piece of spaghetti and have them place a marshmallow on the end. Have them break the spaghetti so that this piece is approximately two-thirds the length of the other piece. 3. Have the students hold both pieces of spaghetti in the same hand. Have them predict in writing if it is possible for them make both pieces of spaghetti resonate at the same time. Many students will answer yes, but it will be impossible. They will be able to make one length resonate or the other, but not both. 4. At this point, students models should include factors that affect the frequency, wavelength and amplitude of mechanical waves. Students can now add the concept of resonance to their model. They should consider what kinds of constraints are placed on a system based on the natural resonance frequencies of its components. What benefits could they confer? Explanation This is where students put together their ideas to create a final mental model of how a system works.

8 1. Students are asked to explain what factors determine natural frequency. Typical answers include more mass reduces natural frequency, increased stiffness increases natural frequency. 2. Students are asked to explain the situations in which resonance will occur. Typical answers include when an object is being forced to vibrate at its natural frequency. 3. Limitation in this model includes objects that have multiple natural frequencies due to multiple modes of vibration and objects that dissipate energy so effectively that vibrations can t build up. Elaboration Students extend their understanding to new systems. 1. Students should watch the video. 2. The teacher should pause the video at key locations to emphasize the ideas with the students and help them become active viewers. 3. After watching the video, the teacher should lead a discussion where the students determine and speculate: a. Why does the scientist/engineer want to make a better implant? b. How does making smaller wires improve the implant? c. Did the scientist/engineer only make one new implant or is this from years of work and iterations? 4. Students should be introduced to the cochlea, the structure in the ear that converts mechanical motion conducted from the tympanum (eardrum) to an electrochemical signal in nerves that is transmitted to the brain. At the most basic level, inside the cochlea is long membrane called the basilar membrane. Its stiffness and size vary along its length where it is most stiff and has the smallest fibers near the entrance and longer less stiff fibers near the end. More about how the cochlea works and drawings can be found here. A good video summarizing the mechanics of the ear and cochlea can be found here.

9 5. Now students are ready to explain how their model explains how the basilar membrane and nerve cells can distinguish individual frequencies (pitches). 6. If there is a failure in the cochlea occurs, a cochlear implant can be used to replace some of the cochlea s functionality. Have the students explain what a cochlear implant needs to do and how smaller leads might improve its functionality. More information on cochlear implants can be found at the National Institutes of Health. Do note: cochlear implants improve hearing in most people who get them, but they don t cure deafness or make a person using one able to hear as well as a person with normal hearing. Many people with cochlear implants still need to lip read or use sign language as an aid to communication. Evaluation Teachers and students determine if they understand the material. In this case, we will apply their understanding of making models to a novel situation. 1. Some pasta is thicker and stiffer than others. If you have two pieces of pasta that are the same length with the same marshmallow on the end, but one is made of thicker spaghetti, how will that change the natural frequency and resonance of that pasta? 2. Computers can do some of the same work as the implant. Generally they are called spectrum analyzers. You can find a free Windows Version here. An Android version can be found here. 3. Students can play different frequencies by using a tuning fork, playing an instrument, or singing into a microphone and see the histogram produced by the spectrum analyzer. They will be able to see how sounds are distributed over a range of frequencies. Students can then be asked how well one could distinguish a sound by reducing the resolution of the graph. That is, bundling areas together. They should see that it would become harder to distinguish between different pitches, which is the typical limitation of cochlear implants. Patents Patents are a way for inventors to create property rights in their inventions. Patents provide inventors the right to exclude others from making, using, offering for sale, or

10 selling their inventions in the United States or importing the invention into the United States. Please see What Are Patents, Trademarks, Service Marks, and Copyrights? In exchange for this right, inventors must disclose to the public how to make and use the inventions in their patent applications. This information often can help other inventors make improvements, as well as spur on new inventions. Reading a patent introduces students to technical language and gives them familiarity with the way inventors describe their work. The language can sometimes be difficult for students; however, it can also be instructive to see what claims the inventor has made, and to learn more about how the device or process works. Drawings can also be helpful in understanding some of the key design elements of an invention. Please look at The Anatomy of a U.S. Utility Patent and then at the following two patents related to microfabrication of cochlear implants. US Class 174/255 (Electricity: Conductors and Insulators) AU 2847 US Class 174/255 (Electricity: Conductors and Insulators) AU 2847 Spaghetti as a model of resonance is based on a lesson originally developed by John Lahr.

HEAR YE! HEAR YE! (1.5 Hours)

HEAR YE! HEAR YE! (1.5 Hours) HEAR YE! HEAR YE! (1.5 Hours) Addresses NGSS Level of Difficulty: 4 Grade Range: 3-5 OVERVIEW In this activity, students will construct a model ear to learn how different materials transmit sound. Topic:

More information

Prisoner of Echo. 45 minutes. A sound wave needs a medium through which it is transmitted.

Prisoner of Echo. 45 minutes. A sound wave needs a medium through which it is transmitted. LESSON ACTIVITY: Prisoner of Echo Prisoner of Echo is a physical science learning game aligned to Common Core and Next Generation Science standards. Partner with Jenkins, a helpful but slightly snarky

More information

Table of Contents Science Action Labs

Table of Contents Science Action Labs Table of Contents Science Action Labs 1: Vibrating Sound......................................5 2: Sound Fun..........................................8 3: How Sound Travels..................................11

More information

Hearing and Sound Study Guide

Hearing and Sound Study Guide Hearing and Sound Study Guide I made the following website as a study tool to help you prepare for Thursday with videos and sample questions hearingandsound.weebly.com 1. Sounds make vibrations and vibrations

More information

Sound and Music. Acoustical Society of America 2

Sound and Music. Acoustical Society of America 2 Sound and Music Acoustical Society of America 2 What is Sound? Sit quietly and listen to the sounds around you. Today you will be Sound Detectives 3 What is Sound? Strike the tuning fork with a rubber

More information

COMMON CORE Lessons & Activities SAMPLE

COMMON CORE Lessons & Activities SAMPLE COMMON CORE Lessons & Activities TEACH IT TODAY! About this Book This Common Core Lessons and Activities Book allows you to immediately meet new Common Core State Standards for English Language Arts, as

More information

Please visit the website hearingandsound.weebly.com to help you study, as well as viewing the videos and booklet posted.

Please visit the website hearingandsound.weebly.com to help you study, as well as viewing the videos and booklet posted. Hearing and Sound Study Guide Please visit the website hearingandsound.weebly.com to help you study, as well as viewing the videos and booklet posted. 1. Sounds make vibrations and vibrations move in all

More information

AND THE EARS HAVE IT! (1 Hour)

AND THE EARS HAVE IT! (1 Hour) (1 Hour) Addresses NGSS Level of Difficulty: 3 Grade Range: K-2 OVERVIEW In this activity, students will explore the nature of human hearing by attempting to determine the location at different locations

More information

Norwood Science Center

Norwood Science Center Norwood Science Center Energy Grade 5 Background Information: The sense of hearing involves the ear, the auditory nerve, and a special center within the brain. We hear because our ears respond to vibrations

More information

Formatting notes: Bold black text are questions to ask your students to answer Blue bold: learning goals write these on the board.

Formatting notes: Bold black text are questions to ask your students to answer Blue bold: learning goals write these on the board. These slides could be used in the classroom but are designed with the intent of describing the lesson. When we tested this material with students, we did not project these slides. The teacher used them

More information

Hearing. istockphoto/thinkstock

Hearing. istockphoto/thinkstock Hearing istockphoto/thinkstock Audition The sense or act of hearing The Stimulus Input: Sound Waves Sound waves are composed of changes in air pressure unfolding over time. Acoustical transduction: Conversion

More information

SOUNDS LIKE FUN SCIENCE GRADE 4 STELLA BIZZIO. TIME ALLOTMENT: One 50-minute class.

SOUNDS LIKE FUN SCIENCE GRADE 4 STELLA BIZZIO. TIME ALLOTMENT: One 50-minute class. SOUNDS LIKE FUN TIME ALLOTMENT: One 50-minute class. OVERVIEW: Using hands-on activities and demonstrations the lesson will focus on the production of sound as energy that can make matter vibrate. Students

More information

SENDING SECRET MESSAGES (1 Hour)

SENDING SECRET MESSAGES (1 Hour) SENDING SECRET MESSAGES (1 Hour) Addresses NGSS Level of Difficulty: 3 Grade Range: K-2 OVERVIEW In this activity, students explore how sound waves travel through various materials. They will build a sound

More information

Sound. Audition. Physics of Sound. Properties of sound. Perception of sound works the same way as light.

Sound. Audition. Physics of Sound. Properties of sound. Perception of sound works the same way as light. Sound Audition Perception of sound works the same way as light. Have receptors to convert a physical stimulus to action potentials Action potentials are organized in brain structures You apply some meaning

More information

Audition. Sound. Physics of Sound. Perception of sound works the same way as light.

Audition. Sound. Physics of Sound. Perception of sound works the same way as light. Audition Sound Perception of sound works the same way as light. Have receptors to convert a physical stimulus to action potentials Action potentials are organized in brain structures You apply some meaning

More information

Science - Year 4. Sound Block 4S. Listen Up! Session 2 Resource Pack

Science - Year 4. Sound Block 4S. Listen Up! Session 2 Resource Pack Science - Year 4 Sound Block 4S Listen Up! Session 2 Resource Pack Original resource copyright Hamilton Trust, who give permission for it to be adapted as wished by individual users. We refer you to our

More information

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear Hearing Sound Music 170: The Ear Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) November 17, 2016 Sound interpretation in the auditory system is done by

More information

Music 170: The Ear. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) November 17, 2016

Music 170: The Ear. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) November 17, 2016 Music 170: The Ear Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) November 17, 2016 1 Hearing Sound Sound interpretation in the auditory system is done by

More information

Perception of Sound. To hear sound, your ear has to do three basic things:

Perception of Sound. To hear sound, your ear has to do three basic things: Perception of Sound Your ears are extraordinary organs. They pick up all the sounds around you and then translate this information into a form your brain can understand. One of the most remarkable things

More information

IT S A SECRET! (1 Hour) Addresses NGSS Level of Difficulty: 4 Grade Range: K-2

IT S A SECRET! (1 Hour) Addresses NGSS Level of Difficulty: 4 Grade Range: K-2 IT S A SECRET! (1 Hour) Addresses NGSS Level of Difficulty: 4 Grade Range: K-2 OVERVIEW In this activity, students explore how sound waves travel through various materials. They will build a sound transmission

More information

= add definition here. Definition Slide

= add definition here. Definition Slide = add definition here Definition Slide Definition Slides Sensation = the process by which our sensory receptors and nervous system receive and represent stimulus energies from our environment. Perception

More information

5. Which word refers to making

5. Which word refers to making Name: Date: WEEK 6 1 Read the text and then answer the questions. How do people hear? Look in a mirror, and you will see that your ears are shaped a little like a funnel. That shape amplifies sounds you

More information

E4061 Hearing Conservation: Are You Listening, Jim? Leader s Guide

E4061 Hearing Conservation: Are You Listening, Jim? Leader s Guide E4061 Hearing Conservation: Are You Listening, Jim? Leader s Guide ARE YOU LISTENING, JIM? This easy-to-use Leader s Guide is provided to assist in conducting a successful presentation. Featured are: INTRODUCTION

More information

Sound and hearing 2 The outside of the ear. Sound and hearing 1 How sounds get to our ears

Sound and hearing 2 The outside of the ear. Sound and hearing 1 How sounds get to our ears Sound and hearing 1 How sounds get to our ears 1. What are some of the sounds you would hear if you were camping on a quiet night? 2. How would you feel if you couldn t hear anything? When you listen to

More information

The Human Ear. Grade Level: 4 6

The Human Ear. Grade Level: 4 6 The Human Ear Grade Level: 4 6 Teacher Guidelines pages 1 2 Instructional Pages pages 3 5 Practice Pages pages 6 7 Homework Page page 8 Answer Key page 9 Classroom Procedure: 1. Give a blank sheet of paper,

More information

Sound and Music Adams, W. K.

Sound and Music Adams, W. K. Acoustical Society of America Lesson Plan acousticalsociety.org exploresound.org Sound and Music Adams, W. K. Students explore the physics of sound, how the ear hears and how musical instruments work through

More information

Definition Slides. Sensation. Perception. Bottom-up processing. Selective attention. Top-down processing 11/3/2013

Definition Slides. Sensation. Perception. Bottom-up processing. Selective attention. Top-down processing 11/3/2013 Definition Slides Sensation = the process by which our sensory receptors and nervous system receive and represent stimulus energies from our environment. Perception = the process of organizing and interpreting

More information

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 SOLUTIONS Homework #3 Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 Problem 1: a) Where in the cochlea would you say the process of "fourier decomposition" of the incoming

More information

DeltaScience. Content Readers. Summary. Science Background. Objectives. Reading Comprehension Skills. Supporting English Learners

DeltaScience. Content Readers. Summary. Science Background. Objectives. Reading Comprehension Skills. Supporting English Learners DeltaScience Content Readers TM Red Edition Grade 3 4 reading level Purple Edition Grade 4 5 reading level Objectives Describe how vibrating objects make sound waves. Explain how sound waves move through

More information

How Do Our Ears Work? Quiz

How Do Our Ears Work? Quiz The Marvelous Ear How Do Our Ears Work? Quiz 1. How do humans hear sounds? 2. How does human hearing work? Sketch and label the system. 3. Do you know any sensors that detect sound and how they might do

More information

Sound Travels How sound travels is explained and demonstrated using a spoon and some string to get the vibrations, then sound, to the students ears.

Sound Travels How sound travels is explained and demonstrated using a spoon and some string to get the vibrations, then sound, to the students ears. Sound Travels How sound travels is explained and demonstrated using a spoon and some string to get the vibrations, then sound, to the students ears. Grade Level Used This activity was done with 4 th graders.

More information

2. Drumming on My Ear BUILD KNOWLEDGE

2. Drumming on My Ear BUILD KNOWLEDGE 2. Drumming on My Ear BUILD KNOWLEDGE INTRODUCTION What Students Do in this Activity Students learn more about the form that sound waves take and how humans hear sound. They build a model of a human eardrum

More information

Unit 4P.1: Sound. How sounds are made? Loudness and pitch Hearing sound Noise Traveling of sound Echo

Unit 4P.1: Sound. How sounds are made? Loudness and pitch Hearing sound Noise Traveling of sound Echo Unit 4P.1: How sounds are made? Loudness and pitch Hearing sound Noise Traveling of sound Echo Science skills: Predicting Observing and classifying UBy the end of this unit you should: Know that sound

More information

Loud or Soft? BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN. SC.B The student recognizes systems of matter and energy.

Loud or Soft? BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN. SC.B The student recognizes systems of matter and energy. activity 30 Loud or Soft? BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN Grade 1 Quarter 3 Activity 30 SC.B.2.1.1 The student recognizes systems of matter and energy. SC.C.1.1.2 The student knows that

More information

Intro to Audition & Hearing

Intro to Audition & Hearing Intro to Audition & Hearing Lecture 16 Chapter 9, part II Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Fall 2017 1 Sine wave: one of the simplest kinds of sounds: sound for which pressure

More information

Learning Targets. Module 20. Hearing Explain how the ear transforms sound energy into neural messages.

Learning Targets. Module 20. Hearing Explain how the ear transforms sound energy into neural messages. Learning Targets Module 20 Hearing 20-1 Describe the characteristics of air pressure waves that we hear as sound. 20-2 Explain how the ear transforms sound energy into neural messages. 20-3 Discuss how

More information

McGraw-Hill Science 2000, Texas Edition TAKS Practice Test. Grade 5, Chapter 5 Sound. Name. Date

McGraw-Hill Science 2000, Texas Edition TAKS Practice Test. Grade 5, Chapter 5 Sound. Name. Date McGraw-Hill Science 2000, Texas Edition TKS Practice Test Grade 5, hapter 5 Sound Name ate Use the illustration and your knowledge of science to answer Questions 1 to 3. 1 Why does the rubber band make

More information

Directions: Review the sound vocabulary words. In the pre column place a 2, 1, or 0 2 = expert 1 = heard of it 0 = do not know it

Directions: Review the sound vocabulary words. In the pre column place a 2, 1, or 0 2 = expert 1 = heard of it 0 = do not know it Directions: Review the sound vocabulary words. In the pre column place a 2, 1, or 0 2 = expert 1 = heard of it 0 = do not know it pre Sound Vocabulary Absorption Amplitude Compression Crest Decibels Echo

More information

17.4 Sound and Hearing

17.4 Sound and Hearing You can identify sounds without seeing them because sound waves carry information to your ears. People who work in places where sound is very loud need to protect their hearing. Properties of Sound Waves

More information

Sound Unit Teacher Masters: Table of Contents

Sound Unit Teacher Masters: Table of Contents Sound Unit Teacher Masters: Table of Contents Introductory Letter to Families Welcome to the Sound Unit................................................................ 1 Teacher Masters Ear Labels (Lesson

More information

Chapter 11: Sound, The Auditory System, and Pitch Perception

Chapter 11: Sound, The Auditory System, and Pitch Perception Chapter 11: Sound, The Auditory System, and Pitch Perception Overview of Questions What is it that makes sounds high pitched or low pitched? How do sound vibrations inside the ear lead to the perception

More information

Light/sound and hearing

Light/sound and hearing Medway LEA Advisory Service Light/sound and hearing 8K & 8L 26 min 27 marks Q1-L3, Q2-L4, Q3-L4, Q4-L5, Q5-L5, Q6-L6 1. Thunder and lightning happen at the same time. (a) We see the flash of lightning

More information

Biological Psychology. Unit Two AE Mr. Cline Marshall High School Psychology

Biological Psychology. Unit Two AE Mr. Cline Marshall High School Psychology Biological Psychology Unit Two AE Mr. Cline Marshall High School Psychology Vision How do our brains make 3-D images out of 2-D inputs? We live in a 3-dimensional world, but each of our eyes is only capable

More information

Low? High or. v vv \T\ \ C\ [ \(\(\(\(\ PITCH FREQUENCY CHAPTER4

Low? High or. v vv \T\ \ C\ [ \(\(\(\(\ PITCH FREQUENCY CHAPTER4 CHAPTER4 High or Low? PITCH Another quality that an oscilloscope shows is pitch. Pitch is a measurement of how high or low a sound is. If you make your voice high and squeaky, then it has a high pitch.

More information

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages 189-197 Corrections: NTC 09-1, page 3, the Superior Colliculus is in the midbrain (Mesencephalon). Announcements: Movie next Monday: Case of the frozen

More information

Draw a cross section of the human ear and label its parts.

Draw a cross section of the human ear and label its parts. Human Ear 1. Open the Human Ear session and follow the instructions. 2. Complete the Human Ear worksheet as you progress through the session. Draw a cross section of the ear and label its parts. 3. Using

More information

THE EAR AND HEARING Be sure you have read and understand Chapter 16 before beginning this lab. INTRODUCTION: hair cells outer ear tympanic membrane

THE EAR AND HEARING Be sure you have read and understand Chapter 16 before beginning this lab. INTRODUCTION: hair cells outer ear tympanic membrane BIOLOGY 211: HUMAN ANATOMY & PHYSIOLOGY ****************************************************************************************************** THE EAR AND HEARING ******************************************************************************************************

More information

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems.

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. Vision and Audition Vision and Audition This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. The description of the organization of each begins with

More information

The bloom guide to better hearing. Find out what you need to know about hearing loss and hearing aids with this helpful guide

The bloom guide to better hearing. Find out what you need to know about hearing loss and hearing aids with this helpful guide The bloom guide to better hearing Find out what you need to know about hearing loss and hearing aids with this helpful guide Let us help you find the best solution for your hearing Coming to terms with

More information

Sound A Science A Z Physical Series Word Count: 1,093

Sound A Science A Z Physical Series Word Count: 1,093 Sound A Science A Z Physical Series Word Count: 1,093 Written by Robert N. Knight Visit www.sciencea-z.com www.sciencea-z.com Sound KEY ELEMENTS USED IN THIS BOOK The Big Idea: Sound is made of waves that

More information

Science Year Unit 8L Sound and hearing About the unit Expectations At the end of this unit in terms of scientific enquiry most pupils will:

Science Year Unit 8L Sound and hearing About the unit Expectations At the end of this unit in terms of scientific enquiry most pupils will: Science Year 8 Unit 8L Sound and hearing About the unit In this unit pupils: build on their knowledge of sound and hearing explain how sound travels through media give an explanation of how the ear works,

More information

EKG and Sound.

EKG and Sound. I. Before coming to lab Read this handout and the supplemental. Visit the following website: blaufuss.org then click on the "START" button next to "Heart Sounds Tutorial." Do not worry so much about the

More information

Producing and Detecting Sound

Producing and Detecting Sound Sound Producing and Detecting Sound What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement

More information

SPHSC 462 HEARING DEVELOPMENT. Overview Review of Hearing Science Introduction

SPHSC 462 HEARING DEVELOPMENT. Overview Review of Hearing Science Introduction SPHSC 462 HEARING DEVELOPMENT Overview Review of Hearing Science Introduction 1 Overview of course and requirements Lecture/discussion; lecture notes on website http://faculty.washington.edu/lawerner/sphsc462/

More information

Wonderlab. Sound. The Statoil Gallery. The science and maths behind the exhibits LIGHT WONDERLAB: THE STATOIL GALLERY LEVEL 3, SCIENCE MUSEUM LONDON

Wonderlab. Sound. The Statoil Gallery. The science and maths behind the exhibits LIGHT WONDERLAB: THE STATOIL GALLERY LEVEL 3, SCIENCE MUSEUM LONDON Wonderlab The Statoil Gallery and maths s Sound Age (s) Topic 7 11 LIGHT INFORMATION 11-14 Location WONDERLAB: THE STATOIL GALLERY LEVEL 3, SCIENCE MUSEUM LONDON 1 What s the science? What more will you

More information

Hearing. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 14. Hearing. Hearing

Hearing. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 14. Hearing. Hearing PSYCHOLOGY (8th Edition, in Modules) David Myers PowerPoint Slides Aneeq Ahmad Henderson State University Worth Publishers, 2007 1 Hearing Module 14 2 Hearing Hearing The Stimulus Input: Sound Waves The

More information

College of Medicine Dept. of Medical physics Physics of ear and hearing /CH

College of Medicine Dept. of Medical physics Physics of ear and hearing /CH College of Medicine Dept. of Medical physics Physics of ear and hearing /CH 13 2017-2018 ***************************************************************** o Introduction : The ear is the organ that detects

More information

Making Waves to Detect Illness. How elastography is helping doctors avoid the biopsy needle

Making Waves to Detect Illness. How elastography is helping doctors avoid the biopsy needle How elastography is helping doctors avoid the biopsy needle Purpose This activity is meant to increase students understanding of mechanical waves and provide them with examples of medical applications

More information

Senses and Sense Organs

Senses and Sense Organs Senses and Sense Organs SENSORY SYSTEMS Human experience is effected by both internal and external stimuli. Humans are able to distinguish among many different types of stimuli by means of a highly developed

More information

Chapter 13 Physics of the Ear and Hearing

Chapter 13 Physics of the Ear and Hearing Hearing 100 times greater dynamic range than vision Wide frequency range (20 ~ 20,000 Hz) Sense of hearing Mechanical system that stimulates the hair cells in the cochlea Sensors that produce action potentials

More information

Transfer of Sound Energy through Vibrations

Transfer of Sound Energy through Vibrations secondary science 2013 16 Transfer of Sound Energy through Vibrations Content 16.1 Sound production by vibrating sources 16.2 Sound travel in medium 16.3 Loudness, pitch and frequency 16.4 Worked examples

More information

TIPS FOR TEACHING A STUDENT WHO IS DEAF/HARD OF HEARING

TIPS FOR TEACHING A STUDENT WHO IS DEAF/HARD OF HEARING http://mdrl.educ.ualberta.ca TIPS FOR TEACHING A STUDENT WHO IS DEAF/HARD OF HEARING 1. Equipment Use: Support proper and consistent equipment use: Hearing aids and cochlear implants should be worn all

More information

Receptors / physiology

Receptors / physiology Hearing: physiology Receptors / physiology Energy transduction First goal of a sensory/perceptual system? Transduce environmental energy into neural energy (or energy that can be interpreted by perceptual

More information

Sound Workshop. What is sound Longitudinal Waves Frequency and pitch Hearing ranges Sounds in solids, liquids and gases Sound in a vacuum

Sound Workshop. What is sound Longitudinal Waves Frequency and pitch Hearing ranges Sounds in solids, liquids and gases Sound in a vacuum Sound Workshop a. b. c. d. e. f. g. h. i. j. k. l. What is sound Longitudinal Waves Frequency and pitch Hearing ranges Sounds in solids, liquids and gases Sound in a vacuum Echoes Ultrasound Loudspeakers

More information

Converting Sound Waves into Neural Signals, Part 1. What happens to initiate neural signals for sound?

Converting Sound Waves into Neural Signals, Part 1. What happens to initiate neural signals for sound? The Ear Outer Ear: Pinna. Collects sounds. Middle Ear: Chamber between eardrum and cochlea containing three tiny bones (hammer, anvil, stirrup) that concentrate the vibrations of the eardrum on the cochlea

More information

Sound. Chapter Test A. Multiple Choice. 1 Pearson Education, Inc., or its affiliates. All rights reserved.

Sound. Chapter Test A. Multiple Choice. 1 Pearson Education, Inc., or its affiliates. All rights reserved. _ Sound Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. _ 1. Sound is a disturbance that travels through a medium as a a. longitudinal wave. b. surface wave.

More information

ENT 318 Artificial Organs Physiology of Ear

ENT 318 Artificial Organs Physiology of Ear ENT 318 Artificial Organs Physiology of Ear Lecturer: Ahmad Nasrul Norali The Ear The Ear Components of hearing mechanism - Outer Ear - Middle Ear - Inner Ear - Central Auditory Nervous System Major Divisions

More information

Before we talk about the auditory system we will talk about the sound and waves

Before we talk about the auditory system we will talk about the sound and waves The Auditory System PHYSIO: #3 DR.LOAI ZAGOUL 24/3/2014 Refer to the slides for some photos. Before we talk about the auditory system we will talk about the sound and waves All waves have basic characteristics:

More information

Unit VIII Problem 9 Physiology: Hearing

Unit VIII Problem 9 Physiology: Hearing Unit VIII Problem 9 Physiology: Hearing - We can hear a limited range of frequency between 20 Hz 20,000 Hz (human hearing acuity is between 1000 Hz 4000 Hz). - The ear is divided into 3 parts. Those are:

More information

The Ear. The ear can be divided into three major parts: the outer ear, the middle ear and the inner ear.

The Ear. The ear can be divided into three major parts: the outer ear, the middle ear and the inner ear. The Ear The ear can be divided into three major parts: the outer ear, the middle ear and the inner ear. The Ear There are three components of the outer ear: Pinna: the fleshy outer part of the ear which

More information

The Outer and Middle Ear PERIPHERAL AUDITORY SYSTEM HOW WE HEAR. The Ear in Action AUDITORY NEUROPATHY: A CLOSER LOOK. The 3 parts of the ear

The Outer and Middle Ear PERIPHERAL AUDITORY SYSTEM HOW WE HEAR. The Ear in Action AUDITORY NEUROPATHY: A CLOSER LOOK. The 3 parts of the ear AUDITORY NEUROPATHY: A CLOSER LOOK HOW WE HEAR The 3 parts of the ear The ear consists of three main parts: 1. The outer ear The part you see, which is called the auricle (ohr-a-kal). 2. The middle ear

More information

TEAK Bioengineering Artificial Hearing Lesson Plan Page 1 TEAK Traveling Engineering Activity Kits

TEAK Bioengineering Artificial Hearing Lesson Plan Page 1 TEAK Traveling Engineering Activity Kits TEAK Bioengineering Artificial Hearing Lesson Plan Page 1 TEAK Traveling Engineering Activity Kits Biomedical Engineering Kit: Artificial Sensory Artificial Hearing Activity TEAK Bioengineering Artificial

More information

The Sense Organs 10/13/2016. The Human Eye. 1. Sclera 2. Choroid 3. Retina. The eye is made up of three layers:

The Sense Organs 10/13/2016. The Human Eye. 1. Sclera 2. Choroid 3. Retina. The eye is made up of three layers: The human body gathers information from the outside world by using the five senses of: The Sense Organs 12.3 Sight Hearing Taste Smell Touch This information is essential in helping the body maintain homeostasis.

More information

GRADE 4: Physical processes 1. UNIT 4P.1 11 hours. Sound. Resources. About this unit. Previous learning. Expectations

GRADE 4: Physical processes 1. UNIT 4P.1 11 hours. Sound. Resources. About this unit. Previous learning. Expectations GRADE 4: Physical processes 1 Sound UNIT 4P.1 11 hours About this unit This unit is the first of two units on physical processes for Grade 4. The unit is designed to guide your planning and teaching of

More information

Laboratory Exercise in Sensory Physiology Student Lab Manual

Laboratory Exercise in Sensory Physiology Student Lab Manual Laboratory Exercise in Sensory Physiology Student Lab Manual Introduction Sensory organs allow us to perceive our environment by converting energy sources in the environment, like light or sound, to nerve

More information

Sound Waves. Making Sound Waves

Sound Waves. Making Sound Waves Benchmarks SC.B.1.3.6 Annually Assessed (pp. 195, 197): The student knows the properties of waves; that each wave consists of a number of crests and troughs; and the effects of different media on waves;

More information

Chapter 17 Sound Sound and Hearing. Properties of Sound Waves 1/20/2017. Pearson Prentice Hall Physical Science: Concepts in Action

Chapter 17 Sound Sound and Hearing. Properties of Sound Waves 1/20/2017. Pearson Prentice Hall Physical Science: Concepts in Action Pearson Prentice Hall Physical Science: Concepts in Action Chapter 17 Sound Standing Waves in Music When the string of a violin is played with a bow, it vibrates and creates standing waves. Some instruments,

More information

Sound Waves. Sound waves can only travel through matter. The energy carried by a sound wave is transferred by the collisions between the

Sound Waves. Sound waves can only travel through matter. The energy carried by a sound wave is transferred by the collisions between the Sound Waves Making Sound Waves How does the motion of a drummer s drumsticks produce sound waves? The impact of the sticks on the head of a drum causes the drum head to vibrate. These vibrations transfer

More information

Auditory Physiology PSY 310 Greg Francis. Lecture 30. Organ of Corti

Auditory Physiology PSY 310 Greg Francis. Lecture 30. Organ of Corti Auditory Physiology PSY 310 Greg Francis Lecture 30 Waves, waves, waves. Organ of Corti Tectorial membrane Sits on top Inner hair cells Outer hair cells The microphone for the brain 1 Hearing Perceptually,

More information

To learn more, visit the website and see the Find Out More section at the end of this booklet.

To learn more, visit the website  and see the Find Out More section at the end of this booklet. Loving Your Child, Learning How to Help Congratulations! As a parent of a precious baby or young child, you have a wonderful journey ahead. The fact that your child has a hearing loss is only one part

More information

Ohio Academic Standards Addressed By Zoo Program WINGED WONDERS: SEED DROP

Ohio Academic Standards Addressed By Zoo Program WINGED WONDERS: SEED DROP Ohio Academic Standards Addressed By Zoo Program WINGED WONDERS: SEED DROP Program description: Discover whether all seeds fall at the same rate. Do small or big seeds fall more slowly? Students will use

More information

UNDERSTANDING HEARING LOSS

UNDERSTANDING HEARING LOSS Helping Babies and Toddlers get a Strong Start UNDERSTANDING HEARING LOSS You have recently been told that your child has a hearing loss. You may feel emotional and overwhelmed as you begin to learn more

More information

UNDERSTANDING HEARING LOSS

UNDERSTANDING HEARING LOSS Helping Babies and Toddlers get a Strong Start UNDERSTANDING HEARING LOSS You have recently been told that your child has a hearing loss. You may feel emotional and overwhelmed as you begin to learn more

More information

Chapter 4: Sensation and Perception The McGraw-Hill Companies, Inc.

Chapter 4: Sensation and Perception The McGraw-Hill Companies, Inc. Chapter 4: Sensation and Perception Sensation and Perception Sensation The process by which our sense organs receive information from the environment Perception The sorting out, interpretation, analysis,

More information

A Kazoo For You. Science Activity.

A Kazoo For You. Science Activity. A Kazoo For You Science Activity www.apologia.com A Kazoo For You Science Activity Published by Apologia Educational Ministries, Inc. 1106 Meridian Street, Suite 340 Anderson, IN 46016 www.apologia.com

More information

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves Sensation and Perception Part 3 - Hearing Sound comes from pressure waves in a medium (e.g., solid, liquid, gas). Although we usually hear sounds in air, as long as the medium is there to transmit the

More information

Required Slide. Session Objectives

Required Slide. Session Objectives Auditory Physiology Required Slide Session Objectives Auditory System: At the end of this session, students will be able to: 1. Characterize the range of normal human hearing. 2. Understand the components

More information

Psychology Chapter 4. Sensation and Perception. Most amazing introduction ever!! Turn to page 77 and prepare to be amazed!

Psychology Chapter 4. Sensation and Perception. Most amazing introduction ever!! Turn to page 77 and prepare to be amazed! Psychology Chapter 4 Sensation and Perception Most amazing introduction ever!! Turn to page 77 and prepare to be amazed! Chapter 4 Section 1 EQ: Distinguish between sensation and perception, and explain

More information

TERRESTRIAL S Traveling Noise

TERRESTRIAL S Traveling Noise Traveling Noise INTROD CTION In this exercise, students will experiment with their natural surroundings to discover what absorbs or reflects sound. Vegetation, topography, and atmospheric conditions all

More information

Lecture 6 Hearing 1. Raghav Rajan Bio 354 Neurobiology 2 January 28th All lecture material from the following links unless otherwise mentioned:

Lecture 6 Hearing 1. Raghav Rajan Bio 354 Neurobiology 2 January 28th All lecture material from the following links unless otherwise mentioned: Lecture 6 Hearing 1 All lecture material from the following links unless otherwise mentioned: 1. http://wws.weizmann.ac.il/neurobiology/labs/ulanovsky/sites/neurobiology.labs.ulanovsky/files/uploads/purves_ch12_ch13_hearing

More information

TOPIC NFL PLAY 60 Kids Day Live Virtual Field Trip

TOPIC NFL PLAY 60 Kids Day Live Virtual Field Trip EDUCATOR COMPANION GUIDE TOPIC NFL PLAY 60 Kids Day Live Virtual Field Trip KEY LEARNING OBJECTIVES In the following activities students will: Model the functioning of the heart. Describe how the heart

More information

This test contains questions that are borrowed from other sources. It was not accepted to the exchange but is included in this folder because it was

This test contains questions that are borrowed from other sources. It was not accepted to the exchange but is included in this folder because it was This test contains questions that are borrowed from other sources. It was not accepted to the exchange but is included in this folder because it was the only test submitted for this event. Sounds of Music

More information

9.3 Sound The frequency of sound Frequency and pitch pitch Most sound has more than one frequency The frequency spectrum

9.3 Sound The frequency of sound Frequency and pitch pitch Most sound has more than one frequency The frequency spectrum 9.3 Sound Like other waves, sound has frequency, wavelength, amplitude, and speed. Because sound is part of your daily experience, you already know its properties but by different names. You may never

More information

Ear Exam and Hearing Tests

Ear Exam and Hearing Tests Ear Exam and Hearing Tests Test Overview A thorough evaluation of a person's hearing requires an ear exam and hearing tests. In children, normal hearing is important for language to develop correctly.

More information

Indiana Academic Standards Addressed By Zoo Program WINGED WONDERS: SEED DROP!

Indiana Academic Standards Addressed By Zoo Program WINGED WONDERS: SEED DROP! Indiana Academic Standards Addressed By Zoo Program WINGED WONDERS: SEED DROP! Program description: Discover how whether all seeds fall at the same rate. Do small or big seeds fall more slowly? Students

More information

ISLAMABAD ACADEMY PHYSICS FOR 10TH CLASS (UNIT # 13)

ISLAMABAD ACADEMY PHYSICS FOR 10TH CLASS (UNIT # 13) PHYSICS FOR 10TH CLASS (UNIT # 13) SHORT QUESTIONS How sound is produced? It is produced from a vibrating body which transfers in air from one place to other in the form of compression waves. A medium

More information

A&P 1. Ear, Hearing & Equilibrium Lab. Basic Concepts. These notes follow Carl s Talk at the beginning of lab

A&P 1. Ear, Hearing & Equilibrium Lab. Basic Concepts. These notes follow Carl s Talk at the beginning of lab A&P 1 Ear, Hearing & Equilibrium Lab Basic Concepts These notes follow Carl s Talk at the beginning of lab In this "Lab Exercise Guide", we will be looking at the basics of hearing and equilibrium. NOTE:

More information

Ganglion Cells Blind Spot Cornea Pupil Visual Area of the Bipolar Cells Thalamus Rods and Cones Lens Visual cortex of the occipital lobe

Ganglion Cells Blind Spot Cornea Pupil Visual Area of the Bipolar Cells Thalamus Rods and Cones Lens Visual cortex of the occipital lobe How We See How We See Cornea Ganglion Cells whose axons form the optic nerve Blind Spot the exit point at the back of the retina Pupil which is controlled by the iris Bipolar Cells Visual Area of the Thalamus

More information

Deafness and hearing impairment

Deafness and hearing impairment Auditory Physiology Deafness and hearing impairment About one in every 10 Americans has some degree of hearing loss. The great majority develop hearing loss as they age. Hearing impairment in very early

More information