Chapter 17 Sound Sound and Hearing. Properties of Sound Waves 1/20/2017. Pearson Prentice Hall Physical Science: Concepts in Action

Size: px
Start display at page:

Download "Chapter 17 Sound Sound and Hearing. Properties of Sound Waves 1/20/2017. Pearson Prentice Hall Physical Science: Concepts in Action"

Transcription

1 Pearson Prentice Hall Physical Science: Concepts in Action Chapter 17 Sound Standing Waves in Music When the string of a violin is played with a bow, it vibrates and creates standing waves. Some instruments, like flutes, create standing waves in a column of air. The Behavior of Waves Resonance The Behavior of Waves resonance - object is made to vibrate by absorbing energy at its natural frequency If enough energy is absorbed, the object can vibrate so strongly that it breaks apart Sound and Hearing Objectives: 1. Describe the properties of sound waves and explain how sound is produced and reproduced 2. Describe how sound waves behave in applications such as ultrasound and music 3. Explain how relative motion determines the frequency of sound as the observer hears What causes sound? Every sound is produced by an object that vibrates. For example, your friends voices are produced by the vibrations of their vocal cords, and music from a carousel and voices from a loudspeaker are produced by vibrating speakers. Properties of Sound Waves Sound waves are compressional / longitudinal waves They have compressions are rarefactions Many behaviors can be explained by the properties of speed, intensity, loudness, frequency and pitch At 20 C in dry air, the speed of sound is 342 m/s Sound waves travel fastest in solids, slower in liquids and slowest in gases 1

2 Sound Waves Sound waves are compressional waves. A compressional wave is made up of two types of regions called compressions and rarefactions. Sound Waves When a radio speaker vibrates outward, the nearby molecules in the air are pushed together to form compressions. Sound Waves When the speaker moves inward, the nearby molecules in the air have room to spread out, and a rarefaction forms. Sound Waves As long as the speaker continues to vibrate back and forth, compressions and rarefactionsare formed. Traveling as a Wave Compressions and rarefactions collide with air molecules as energy is transferred. Compression- Air molecules close together Rarefaction- Air molecules spread apart A series of compressions and rarefactions travel to your ear that we interpret as sound Moving Through Materials Most sounds you hear travel through air to reach your ears. If you ve ever been swimming underwater and heard garbled voices, you know that sound also travels through water. 2

3 Moving Through Materials Sound waves can travel through any type of matter solid, liquid, or gas. The matter that a wave travels through is called a medium. Sound waves cannot travel through empty space. The Speed of Sound in Different Materials The speed of a sound wave through a medium depends on the substance the medium is made of and whether it is solid, liquid, or gas. The Speed of Sound in Different Materials Sound travels the slowest through gases, faster through liquids, fastest through solids. The Speed of Sound in Different Materials The denser the material the the closer the molecules are together which makes it easier and faster to transfer sound The Speed of Sound in Different Materials Speed of sound doesn t depend on the loudness. All sounds travel through a medium at the same speed. A Model for Transmitting A line Sound of people passing a bucket is a model for molecule transferring the energy of a sound wave s 3

4 A Model for Transmitting Sound When the people are far away from each other, like the molecules in gas, it takes longer to transfer the bucket of water from person to person. A Model for Transmitting Sound The bucket travels quickly down the line when the people stand close together The closer the particles, the faster they can transfer energy from particle to particle. Temperature and the Speed of Sound As the temperature of a substance increases, its molecules move faster. Molecules more likely to collide with each other increasing sound speed. Click image to view movie Human Hearing Vocal cords and mouths move in many different ways to produce various kinds of compressional waves. Your ears and brain work together to turn the compressional waves caused by speech, music, and other sources into something that has meaning. Human Hearing 1 st Ear gathers the compressional waves. 2 nd Ear amplifies the waves. Gathering Sound Waves The Outer Ear 3 rd Waves are converted to nerve impulses that travel to the brain. 4 th Brain decodes and interprets the nerve impulses. 4

5 For us to hear, the outer ear gathers & focuses sound into the middle ear where the vibrations are received and amplified The inner ear uses nerve endings to sense vibrations and send signals to the brain Sound is recorded by converting sound waves into electronic signals that can be processed and stored Sound is reproduced by converting electronic signals back to sound waves Gathering Sound Waves The Outer Ear Outer ear, Middle ear, and Inner ear. The outer ear is where sound waves are gathered. Gathering Sound Waves The Outer Ear The eardrum is a tough membrane about 0.1 mm thick. Then incoming sound waves vibrate the eardrum Converting Sound Waves The Inner Ear cochlea filled with liquid and contains tiny hair cells. Converts sound to nerve impulses Question 1 What type of wave is a sound wave? A sound wave is a compressional or a longitudinal wave. Question 2 In which of the following environments would sound waves not travel? A. at altitudes of 10,000 15,000 m B. in solid aluminum C. on the Moon D. under water 5

6 The answer is C. Sound waves require a medium through which to travel. So, sound waves cannot travel through empty space. Question 3 Which region of the ear amplifies sound waves? A. ear drum B. inner ear C. middle ear D. outer ear The answer is C. The bones of the middle ear amplify sound waves. Intensity and Loudness What happens to the sound waves from your radio when you adjust the volume? The notes sound the same as when the volume was higher, but something about the sound changes Def: intensity is the rate at which a wave s energy flow through a given area The decibel (db) compares the intensity of different sounds Def: loudness is a physical response to the intensity of sound modified by physical factors As intensity increases, loudness increases Loudness also depends on the health of your ears and how your brain interpret sounds Def: pitch is the frequency of a sound as you perceive it Intensity and Loudness The difference is that quieter sound waves do not carry as much energy as louder sound waves do. 6

7 Intensity and Loudness The amount of energy a wave carries corresponds to its amplitude. For a compressional wave, amplitude is related to the density of the particles in the compressions and rarefactions. Intensity and Loudness strongly vibrating objects makes sound waves with tight, dense compressions. Weak vibrations make sound waves with less dense compressions. Intensity and Loudness The density of particles in the rarefactions behaves in the opposite way. It is important to remember that matter is not transported during the compression and rarefaction of a compression wave only energy is transported. Matter compresses and expands as the wave of energy passes through the matter. Intensity Intensity- amount of energy that flows through a certain area. Intensity Volume Increases = Intensity Increases Volume decreases = Intensity decreases Intensity Intensity = how far away sound can be heard. If you and a friend whisper a conversation, the sound waves you create have low intensity and do not travel far. 7

8 Intensity Decreases with Distance Intensity influences how far a wave will travel because some of a wave s energy is converted to other forms of energy when it is passed from particle to particle. low intensity = less distance sound travels. High intensity = farther distance sound travels Loudness Loudness is the human perception of sound intensity. When sound waves of high intensity reach your ear, they cause your eardrum to move back and forth a greater distance than sound waves of low intensity do. Loudness The bones of the middle ear convert the increased movement of the eardrum into increased movement of the hair cells in the inner ear. A Scale for Loudness Sound intensity is measured in decibels (db) As a result, you hear a loud sound A Scale for Loudness Pitch If you were to sing a scale, your voice would start low and become higher with each note. Pitch- how high or low a sound seems to be. pitch is related to the frequency of the sound waves. 8

9 Frequency and Pitch High Pitch = High Frequency Low Pitch = Low frequency Frequency and Pitch This figure shows different notes and their frequencies. A healthy human ear can hear sound waves with frequencies from about 20 Hz to 20,000 Hz. How Sound Waves Behave & Relative Motion Ultrasound is used in a variety of applications, including sonar and ultrasound imaging Def: Sonar is a technique for determining the distance to an object under water The pitch of a sound is determined by the frequency Higher pitch means faster frequency As the source of the waves moves it changes the frequency (this is the Doppler Effect) As it moves toward you the pitch rises and away from you the pitch lowers = Doppler Effect Ultrasonic and Infrasonic Waves ultrasonic - waves above 20,000 Hz, High pitched waves humans cannot hear Ultrasonic and Infrasonic Waves Ultrasonic waves are used in medical diagnosis and treatment. They also are used to estimate the size, shape, and depth of underwater objects. Ultrasonic and Infrasonic Waves Infrasonic waves frequencies below 20 Hz too low for most people to hear. 9

10 Ultrasonic and Infrasonic Waves These waves are produced by sources that vibrate slowly, such as wind, heavy machinery, and earthquakes. Echolocation At night, bats swoop around in darkness without bumping into anything. Their senses of sight and smell help them navigate. Echolocation is the process of locating objects by emitting sounds and interpreting the sound waves that are reflected back. Sonar Sonar system that uses the reflection of underwater sound waves to detect objects. Ultrasound in Medicine One of the important uses of ultrasonic waves is in medicine. Using special instruments, medical professionals can send ultrasonic waves into a specific part of a patient s body. Ultrasound in Medicine Reflected ultrasonic waves are used to detect and monitor conditions such as pregnancy, certain types of heart disease, and cancer. Ultrasound Imaging Like X rays, ultrasound can be used to produce images of internal structures. The sound waves reflect off the targeted organs or tissues, and the reflected waves are used to produce electrical signals. A computer program converts these electrical signals into video images, called sonograms. 10

11 Treating with Ultrasound Sometimes small, hard deposits of calcium compounds or other minerals form in the kidneys, making kidney stones. Ultrasonic treatments are commonly used to break them up. Treating with Ultrasound Bursts of ultrasound create vibrations that cause the stones to break into small pieces. These fragments then pass out of the body with the urine. Question 1 The process of locating objects by emitting sounds and interpreting the sound waves that are reflected back is called. A. acoustics B. echolocation C. infrasonic tracking D. reverberation The answer is B. Echolocation is used by some animals such as bats and dolphins. Question 2 Which of the following is not a use of ultrasonic technology in medicine? A. examination of the gallbladder B. examination of bones C. fetal monitoring in utero D. kidney stone treatment The answer is B. Ultrasound is not as useful as X rays for examining bones, because hard tissues absorb ultrasonic waves instead of reflecting them. 11

12 Question 3 What is sonar? Sonar is a system that uses the reflection of underwater sound waves to detect objects. The Doppler Effect Doppler effect- change in pitch or wave frequency due to a moving wave source Moving Sound As a race car moves, it sends out sound waves in the form of compressions and rarefactions. The race car creates a compression, labeled A. Compression A moves through the air toward the flagger standing at the finish line. Moving Sound By the time compression B leaves the race car, the car has moved forward. Because the car has moved since the time it created compression A, compressions A and B are closer together than they would be if the car had stayed still. Moving Sound As a result, the flagger hears a higher pitch. A Moving Observer The Doppler effect happens any time the source of a sound is changing position compared with the observer. It occurs no matter whether it is the sound source or the observer that is moving. The faster the change in position, the greater the change in frequency and pitch. 12

13 Using the Doppler Effect Radar guns use the Doppler effect to measure the speed of cars. Weather radar also uses the Doppler shift to show the movement of winds in storms, such as a tornado. Question 1 Each unit on the scale for sound intensity is called a. The answer is decibel, abbreviated db. Question 2 Sound frequencies above 20,000 Hz are called waves. A. infrasonic B. infrared C. subsonic D. ultrasonic The answer is D. Subsonic and infrasonic are waves with frequencies below 20 Hz. Question 3 Describe the Doppler effect. 13

14 The Doppler effect is the change in pitch due to a moving wave source. effect Sound, Perception, and Music Key Question: How is musical sound different than other types of sound? \ Most musical instruments vary pitch by changing the frequency of standing waves Def: resonance is the response of a standing wave to another wave of the same frequency Musical instruments often use resonance to amplify sound 12.3 Sound, Perception, and Music A single frequency by itself does not have much meaning. The meaning comes from patterns in many frequencies together. A sonogram is a special kind of graph that shows how loud sound is at different frequencies. Every person s sonogram is different, even when saying the same word Music The pitch of a sound is how high or low we hear its frequency. Though pitch and frequency usually mean the same thing, the way we hear a pitch can be affected by the sounds we heard before and after. Rhythm is a regular time pattern in a sound. Music is a combination of sound and rhythm that we find pleasant. Most of the music you listen to is created from a pattern of frequencies called a musical scale. 14

15 12.3 Consonance, dissonance, and beats Harmony is the study of how sounds work together to create effects desired by the composer. When we hear more than one frequency of sound and the combination sounds good, we call it consonance. When the combination sounds bad or unsettling, we call it dissonance Consonance, dissonance, and beats Consonance and dissonance are related to beats. When frequencies are far enough apart that there are no beats, we get consonance. When frequencies are too close together, we hear beats that are the cause of dissonance. Beats occur when two frequencies are close, but not exactly the same Harmonics and instruments The same note sounds different when played on different instruments because the sound from an instrument is not a single pure frequency. The variation comes from the harmonics, multiples of the fundamental note. Application: Sound from a Guitar Accoustics When an orchestra stops playing, does it seem as if the sound of its music lingers for a couple of seconds? reverberation The echoing effect produced by many reflections of sound During an orchestra performance, reverberation can ruin the sound of the music. 15

16 Accoustics Acoustics- study of sound Some scientists and engineers specialize in acoustics to make concert halls and other theaters pleasant EXAMPLES!! Accoustics They know that soft, porous materials can reduce excess reverberation, so they might recommend that the walls of concert halls be lined with carpets and draperies. 16

17.4 Sound and Hearing

17.4 Sound and Hearing You can identify sounds without seeing them because sound waves carry information to your ears. People who work in places where sound is very loud need to protect their hearing. Properties of Sound Waves

More information

Sound Waves. Sound waves can only travel through matter. The energy carried by a sound wave is transferred by the collisions between the

Sound Waves. Sound waves can only travel through matter. The energy carried by a sound wave is transferred by the collisions between the Sound Waves Making Sound Waves How does the motion of a drummer s drumsticks produce sound waves? The impact of the sticks on the head of a drum causes the drum head to vibrate. These vibrations transfer

More information

Sound Waves. Making Sound Waves

Sound Waves. Making Sound Waves Benchmarks SC.B.1.3.6 Annually Assessed (pp. 195, 197): The student knows the properties of waves; that each wave consists of a number of crests and troughs; and the effects of different media on waves;

More information

Producing and Detecting Sound

Producing and Detecting Sound Sound Producing and Detecting Sound What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement

More information

Directions: Review the sound vocabulary words. In the pre column place a 2, 1, or 0 2 = expert 1 = heard of it 0 = do not know it

Directions: Review the sound vocabulary words. In the pre column place a 2, 1, or 0 2 = expert 1 = heard of it 0 = do not know it Directions: Review the sound vocabulary words. In the pre column place a 2, 1, or 0 2 = expert 1 = heard of it 0 = do not know it pre Sound Vocabulary Absorption Amplitude Compression Crest Decibels Echo

More information

Please visit the website hearingandsound.weebly.com to help you study, as well as viewing the videos and booklet posted.

Please visit the website hearingandsound.weebly.com to help you study, as well as viewing the videos and booklet posted. Hearing and Sound Study Guide Please visit the website hearingandsound.weebly.com to help you study, as well as viewing the videos and booklet posted. 1. Sounds make vibrations and vibrations move in all

More information

Transfer of Sound Energy through Vibrations

Transfer of Sound Energy through Vibrations secondary science 2013 16 Transfer of Sound Energy through Vibrations Content 16.1 Sound production by vibrating sources 16.2 Sound travel in medium 16.3 Loudness, pitch and frequency 16.4 Worked examples

More information

9.3 Sound. The frequency of sound. pitch - the perception of high or low that you hear at different frequencies of sound.

9.3 Sound. The frequency of sound. pitch - the perception of high or low that you hear at different frequencies of sound. 9.3 Sound Like other waves, sound has frequency, wavelength, amplitude, and speed. Because sound is part of your daily experience, you already know its properties but by different names. You may never

More information

Wonderlab. Sound. The Statoil Gallery. The science and maths behind the exhibits LIGHT WONDERLAB: THE STATOIL GALLERY LEVEL 3, SCIENCE MUSEUM LONDON

Wonderlab. Sound. The Statoil Gallery. The science and maths behind the exhibits LIGHT WONDERLAB: THE STATOIL GALLERY LEVEL 3, SCIENCE MUSEUM LONDON Wonderlab The Statoil Gallery and maths s Sound Age (s) Topic 7 11 LIGHT INFORMATION 11-14 Location WONDERLAB: THE STATOIL GALLERY LEVEL 3, SCIENCE MUSEUM LONDON 1 What s the science? What more will you

More information

Sound (11-16) Click here to buy the clear version of Sound (11-16). This pdf file can be downloaded and used on your PC or tablet.

Sound (11-16) Click here to buy the clear version of Sound (11-16). This pdf file can be downloaded and used on your PC or tablet. Sound (11-16) Click here to buy clear version of Sound (11-16). This pdf file can be downloaded and used on your PC or tablet. NOT AVAILABLE YET TEST PAGES ONLY Contents Topic Page Contents Page Sound

More information

Sound You might have tried the following

Sound You might have tried the following 12 Sound You might have tried the following experiment. With a friend, you go below the water surface in a swimming pool and scream a message. After you come up for air, your friend tries to guess what

More information

Sound. Chapter Test A. Multiple Choice. 1 Pearson Education, Inc., or its affiliates. All rights reserved.

Sound. Chapter Test A. Multiple Choice. 1 Pearson Education, Inc., or its affiliates. All rights reserved. _ Sound Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. _ 1. Sound is a disturbance that travels through a medium as a a. longitudinal wave. b. surface wave.

More information

9.3 Sound The frequency of sound Frequency and pitch pitch Most sound has more than one frequency The frequency spectrum

9.3 Sound The frequency of sound Frequency and pitch pitch Most sound has more than one frequency The frequency spectrum 9.3 Sound Like other waves, sound has frequency, wavelength, amplitude, and speed. Because sound is part of your daily experience, you already know its properties but by different names. You may never

More information

Sound A Science A Z Physical Series Word Count: 1,093

Sound A Science A Z Physical Series Word Count: 1,093 Sound A Science A Z Physical Series Word Count: 1,093 Written by Robert N. Knight Visit www.sciencea-z.com www.sciencea-z.com Sound KEY ELEMENTS USED IN THIS BOOK The Big Idea: Sound is made of waves that

More information

Sound Workshop. What is sound Longitudinal Waves Frequency and pitch Hearing ranges Sounds in solids, liquids and gases Sound in a vacuum

Sound Workshop. What is sound Longitudinal Waves Frequency and pitch Hearing ranges Sounds in solids, liquids and gases Sound in a vacuum Sound Workshop a. b. c. d. e. f. g. h. i. j. k. l. What is sound Longitudinal Waves Frequency and pitch Hearing ranges Sounds in solids, liquids and gases Sound in a vacuum Echoes Ultrasound Loudspeakers

More information

26.1 The Origin of Sound

26.1 The Origin of Sound Chapter 26: Sound 26.1 The Origin of Sound All sounds are produced by the vibrations of material objects. Piano, violin, guitar: vibrating strings Saxophone: vibrating reed Flute: vibrating air around

More information

Low? High or. v vv \T\ \ C\ [ \(\(\(\(\ PITCH FREQUENCY CHAPTER4

Low? High or. v vv \T\ \ C\ [ \(\(\(\(\ PITCH FREQUENCY CHAPTER4 CHAPTER4 High or Low? PITCH Another quality that an oscilloscope shows is pitch. Pitch is a measurement of how high or low a sound is. If you make your voice high and squeaky, then it has a high pitch.

More information

DeltaScience. Content Readers. Summary. Science Background. Objectives. Reading Comprehension Skills. Supporting English Learners

DeltaScience. Content Readers. Summary. Science Background. Objectives. Reading Comprehension Skills. Supporting English Learners DeltaScience Content Readers TM Red Edition Grade 3 4 reading level Purple Edition Grade 4 5 reading level Objectives Describe how vibrating objects make sound waves. Explain how sound waves move through

More information

Sound. Cracking the Sound Barrier

Sound. Cracking the Sound Barrier Sound sections 1 The Nature of Sound 2 Properties of Sound 3 Music Lab Making Music 4 Using Sound Lab Blocking Noise Pollution Virtual Lab How is an oscilloscope used to tune a musical instrument? Cracking

More information

Hearing and Sound Study Guide

Hearing and Sound Study Guide Hearing and Sound Study Guide I made the following website as a study tool to help you prepare for Thursday with videos and sample questions hearingandsound.weebly.com 1. Sounds make vibrations and vibrations

More information

ISLAMABAD ACADEMY PHYSICS FOR 10TH CLASS (UNIT # 13)

ISLAMABAD ACADEMY PHYSICS FOR 10TH CLASS (UNIT # 13) PHYSICS FOR 10TH CLASS (UNIT # 13) SHORT QUESTIONS How sound is produced? It is produced from a vibrating body which transfers in air from one place to other in the form of compression waves. A medium

More information

5. Which word refers to making

5. Which word refers to making Name: Date: WEEK 6 1 Read the text and then answer the questions. How do people hear? Look in a mirror, and you will see that your ears are shaped a little like a funnel. That shape amplifies sounds you

More information

Animal Senses 9/2/16

Animal Senses 9/2/16 Animal Senses 9/2/16 Animal Senses 9/4/15 Fly Hair Cells Animal hearing Elephants can hear lower frequencies than humans 10 Hz (humans 20 Hz) But not as high 12,000 Hz (humans 20,000 Hz) Elephant Ears

More information

1.34 Intensity and Loudness of Sound

1.34 Intensity and Loudness of Sound 1.34. Intensity and Loudness of Sound www.ck12.org 1.34 Intensity and Loudness of Sound Define intensity of sound and relate it to loudness. Compare decibel levels of different sounds. Identify factors

More information

Chapter 3. Sounds, Signals, and Studio Acoustics

Chapter 3. Sounds, Signals, and Studio Acoustics Chapter 3 Sounds, Signals, and Studio Acoustics Sound Waves Compression/Rarefaction: speaker cone Sound travels 1130 feet per second Sound waves hit receiver Sound waves tend to spread out as they travel

More information

Sound. Audition. Physics of Sound. Properties of sound. Perception of sound works the same way as light.

Sound. Audition. Physics of Sound. Properties of sound. Perception of sound works the same way as light. Sound Audition Perception of sound works the same way as light. Have receptors to convert a physical stimulus to action potentials Action potentials are organized in brain structures You apply some meaning

More information

Audition. Sound. Physics of Sound. Perception of sound works the same way as light.

Audition. Sound. Physics of Sound. Perception of sound works the same way as light. Audition Sound Perception of sound works the same way as light. Have receptors to convert a physical stimulus to action potentials Action potentials are organized in brain structures You apply some meaning

More information

Norwood Science Center

Norwood Science Center Norwood Science Center Energy Grade 5 Background Information: The sense of hearing involves the ear, the auditory nerve, and a special center within the brain. We hear because our ears respond to vibrations

More information

This test contains questions that are borrowed from other sources. It was not accepted to the exchange but is included in this folder because it was

This test contains questions that are borrowed from other sources. It was not accepted to the exchange but is included in this folder because it was This test contains questions that are borrowed from other sources. It was not accepted to the exchange but is included in this folder because it was the only test submitted for this event. Sounds of Music

More information

Dalkeith High School Level 4 Physics. Waves and Sound

Dalkeith High School Level 4 Physics. Waves and Sound Dalkeith High School Level 4 Physics Waves and Sound By recording and analysing sound signals, I can describe how they can be manipulated and used in sound engineering. SCN 4-11a INSTRUCTIONS: Always put

More information

Unit 4P.1: Sound. How sounds are made? Loudness and pitch Hearing sound Noise Traveling of sound Echo

Unit 4P.1: Sound. How sounds are made? Loudness and pitch Hearing sound Noise Traveling of sound Echo Unit 4P.1: How sounds are made? Loudness and pitch Hearing sound Noise Traveling of sound Echo Science skills: Predicting Observing and classifying UBy the end of this unit you should: Know that sound

More information

The Nature of Sound. Section 1: What Is Sound? (p. 534)

The Nature of Sound. Section 1: What Is Sound? (p. 534) CHAPTER 21 DIRECTED READING WORKSHEET The Nature of Sound As you read Chapter 21, which begins on page 532 of your textbook, answer the following questions. Would You Believe...? (p. 532) 1. What did Marco

More information

Hearing. istockphoto/thinkstock

Hearing. istockphoto/thinkstock Hearing istockphoto/thinkstock Audition The sense or act of hearing The Stimulus Input: Sound Waves Sound waves are composed of changes in air pressure unfolding over time. Acoustical transduction: Conversion

More information

AND THE EARS HAVE IT! (1 Hour)

AND THE EARS HAVE IT! (1 Hour) (1 Hour) Addresses NGSS Level of Difficulty: 3 Grade Range: K-2 OVERVIEW In this activity, students will explore the nature of human hearing by attempting to determine the location at different locations

More information

Science - Year 4. Sound Block 4S. Listen Up! Session 2 Resource Pack

Science - Year 4. Sound Block 4S. Listen Up! Session 2 Resource Pack Science - Year 4 Sound Block 4S Listen Up! Session 2 Resource Pack Original resource copyright Hamilton Trust, who give permission for it to be adapted as wished by individual users. We refer you to our

More information

Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function.

Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function. Hearing Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function. 19/11/2014 Sound A type of longitudinal mass wave that

More information

Biological Psychology. Unit Two AE Mr. Cline Marshall High School Psychology

Biological Psychology. Unit Two AE Mr. Cline Marshall High School Psychology Biological Psychology Unit Two AE Mr. Cline Marshall High School Psychology Vision How do our brains make 3-D images out of 2-D inputs? We live in a 3-dimensional world, but each of our eyes is only capable

More information

How Do Our Ears Work? Quiz

How Do Our Ears Work? Quiz The Marvelous Ear How Do Our Ears Work? Quiz 1. How do humans hear sounds? 2. How does human hearing work? Sketch and label the system. 3. Do you know any sensors that detect sound and how they might do

More information

If sound waves needs molecules, how do astronauts in the vacuum of space talk to each other?

If sound waves needs molecules, how do astronauts in the vacuum of space talk to each other? Worksheet 16 A lesson from the Native Access to Engineering Programme Sound sound: saund (noun) 13 th century 1 a : a particular auditory impression : b : the sensation perceived by the sense of hearing

More information

Hearing. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 14. Hearing. Hearing

Hearing. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 14. Hearing. Hearing PSYCHOLOGY (8th Edition, in Modules) David Myers PowerPoint Slides Aneeq Ahmad Henderson State University Worth Publishers, 2007 1 Hearing Module 14 2 Hearing Hearing The Stimulus Input: Sound Waves The

More information

Science5 (SoundMulberry4th)

Science5 (SoundMulberry4th) Science5 (SoundMulberry4th) Name: Date: 1. The figure below shows a glass partly filled with water. Grace tapped the glass with a metal spoon and heard a sound. Which action would raise the pitch when

More information

Hearing. Figure 1. The human ear (from Kessel and Kardon, 1979)

Hearing. Figure 1. The human ear (from Kessel and Kardon, 1979) Hearing The nervous system s cognitive response to sound stimuli is known as psychoacoustics: it is partly acoustics and partly psychology. Hearing is a feature resulting from our physiology that we tend

More information

DOLPHIN RESEARCH CENTER Acoustics

DOLPHIN RESEARCH CENTER Acoustics DOLPHIN RESEARCH CENTER Acoustics Grade Level: 6 th -8 th Objectives: Students will be able to explain how dolphins use sound to communicate and navigate through their underwater environment. Florida Sunshine

More information

IT S A SECRET! (1 Hour) Addresses NGSS Level of Difficulty: 4 Grade Range: K-2

IT S A SECRET! (1 Hour) Addresses NGSS Level of Difficulty: 4 Grade Range: K-2 IT S A SECRET! (1 Hour) Addresses NGSS Level of Difficulty: 4 Grade Range: K-2 OVERVIEW In this activity, students explore how sound waves travel through various materials. They will build a sound transmission

More information

Noise and hearing - children and teenagers

Noise and hearing - children and teenagers Noise and hearing - children and teenagers http://www.cyh.com/healthtopics/healthtopicdetails.aspx?p=114&np=304&id=1584#2 The inner ear (cochlea) contains tiny cells that are sensitive to sound (hair cells).

More information

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves Sensation and Perception Part 3 - Hearing Sound comes from pressure waves in a medium (e.g., solid, liquid, gas). Although we usually hear sounds in air, as long as the medium is there to transmit the

More information

Outline. The ear and perception of sound (Psychoacoustics) A.1 Outer Ear Amplifies Sound. Introduction

Outline. The ear and perception of sound (Psychoacoustics) A.1 Outer Ear Amplifies Sound. Introduction The ear and perception of sound (Psychoacoustics) 1 Outline A. Structure of the Ear B. Perception of Pitch C. Perception of Loudness D. Timbre (quality of sound) E. References Updated 01Aug0 Introduction

More information

SENDING SECRET MESSAGES (1 Hour)

SENDING SECRET MESSAGES (1 Hour) SENDING SECRET MESSAGES (1 Hour) Addresses NGSS Level of Difficulty: 3 Grade Range: K-2 OVERVIEW In this activity, students explore how sound waves travel through various materials. They will build a sound

More information

Sound and hearing 2 The outside of the ear. Sound and hearing 1 How sounds get to our ears

Sound and hearing 2 The outside of the ear. Sound and hearing 1 How sounds get to our ears Sound and hearing 1 How sounds get to our ears 1. What are some of the sounds you would hear if you were camping on a quiet night? 2. How would you feel if you couldn t hear anything? When you listen to

More information

Psychology Chapter 4. Sensation and Perception. Most amazing introduction ever!! Turn to page 77 and prepare to be amazed!

Psychology Chapter 4. Sensation and Perception. Most amazing introduction ever!! Turn to page 77 and prepare to be amazed! Psychology Chapter 4 Sensation and Perception Most amazing introduction ever!! Turn to page 77 and prepare to be amazed! Chapter 4 Section 1 EQ: Distinguish between sensation and perception, and explain

More information

Perception of Sound. To hear sound, your ear has to do three basic things:

Perception of Sound. To hear sound, your ear has to do three basic things: Perception of Sound Your ears are extraordinary organs. They pick up all the sounds around you and then translate this information into a form your brain can understand. One of the most remarkable things

More information

TAKS TEST PREPARATION FOR MATH IN SCIENCE

TAKS TEST PREPARATION FOR MATH IN SCIENCE Name Date Class CHAPTER TAKS TEST PREPARATION FOR MATH IN SCIENCE Math Mini-Test Section 1 1 There are about 16,000 hair cells inside the cochlea of a person s ear. If 30% of those hair cells are damaged,

More information

Learning Targets. Module 20. Hearing Explain how the ear transforms sound energy into neural messages.

Learning Targets. Module 20. Hearing Explain how the ear transforms sound energy into neural messages. Learning Targets Module 20 Hearing 20-1 Describe the characteristics of air pressure waves that we hear as sound. 20-2 Explain how the ear transforms sound energy into neural messages. 20-3 Discuss how

More information

Sound from Left or Right?

Sound from Left or Right? Sound from Left or Right? Pre-Activity Quiz 1. How does our sense of hearing work? 2. Why do we have two ears? 3. How does a stethoscope work? (A device used by doctors to listen to the sound of your heart.)

More information

Unit 2. Lesson 2. Sound Production and Reception

Unit 2. Lesson 2. Sound Production and Reception Unit 2. Lesson 2. Sound Production and Reception Lesson Objectives: After completing this lesson and the activities, students will be able to grasp the basic ideas of how sound is generated and how it

More information

SUBJECT: Physics TEACHER: Mr. S. Campbell DATE: 15/1/2017 GRADE: DURATION: 1 wk GENERAL TOPIC: The Physics Of Hearing

SUBJECT: Physics TEACHER: Mr. S. Campbell DATE: 15/1/2017 GRADE: DURATION: 1 wk GENERAL TOPIC: The Physics Of Hearing SUBJECT: Physics TEACHER: Mr. S. Campbell DATE: 15/1/2017 GRADE: 12-13 DURATION: 1 wk GENERAL TOPIC: The Physics Of Hearing The Physics Of Hearing On completion of this section, you should be able to:

More information

Hearing for life Facts about hearing. How hearing works, how hearing fades and how to assist your hearing

Hearing for life Facts about hearing. How hearing works, how hearing fades and how to assist your hearing Hearing for life Facts about hearing How hearing works, how hearing fades and how to assist your hearing 3 Our hearing develops fully while we are still in the womb Our hearing is the only one of our senses

More information

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear Hearing Sound Music 170: The Ear Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) November 17, 2016 Sound interpretation in the auditory system is done by

More information

Music 170: The Ear. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) November 17, 2016

Music 170: The Ear. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) November 17, 2016 Music 170: The Ear Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) November 17, 2016 1 Hearing Sound Sound interpretation in the auditory system is done by

More information

TERRESTRIAL S Traveling Noise

TERRESTRIAL S Traveling Noise Traveling Noise INTROD CTION In this exercise, students will experiment with their natural surroundings to discover what absorbs or reflects sound. Vegetation, topography, and atmospheric conditions all

More information

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages 189-197 Corrections: NTC 09-1, page 3, the Superior Colliculus is in the midbrain (Mesencephalon). Announcements: Movie next Monday: Case of the frozen

More information

Systems Neuroscience Oct. 16, Auditory system. http:

Systems Neuroscience Oct. 16, Auditory system. http: Systems Neuroscience Oct. 16, 2018 Auditory system http: www.ini.unizh.ch/~kiper/system_neurosci.html The physics of sound Measuring sound intensity We are sensitive to an enormous range of intensities,

More information

College of Medicine Dept. of Medical physics Physics of ear and hearing /CH

College of Medicine Dept. of Medical physics Physics of ear and hearing /CH College of Medicine Dept. of Medical physics Physics of ear and hearing /CH 13 2017-2018 ***************************************************************** o Introduction : The ear is the organ that detects

More information

Intro to Audition & Hearing

Intro to Audition & Hearing Intro to Audition & Hearing Lecture 16 Chapter 9, part II Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Fall 2017 1 Sine wave: one of the simplest kinds of sounds: sound for which pressure

More information

Sensation and Perception. 8.2 The Senses

Sensation and Perception. 8.2 The Senses Sensation and Perception 8.2 The Senses I. Introduction A. You probably think that you have just five senses: vision, hearing, taste, smell, and touch. In addition, people have two more internal senses:

More information

The Human Ear. Grade Level: 4 6

The Human Ear. Grade Level: 4 6 The Human Ear Grade Level: 4 6 Teacher Guidelines pages 1 2 Instructional Pages pages 3 5 Practice Pages pages 6 7 Homework Page page 8 Answer Key page 9 Classroom Procedure: 1. Give a blank sheet of paper,

More information

! Can hear whistle? ! Where are we on course map? ! What we did in lab last week. ! Psychoacoustics

! Can hear whistle? ! Where are we on course map? ! What we did in lab last week. ! Psychoacoustics 2/14/18 Can hear whistle? Lecture 5 Psychoacoustics Based on slides 2009--2018 DeHon, Koditschek Additional Material 2014 Farmer 1 2 There are sounds we cannot hear Depends on frequency Where are we on

More information

How Sound Works. Visit for thousands of books and materials.

How Sound Works.  Visit  for thousands of books and materials. How Sound Works A Reading A Z Level U Leveled Reader Word Count: 1,637 LEVELED READER U Written by Penny Atcheson Visit www.readinga-z.com for thousands of books and materials. www.readinga-z.com How Sound

More information

INTERACTIVE SCIENCE 2B

INTERACTIVE SCIENCE 2B INTERACTIVE SCIENCE 2B Workbook Solutions (Enrichment Edition) Chapter 11 SENSING THE ENVIRONMENT Part A Sectional Exercise 11.1 Concept checking p.63 1. False 2. True 3. True 4. False 5. True Questions

More information

A Kazoo For You. Science Activity.

A Kazoo For You. Science Activity. A Kazoo For You Science Activity www.apologia.com A Kazoo For You Science Activity Published by Apologia Educational Ministries, Inc. 1106 Meridian Street, Suite 340 Anderson, IN 46016 www.apologia.com

More information

When hearing is painful. Can we damage our ears?

When hearing is painful. Can we damage our ears? When hearing is painful Can we damage our ears? What is the link? What is the link? Have you ever wondered what we learned from dolphins and use in submarines today? Objectives: To describe what noise

More information

Ear Exam and Hearing Tests

Ear Exam and Hearing Tests Ear Exam and Hearing Tests Test Overview A thorough evaluation of a person's hearing requires an ear exam and hearing tests. In children, normal hearing is important for language to develop correctly.

More information

PHYS 1240 Sound and Music Professor John Price. Cell Phones off Laptops closed Clickers on Transporter energized

PHYS 1240 Sound and Music Professor John Price. Cell Phones off Laptops closed Clickers on Transporter energized PHYS 1240 Sound and Music Professor John Price Cell Phones off Laptops closed Clickers on Transporter energized The Ear and Hearing Thanks to Jed Whittaker for many of these slides Ear anatomy substructures

More information

Lecture 7- Sound Waves Chapter 17

Lecture 7- Sound Waves Chapter 17 Admin Wave Speed Questions 1 / 10 Lecture 7- Sound Waves Chapter 17 Prof. Noronha-Hostler PHY-124H HONORS ANALYTICAL PHYSICS IB Phys- 124H March 2 nd, 2018 Admin Wave Speed Questions 2 / 10 Housekeeping

More information

HEAR YE! HEAR YE! (1.5 Hours)

HEAR YE! HEAR YE! (1.5 Hours) HEAR YE! HEAR YE! (1.5 Hours) Addresses NGSS Level of Difficulty: 4 Grade Range: 3-5 OVERVIEW In this activity, students will construct a model ear to learn how different materials transmit sound. Topic:

More information

Receptors / physiology

Receptors / physiology Hearing: physiology Receptors / physiology Energy transduction First goal of a sensory/perceptual system? Transduce environmental energy into neural energy (or energy that can be interpreted by perceptual

More information

SOUNDS LIKE FUN SCIENCE GRADE 4 STELLA BIZZIO. TIME ALLOTMENT: One 50-minute class.

SOUNDS LIKE FUN SCIENCE GRADE 4 STELLA BIZZIO. TIME ALLOTMENT: One 50-minute class. SOUNDS LIKE FUN TIME ALLOTMENT: One 50-minute class. OVERVIEW: Using hands-on activities and demonstrations the lesson will focus on the production of sound as energy that can make matter vibrate. Students

More information

SPHSC 462 HEARING DEVELOPMENT. Overview Review of Hearing Science Introduction

SPHSC 462 HEARING DEVELOPMENT. Overview Review of Hearing Science Introduction SPHSC 462 HEARING DEVELOPMENT Overview Review of Hearing Science Introduction 1 Overview of course and requirements Lecture/discussion; lecture notes on website http://faculty.washington.edu/lawerner/sphsc462/

More information

Sound and Music. Acoustical Society of America 2

Sound and Music. Acoustical Society of America 2 Sound and Music Acoustical Society of America 2 What is Sound? Sit quietly and listen to the sounds around you. Today you will be Sound Detectives 3 What is Sound? Strike the tuning fork with a rubber

More information

Protect Your Hearing!

Protect Your Hearing! Protect Your Hearing! What is noise? Loud sounds if they are over 85 db can be damaging. How do I know if I am listening to levels above 85dB? It is invisible, tasteless, odorless, and IGNORED as a form

More information

ID# Exam 2 PS 325, Fall 2009

ID# Exam 2 PS 325, Fall 2009 ID# Exam 2 PS 325, Fall 2009 As always, the Skidmore Honor Code is in effect. At the end of the exam, I ll have you write and sign something to attest to that fact. The exam should contain no surprises,

More information

Intensity and Loudness of Sound

Intensity and Loudness of Sound Intensity and Loudness of Sound Jean Brainard, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other

More information

Sound Waves. and their characteristics. 1) Frequency (pitch) 2) Intensity (loudness) 3) Harmonic Content. May 10 11:45 AM

Sound Waves. and their characteristics. 1) Frequency (pitch) 2) Intensity (loudness) 3) Harmonic Content. May 10 11:45 AM Sound Waves and their characteristics 1) Frequency (pitch) 2) Intensity (loudness) 3) Harmonic Content May 10 11:45 AM 1 particle motion http://positron.ps.uci.edu/~dkirkby/music/html/demos/planewave/soundwave.html

More information

Chapter 11: Sound, The Auditory System, and Pitch Perception

Chapter 11: Sound, The Auditory System, and Pitch Perception Chapter 11: Sound, The Auditory System, and Pitch Perception Overview of Questions What is it that makes sounds high pitched or low pitched? How do sound vibrations inside the ear lead to the perception

More information

Ganglion Cells Blind Spot Cornea Pupil Visual Area of the Bipolar Cells Thalamus Rods and Cones Lens Visual cortex of the occipital lobe

Ganglion Cells Blind Spot Cornea Pupil Visual Area of the Bipolar Cells Thalamus Rods and Cones Lens Visual cortex of the occipital lobe How We See How We See Cornea Ganglion Cells whose axons form the optic nerve Blind Spot the exit point at the back of the retina Pupil which is controlled by the iris Bipolar Cells Visual Area of the Thalamus

More information

2 Sensing the Environment

2 Sensing the Environment CHAPTER 17 2 Sensing the Environment SECTION Communication and Control California Science Standards 7.5.a, 7.5.b, 7.5.g, 7.6.b BEFORE YOU READ After you read this section, you should be able to answer

More information

Table of Contents Science Action Labs

Table of Contents Science Action Labs Table of Contents Science Action Labs 1: Vibrating Sound......................................5 2: Sound Fun..........................................8 3: How Sound Travels..................................11

More information

Chapter 7: The Nervous System

Chapter 7: The Nervous System Name: Block: Chapter 7: The Nervous System Lesson 1: How the Nervous System Works What is the Role of the Nervous System? Your nervous system receives information about what is happening both inside and

More information

Science Year Unit 8L Sound and hearing About the unit Expectations At the end of this unit in terms of scientific enquiry most pupils will:

Science Year Unit 8L Sound and hearing About the unit Expectations At the end of this unit in terms of scientific enquiry most pupils will: Science Year 8 Unit 8L Sound and hearing About the unit In this unit pupils: build on their knowledge of sound and hearing explain how sound travels through media give an explanation of how the ear works,

More information

FUNNELS OF SOUND. Activity Pack. Explore how sound travels using ear defenders and funnels to create giant ears. Neurosciences and Mental Health

FUNNELS OF SOUND. Activity Pack. Explore how sound travels using ear defenders and funnels to create giant ears. Neurosciences and Mental Health FUNNELS OF SOUND Activity Pack Description: Duration of Activity: Age: Topic: Key words: Resources: Related Activities: Explore how sound travels using ear defenders and funnels to create giant ears No

More information

Sound Travels How sound travels is explained and demonstrated using a spoon and some string to get the vibrations, then sound, to the students ears.

Sound Travels How sound travels is explained and demonstrated using a spoon and some string to get the vibrations, then sound, to the students ears. Sound Travels How sound travels is explained and demonstrated using a spoon and some string to get the vibrations, then sound, to the students ears. Grade Level Used This activity was done with 4 th graders.

More information

Outline. 4. The Ear and the Perception of Sound (Psychoacoustics) A.1 Outer Ear Amplifies Sound. Introduction

Outline. 4. The Ear and the Perception of Sound (Psychoacoustics) A.1 Outer Ear Amplifies Sound. Introduction 4. The Ear and the Perception of Sound (Psychoacoustics) 1 Outline A. Structure of the Ear B. Perception of Loudness C. Perception of Pitch D. References Updated May 13, 01 Introduction 3 A. The Structure

More information

Hearing The ice show was in its final moments and the music was louder than ever. There was a final chord that echoed across the arena.

Hearing The ice show was in its final moments and the music was louder than ever. There was a final chord that echoed across the arena. Hearing Hearing The ice show was in its final moments and the music was louder than ever. There was a final chord that echoed across the arena. The audience rose to its feet to applaud. Wow, that was really

More information

UNDERSTANDING HEARING LOSS

UNDERSTANDING HEARING LOSS Helping Babies and Toddlers get a Strong Start UNDERSTANDING HEARING LOSS You have recently been told that your child has a hearing loss. You may feel emotional and overwhelmed as you begin to learn more

More information

UNDERSTANDING HEARING LOSS

UNDERSTANDING HEARING LOSS Helping Babies and Toddlers get a Strong Start UNDERSTANDING HEARING LOSS You have recently been told that your child has a hearing loss. You may feel emotional and overwhelmed as you begin to learn more

More information

Draw a cross section of the human ear and label its parts.

Draw a cross section of the human ear and label its parts. Human Ear 1. Open the Human Ear session and follow the instructions. 2. Complete the Human Ear worksheet as you progress through the session. Draw a cross section of the ear and label its parts. 3. Using

More information

BCS 221: Auditory Perception BCS 521 & PSY 221

BCS 221: Auditory Perception BCS 521 & PSY 221 BCS 221: Auditory Perception BCS 521 & PSY 221 Time: MW 10:25 11:40 AM Recitation: F 10:25 11:25 AM Room: Hutchinson 473 Lecturer: Dr. Kevin Davis Office: 303E Meliora Hall Office hours: M 1 3 PM kevin_davis@urmc.rochester.edu

More information

Stimulus any aspect of or change in the environment to which an organism responds. Sensation what occurs when a stimulus activates a receptor

Stimulus any aspect of or change in the environment to which an organism responds. Sensation what occurs when a stimulus activates a receptor Chapter 8 Sensation and Perception Sec 1: Sensation Stimulus any aspect of or change in the environment to which an organism responds Sensation what occurs when a stimulus activates a receptor Perception

More information

Music and Hearing in the Older Population: an Audiologist's Perspective

Music and Hearing in the Older Population: an Audiologist's Perspective Music and Hearing in the Older Population: an Audiologist's Perspective Dwight Ough, M.A., CCC-A Audiologist Charlotte County Hearing Health Care Centre Inc. St. Stephen, New Brunswick Anatomy and Physiology

More information

THE MECHANICS OF HEARING

THE MECHANICS OF HEARING CONTENTS The mechanics of hearing Hearing loss and the Noise at Work Regulations Loudness and the A weighting network Octave band analysis Hearing protection calculations Worked examples and self assessed

More information