Lecture 13, 09 Oct 2003 Chapter 10 Muscles. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a.

Size: px
Start display at page:

Download "Lecture 13, 09 Oct 2003 Chapter 10 Muscles. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a."

Transcription

1 Lecture 13, 09 Oct 2003 Chapter 10 Muscles Vertebrate Physiology ECOL 437 University of Arizona Fall 2003 instr: Kevin Bonine t.a.: Bret Pasch

2 Vertebrate Physiology Muscles (Ch10) 2. Announcements

3 Review of EC Coupling and Muscle Contraction Sherwood, 1997 (Also a nice summary on p. 387 of your text)

4 Cross Bridges and Force Production ATP required for the (3) dissociation of actin and myosin (else rigor mortis) Myosin acts as an ATPase, hydrolyzing ATP to ADP + P i (4) (Energy of ATP hydrolysis cocks the myosin head) Actomyosin complex forms (= crossbridge) (1) ATP hydrolysis Cross bridge stronger when Pi released, then myosin head rotates Myosin releases ADP and P i (very slowly (2) unless bound to actin) Vander et al., 2001 ATP binds to myosin Cycle repeats until Ca++ resequestered or run out of energy Movement about 1000 nm

5 Control of Muscle Force Two primary factors can be adjusted to increase whole-muscle force: the force developed by each contracting fiber (summation) the number of muscle fibers contracting within a muscle (recruitment)

6 See text Fig Summation It s all about CALCIUM Increase force by decreasing time between individual action potentials (increase rate of stimulation)

7 Control of Muscle Force Two primary factors can be adjusted to increase whole-muscle force: the force developed by each contracting fiber (summation) the number of muscle fibers contracting within a muscle (recruitment)

8 Motor Unit Motor unit = motor neuron and all of the muscle fibers it innervates AP in motor neuron causes all innervated fibers to contract simultaneously

9 Each muscle consists of many intermingled motor units Recruitment Muscle fibers Motor Neurons Increase force by adding more motor units

10 See text Fig a Muscle & Tendon Bone Parallel Elastic Component (sarcolemma, connective tissue within muscle) Bone Muscle Model Randall et al., 2002 Contractile Unit (sarcomeres) Series Elastic Component (tendon, connective tissue linking muscle fibers to tendon, titin, Z-line material, crossbridge links)

11 See text Fig and Fig Isometric Contraction iso = same metric = length Randall et al., 2002

12 See text Fig and Fig b Isotonic Contraction iso = same tonic = tension Purely isotonic contraction Randall et al., 2002

13 See text Fig Force-Velocity Curve Greatest force during isometric contraction Randall et al., 2002 Greatest velocity when muscle is unloaded

14 See text Fig Muscles can produce power Muscle fiber types vary in their mechanical properties (see text Table 10-1) Power = force * velocity Maximum power output is found at intermediate force and velocity (~40%) Randall et al., 2002

15 Different Muscle Fiber-Types Randall et al., 2002

16 Cellular Energetics See text Fig Myosin ATPase Actin + Myosin crossbridge movement 75% ATP ADP + P Immediate energy source i PCr + ADP Cr + ATP Non-oxidative energy source Glucose 2 Lactate + 2 ATP Oxidative energy source Glucose + O 2 CO 2 + H 2 O + 36 ATP Ca 2+ ATPase Ca 2+ pumped back into SR 25% Energy systems differ in their rate of and capacity for producing ATP

17 Fatigue Fatigue can result from many factors including; -decreased motivation -failure of neuromuscular transmission -accumulation of metabolic end-products -dehydration Cause of fatigue depends on intensity & duration of exercise

18 Fatigue Continuous exercise at moderate speeds results in net accumulation of P i PCr + ADP + H + Cr + ATP ATP + H 2 O ADP + P i + H + + energy Exercise also produces net accumulation of lactic acid Correlation vs. Causation

19 P i accumulation is correlated with development of fatigue, as is lactic acid accumulation (drop in ph) Wilson et al., 1988

20 Muscle Biopsy prepare homogenate & perform enzymatic analysis of homogenate (e.g., creatine phosphate, ATP, P i, lactate, glucose, glycogen) Pros: low cost per assay Cons: many samples required for time course

21 31 P-Magnetic Resonance Spectroscopy Intact muscle (e.g., creatine phosphate, ATP, P i, ph) Pros: multiple time points for each preparation Cons: high cost per preparation ph can be determined from position of P i peak

22 31 P-Magnetic Resonance Spectroscopy Rat muscle P i PCr ATP rest recovery Time Kushmerick & Meyer, 1985

23 Postulated Mechanisms of P i Effect on Force Reduced cross-bridge force development Reduced Ca 2+ release from sarcoplasmic reticulum Reduced Ca 2+ sensitivity of myofilaments Decreased ph (e.g., lactic acid) does not seem to have much effect on contractility - but may cause pain! Cooke & Pate, 1985; Allen & Westerblad, 2001; Westerblad et al. 2002

24 Is steady-state locomotion the only strategy? Ray Harryhausen

25 Intermittent Exercise When a heavy (i.e. supramaximal) workload is divided into short exercise and pause periods, the heavy workload is transformed to a submaximal load on circulation and respiration and (can) be well tolerated. Astrand et al., 1960

26 Foraging animals Cruise desertusa.com Distance Saltatory Justin W. Moore Ambush J.L. Gingerich Time O Brien et al., 1990

27 Benefits of moving intermittently Reduced attack rate by predators predators more likely to attack moving prey Increased detection of prey and/or predators Remove potential conflict between running & breathing Increased endurance (range) Lima & Dill, 1990 O Brien et al., 1990; McAdam & Kramer, 1998 Carrier, 1987 pauses permit net clearance of metabolic end-products Weinstein & Full, 1992

28 Integration of locomotor behavior and muscle stimulation Continuous locomotion one stride Time Intermittent locomotion Exercise Pause Exercise Pause Time

29 Metabolite Changes Correlate with Performance Lactate (µmol g leg -1 ) sec 120 sec * * Arginine Phosphate (µmol g leg -1 ) Rest E P Rest E P * Rest E P Rest E P Weinstein & Full, 2000

30 Cyclic Contractions In cyclic motions muscle contractions are not purely isometric or isotonic. Instead, muscles shorten and lengthen during each cycle. How much work does a muscle do during one cycle?

31 End

Ch 12 can be done in one lecture

Ch 12 can be done in one lecture Ch 12 can be done in one lecture Developed by John Gallagher, MS, DVM Chapter 12: Muscles Review muscle anatomy (esp. microanatomy of skeletal muscle) Terminology: sarcolemma t-tubules sarcoplasmic reticulum

More information

Ch 12: Muscles sarcolemma, t-tubules, sarcoplasmic reticulum, myofibrils, myofilaments, sarcomere...

Ch 12: Muscles sarcolemma, t-tubules, sarcoplasmic reticulum, myofibrils, myofilaments, sarcomere... Ch 12: Muscles Review micro-anatomy of muscle tissue Terminology examples: sarcolemma, t-tubules, sarcoplasmic reticulum, myofibrils, myofilaments, sarcomere... SLOs Differentiate levels of muscle structure:

More information

The organization of skeletal muscles. Excitation contraction coupling. Whole Skeletal Muscles contractions. Muscle Energetics

The organization of skeletal muscles. Excitation contraction coupling. Whole Skeletal Muscles contractions. Muscle Energetics Muscle and Movement The organization of skeletal muscles Excitation contraction coupling Whole Skeletal Muscles contractions Muscle Energetics The molecular bases of movement Muscular cells use molecular

More information

Muscles and Animal Movement

Muscles and Animal Movement Muscles and Animal Movement Evolution of Muscle and Movement Animals are the only multicellular organisms that actively move. Movement is due to muscle cells (motor proteins) Muscle proteins have homologues

More information

Chapter 9 Muscle. Types of muscle Skeletal muscle Cardiac muscle Smooth muscle. Striated muscle

Chapter 9 Muscle. Types of muscle Skeletal muscle Cardiac muscle Smooth muscle. Striated muscle Chapter 9 Muscle Types of muscle Skeletal muscle Cardiac muscle Smooth muscle Striated muscle Chapter 9 Muscle (cont.) The sliding filament mechanism, in which myosin filaments bind to and move actin

More information

Organismic Biology Bio 207. Lecture 6. Muscle and movement; sliding filaments; E-C coupling; length-tension relationships; biomechanics. Prof.

Organismic Biology Bio 207. Lecture 6. Muscle and movement; sliding filaments; E-C coupling; length-tension relationships; biomechanics. Prof. Organismic Biology Bio 207 Lecture 6 Muscle and movement; sliding filaments; E-C coupling; length-tension relationships; biomechanics Prof. Simchon Today s Agenda Skeletal muscle Neuro Muscular Junction

More information

3 muscle function_scr.notebook April 20, 2015

3 muscle function_scr.notebook April 20, 2015 the key to muscle function is an excitable membrane sarcolemma proteins on the sarcolemma allow muscle cells to communicate with other cells and the environment specific to muscle function is communication

More information

Skeletal Muscle Qiang XIA (

Skeletal Muscle Qiang XIA ( Skeletal Muscle Qiang XIA ( 夏强 ), PhD Department of Physiology Rm C518, Block C, Research Building, School of Medicine Tel: 88208252 Email: xiaqiang@zju.edu.cn Course website: http://10.71.121.151/physiology

More information

Skeletal Muscle. Connective tissue: Binding, support and insulation. Blood vessels

Skeletal Muscle. Connective tissue: Binding, support and insulation. Blood vessels Chapter 12 Muscle Physiology Outline o Skeletal Muscle Structure o The mechanism of Force Generation in Muscle o The mechanics of Skeletal Muscle Contraction o Skeletal Muscle Metabolism o Control of Skeletal

More information

Chapter 10! Chapter 10, Part 2 Muscle. Muscle Tissue - Part 2! Pages !

Chapter 10! Chapter 10, Part 2 Muscle. Muscle Tissue - Part 2! Pages ! ! Chapter 10, Part 2 Muscle Chapter 10! Muscle Tissue - Part 2! Pages 308-324! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension! 2! Tension Production - Muscle FIBER! All-or-none

More information

1. Locomotion. 2. Repositioning. 3. Internal movement

1. Locomotion. 2. Repositioning. 3. Internal movement MUSCLE and MOVEMENT Chapters 20, 8, 21 1. Locomotion A. Movement B. 2. Repositioning A. 3. Internal movement A. 1 Muscle Cells 1. Contractile 2. Myocytes 3. Striated A. Skeletal B. Cardiac 4. Smooth 5.

More information

1. Locomotion. 2. Repositioning. 3. Internal movement

1. Locomotion. 2. Repositioning. 3. Internal movement MUSCLE and MOVEMENT Chapters 20, 8, 21 1. Locomotion A. Movement B. 2. Repositioning A. 3. Internal movement A. Muscle Cells 1. Contractile 2. Myocytes 3. Striated A. Skeletal B. Cardiac 4. Smooth 5. Striated

More information

About This Chapter. Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Pearson Education, Inc.

About This Chapter. Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Pearson Education, Inc. About This Chapter Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Skeletal Muscle Usually attached to bones by tendons Origin: closest to the trunk or to more stationary bone Insertion:

More information

Chapter 10 Muscle Tissue Lecture Outline

Chapter 10 Muscle Tissue Lecture Outline Chapter 10 Muscle Tissue Lecture Outline Muscle tissue types 1. Skeletal muscle = voluntary striated 2. Cardiac muscle = involuntary striated 3. Smooth muscle = involuntary nonstriated Characteristics

More information

Muscle Tissue. Muscle Tissue Outline. General Function of Muscle Tissue

Muscle Tissue. Muscle Tissue Outline. General Function of Muscle Tissue Muscle Tissue Muscle Tissue Outline General Functions of Muscle Tissue Characteristics of Muscle Tissue Classification of Muscle Tissue Skeletal Muscle Structure and Function Muscle Energetics Muscle Mechanics

More information

Chapter 10! Muscle Tissue - Part 2! Pages ! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension!

Chapter 10! Muscle Tissue - Part 2! Pages ! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension! ! Chapter 10, Part 2 Muscle Chapter 10! Muscle Tissue - Part 2! Pages 308-324! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension! 2! 1 Tension Production - MUSCLE FIBER! All-or-none

More information

Skeletal Muscle and the Molecular Basis of Contraction. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry

Skeletal Muscle and the Molecular Basis of Contraction. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry Skeletal Muscle and the Molecular Basis of Contraction Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry Like neurons, all muscle cells can be excited chemically, electrically, and

More information

Chapter 9 - Muscle and Muscle Tissue

Chapter 9 - Muscle and Muscle Tissue Chapter 9 - Muscle and Muscle Tissue I. Overview of muscle tissue A. Three muscle types in the body: B. Special characteristics 1. Excitability: able to receive and respond to a stimulus 2. Contractility:

More information

Session 3-Part 2: Skeletal Muscle

Session 3-Part 2: Skeletal Muscle Session 3-Part 2: Skeletal Muscle Course: Introduction to Exercise Science-Level 2 (Exercise Physiology) Presentation Created by Ken Baldwin, M.ED, ACSM-H/FI Copyright EFS Inc. All Rights Reserved. Skeletal

More information

Chapter 13, 21. The Physiology of Training: Physiological Effects of Strength Training pp Training for Anaerobic Power p.

Chapter 13, 21. The Physiology of Training: Physiological Effects of Strength Training pp Training for Anaerobic Power p. Chapter 13, 21 The Physiology of Training: Physiological Effects of Strength Training pp. 267-270 270 Training for Anaerobic Power p. 430-431 431 Types of Contractions Dynamic, Isotonic, or concentric

More information

Chapter 8: Skeletal Muscle: Structure and Function

Chapter 8: Skeletal Muscle: Structure and Function Chapter 8: Skeletal Muscle: Structure and Function Objectives Draw & label the microstructure of skeletal muscle Outline the steps leading to muscle shortening Define the concentric and isometric Discuss:

More information

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Gross Anatomy of Muscle:

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Gross Anatomy of Muscle: 1 Chapter 9: Muscle Tissue Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle Characteristics: Attaches to skeleton Voluntary control Striated / multi-nucleated Characteristics: Composes

More information

EXCITATION- CONTRACTION COUPLING IN SKELETAL MUSCLES 1

EXCITATION- CONTRACTION COUPLING IN SKELETAL MUSCLES 1 EXCITATION- CONTRACTION COUPLING IN SKELETAL MUSCLES 1 Summary: The sequence of events from the movement of an AP moving down a neuron to the completion of a contraction is examined. These events are referred

More information

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Characteristics of Muscle:

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Characteristics of Muscle: 1 Chapter 9: Muscle Tissue Muscle little mouse Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle Characteristics: Attaches to skeleton Voluntary control Striated / multi-nucleated Characteristics:

More information

Nerve Cell (aka neuron)

Nerve Cell (aka neuron) Nerve Cell (aka neuron) Neuromuscular Junction Nerve cell Muscle fiber (cell) The Nerve Stimulus and Action Potential The Nerve Stimulus and Action Potential Skeletal muscles must be stimulated by a motor

More information

Muscular System Module 3: Contraction and Relaxation *

Muscular System Module 3: Contraction and Relaxation * OpenStax-CNX module: m48498 1 Muscular System Module 3: Contraction and Relaxation * Donna Browne Based on Muscle Fiber Contraction and Relaxation by OpenStax This work is produced by OpenStax-CNX and

More information

Table of Contents # Date Title Page # /27/14 Ch 7: Skeletal System 01/29/14 Ch 8: Muscular System

Table of Contents # Date Title Page # /27/14 Ch 7: Skeletal System 01/29/14 Ch 8: Muscular System Table of Contents # Date Title Page # 1. 1 2. 3. 4. 5. 01/27/14 Ch 7: Skeletal System 01/29/14 Ch 8: Muscular System 12 i 1 01/30/14 Ch 8: Muscular System 12 Objective: Students will be able to describe

More information

Anatomy and Physiology 1 Chapter 10 self quiz Pro, Dima Darwish,MD.

Anatomy and Physiology 1 Chapter 10 self quiz Pro, Dima Darwish,MD. Anatomy and Physiology 1 Chapter 10 self quiz Pro, Dima Darwish,MD. 1) Which of the following is a recognized function of skeletal muscle? A) produce movement B) maintain posture C) maintain body temperature

More information

MUSCLE TISSUE (MUSCLE PHYSIOLOGY) PART I: MUSCLE STRUCTURE

MUSCLE TISSUE (MUSCLE PHYSIOLOGY) PART I: MUSCLE STRUCTURE PART I: MUSCLE STRUCTURE Muscle Tissue A primary tissue type, divided into: skeletal muscle cardiac muscle smooth muscle Functions of Skeletal Muscles Produce skeletal movement Maintain body position Support

More information

GENERAL MUSCLE CHARASTARISTIC AND FIBER TYPES

GENERAL MUSCLE CHARASTARISTIC AND FIBER TYPES GENERAL MUSCLE CHARASTARISTIC AND FIBER TYPES UNITARY CONTRACTION OF SMOOTH MUSCLE Smooth muscles are present in hollow/visceral organs, like the Gastrointestinal tract (GIT), Urinary Bladder, and Blood

More information

MUSCLE METABOLISM. Honors Anatomy & Physiology

MUSCLE METABOLISM. Honors Anatomy & Physiology MUSCLE METABOLISM Honors Anatomy & Physiology ROLE OF ATP ATP binds to myosin heads and upon hydrolysis into ADP and Pi, transfers its energy to the cross bridge, energizing it. ATP is responsible for

More information

Muscles and Muscle Tissue

Muscles and Muscle Tissue 1 Muscles and Muscle Tissue Chapter 9 2 Overview of Muscle Tissues Compare and Contrast the three basic types of muscle tissue List four important functions of muscle tissue 3 Muscle Terminology Muscle

More information

Chapter 10 -Muscle Tissue

Chapter 10 -Muscle Tissue Chapter 10 -Muscle Tissue Muscles: 1. Overview of Muscle Tissue A. Review 5 functions of muscle tissue. B. Review the 5 properties of muscle tissue. WHICH do they share with nervous tissue? (2, plus the

More information

(c) sarcolemma with acethylcholine (protein) receptors

(c) sarcolemma with acethylcholine (protein) receptors (slide 1) Lecture Notes: Muscular System I. (slide 2) Introduction to Muscular System A) Tissues of the Muscular System: 1) Connective Tissues (a) dense fibrous (tendons and ligaments) 2) Nervous Tissue

More information

Skeletal Muscle Tissue

Skeletal Muscle Tissue Functions of Skeletal Muscle Skeletal Muscle Tissue Keri Muma Bio 6 Movement muscles attach directly or indirectly to bone, pull on bone or tissue when they contract Maintain posture / body position muscles

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 10 Muscular Tissue Introduction The purpose of the chapter is to: 1. Learn about the structure and function of the 3 types of muscular tissue

More information

Anatomy & Physiology Muscular System Worksheet

Anatomy & Physiology Muscular System Worksheet Anatomy & Physiology Muscular System Worksheet 1. What are the three categories of muscle tissue? a) b) c) 2. The smallest functional unit of a muscle fiber is called a. 3. What are the four characteristics

More information

1. Differences in function of the 3 muscle types: a) Skeletal Muscle b) Cardiac Muscle c) Smooth Muscle

1. Differences in function of the 3 muscle types: a) Skeletal Muscle b) Cardiac Muscle c) Smooth Muscle Ch 9: Muscle Physiology Objectives: 1. Review 3 muscle types and how they are regulated. 2. Review muscle anatomy. 3. Sliding filament theory of how muscles contract and relax. 4. Energetics of muscle

More information

MUSCULAR TISSUE. Dr. Gary Mumaugh

MUSCULAR TISSUE. Dr. Gary Mumaugh MUSCULAR TISSUE Dr. Gary Mumaugh MUSCLE OVERVIEW The three types of muscle tissue are skeletal, cardiac, and smooth These types differ in structure, location, function, and means of activation FUNCTIONAL

More information

2/19/2018. Learn and Understand:

2/19/2018. Learn and Understand: Muscular System with Special Emphasis on Skeletal Muscle Anatomy and Physiology Learn and Understand: The definition of cell changes again The contractile unit of muscle is the sarcomere. ATP and Ca 2+

More information

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system BIOH111 o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system Endeavour College of Natural Health endeavour.edu.au 1 Textbook and required/recommended

More information

Smooth Cardiac Skeletal Location Around tubes Heart tissue attached to skeleton Moves stuff thru Heart beat pumps Moves body parts

Smooth Cardiac Skeletal Location Around tubes Heart tissue attached to skeleton Moves stuff thru Heart beat pumps Moves body parts Biology 067 - Muscular system A. Type of muscles: Smooth Cardiac Skeletal Location Around tubes Heart tissue attached to skeleton Function Moves stuff thru Heart beat pumps Moves body parts tubes blood

More information

Muscle Tissue- 3 Types

Muscle Tissue- 3 Types AN INTRODUCTION TO MUSCLE TISSUE Muscle Tissue- 3 Types Skeletal muscle (focus on these) Cardiac muscle Smooth muscle FUNCTIONS OF SKELETAL MUSCLES Produce movement of the skeleton Maintain posture and

More information

Muscle and Muscle Tissue

Muscle and Muscle Tissue Muscle and Muscle Tissue Make up about half of total body mass Exerts force by converting chemical energy, ATP, to mechanical energy Muscle tissue is classified based on Shape Number and position of nuclei

More information

EQA DISCUSSION QUESTIONS: INFLUENCE OF MUSCLE FIBER TYPE ON MUSCLE CONTRACTION. Influence of Muscle Fiber Type on Muscle Contraction

EQA DISCUSSION QUESTIONS: INFLUENCE OF MUSCLE FIBER TYPE ON MUSCLE CONTRACTION. Influence of Muscle Fiber Type on Muscle Contraction 0907T_c13_205-218.qxd 1/25/05 11:05 Page 209 EXERCISE 13 CONTRACTION OF SKELETAL MUSCLE 209 Aerobic cellular respiration produces ATP slowly, but can produce large amounts of ATP over time if there is

More information

Notebook Anatomy and Physiology CH 8 Muscle Structure.notebook January 08, 2015

Notebook Anatomy and Physiology CH 8 Muscle Structure.notebook January 08, 2015 Table of Contents # Date Title Page # 1. 08/27/14 Ch 1: Intro to Human A & P 1 2. 09/05/14 Ch 4: Cellular Metabolism 6 3. 09/09/14 Ch 5: Tissues 8 4. 09/29/14 Ch 12: Blood 25 5. 10/06/14 Ch 13: Cardiovascular

More information

AP Biology

AP Biology Chapter 49. Animal Locomotion What are the advantages of locomotion? sessile motile Muscles & Motor Locomotion Muscle voluntary, striated involuntary, striated auto-rhythmic involuntary, non-striated 1

More information

Chapter 49. Muscles & Motor Locomotion. AP Biology

Chapter 49. Muscles & Motor Locomotion. AP Biology Chapter 49. Muscles & Motor Locomotion Animal Locomotion What are the advantages of locomotion? sessile motile Muscle voluntary, striated involuntary, striated auto-rhythmic involuntary, non-striated

More information

10 - Muscular Contraction. Taft College Human Physiology

10 - Muscular Contraction. Taft College Human Physiology 10 - Muscular Contraction Taft College Human Physiology Muscular Contraction Sliding filament theory (Hanson and Huxley, 1954) These 2 investigators proposed that skeletal muscle shortens during contraction

More information

Skeletal Muscle Contraction and ATP Demand

Skeletal Muscle Contraction and ATP Demand Skeletal Muscle Contraction and ATP Demand Anatomy & Structure Contraction Cycling Calcium Regulation Types of Contractions Force, Power, and Contraction Velocity Epimysium - separates fascia and muscle

More information

BIOLOGY - CLUTCH CH.49 - MUSCLE SYSTEMS.

BIOLOGY - CLUTCH CH.49 - MUSCLE SYSTEMS. !! www.clutchprep.com BIOLOGY - CLUTCH Muscle system organ system that includes skeletal, cardiac, and smooth muscle Muscle tissue capable of contracting through the interaction of actin and myosin proteins

More information

INTEGRATED SKELETAL MUSCLE FUNCTION 1

INTEGRATED SKELETAL MUSCLE FUNCTION 1 INTEGRATED SKELETAL MUSCLE FUNCTION 1 Summary: The events of isometric and isotonic twitches and tetany in skeletal muscles are discussed with special attention on the role of the series elastic elements.

More information

Nerve regeneration. Somatic nervous system

Nerve regeneration. Somatic nervous system Somatic nervous system Signals from CNS are sent to skeletal muscles. Final result is a muscle contraction. Motor neuron starts in CNS and its axon ends at a muscle cell. Alpha motor neuron Alpha motor

More information

Nerve meets muscle. Nerve regeneration. Somatic nervous system

Nerve meets muscle. Nerve regeneration. Somatic nervous system Somatic nervous system Signals from CNS are sent to skeletal muscles. Final result is a muscle contraction. Alpha motor neurons branch into several terminals (can be over 1000), each contacting a separate

More information

Outline. Bio 105: Muscular System. Muscular System. Types of Muscles. Smooth Muscle. Cardiac Muscle 4/6/2016

Outline. Bio 105: Muscular System. Muscular System. Types of Muscles. Smooth Muscle. Cardiac Muscle 4/6/2016 Outline Bio 105: Muscular System Lecture 11 Chapter 6 Characteristics of muscles 3 types of muscles Functions of muscles Structure of skeletal muscles Mechanics of muscle contraction Energy sources for

More information

Muscular System - Part III. Tension, Contractions, & Metabolism

Muscular System - Part III. Tension, Contractions, & Metabolism Do Now: What is the neurotransmitter that is released from the neuron at the NMJ? When it binds to sarcolemma receptors, what occurs? To what does calcium bind? What occurs when this bond forms? Muscular

More information

Muscles & Motor Locomotion Why Do We Need All That ATP?

Muscles & Motor Locomotion Why Do We Need All That ATP? Muscles & Motor Locomotion Why Do We Need All That ATP? 2006-2007 Animal Locomotion What are the advantages of locomotion? sessile motile Lots of ways to get around Lots of ways to get around mollusk mammal

More information

Ch. 6: Contraction of Skeletal Muscle Physiological Anatomy of Skeletal Muscle

Ch. 6: Contraction of Skeletal Muscle Physiological Anatomy of Skeletal Muscle Ch. 6: Contraction of Skeletal Muscle 40% skeletal muscle + 10% smooth and cardiac muscle Ch. 7: Excitation of Skeletal Muscle Ch. 9: Contraction and Excitation of Smooth Muscle Physiological Anatomy of

More information

Neuromuscular Junction (NMJ) Skeletal Muscle Structure. Motor Unit. Motor Units. Chapter 12 Outline

Neuromuscular Junction (NMJ) Skeletal Muscle Structure. Motor Unit. Motor Units. Chapter 12 Outline Chapter 12 Outline Skeletal Muscles Mechanisms of Contraction Contractions of Skeletal Muscle Energy Requirements of Skeletal Muscle Neural Control of Skeletal Muscles Cardiac and Smooth Muscle Muscle

More information

Chapter 10: Muscle Tissue

Chapter 10: Muscle Tissue Chapter 10: Muscle Tissue Muscle is one of the 4 primary types of tissue. It is subdivided into skeletal, cardiac and smooth muscle. I. Skeletal Muscle Tissue and the Muscular System, p. 284 Objective

More information

Muscle Contraction and Relaxation *

Muscle Contraction and Relaxation * OpenStax-CNX module: m60011 1 Muscle Contraction and Relaxation * Steven Telleen Based on Muscle Fiber Contraction and Relaxation by OpenStax This work is produced by OpenStax-CNX and licensed under the

More information

1/4/2017. Introduction. Connective Tissue Coverings. 9.1: Structure of a Skeletal Muscle. Skeletal Muscle Fibers. Connective Tissue Coverings

1/4/2017. Introduction. Connective Tissue Coverings. 9.1: Structure of a Skeletal Muscle. Skeletal Muscle Fibers. Connective Tissue Coverings Introduction Chapter 09 Lecture Outline See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright McGraw-Hill Education. Permission required for reproduction

More information

Concept 50.5: The physical interaction of protein filaments is required for muscle function

Concept 50.5: The physical interaction of protein filaments is required for muscle function Concept 50.5: The physical interaction of protein filaments is required for muscle function Muscle activity is a response to input from the nervous system The action of a muscle is always to contract Vertebrate

More information

PSK4U THE NEUROMUSCULAR SYSTEM

PSK4U THE NEUROMUSCULAR SYSTEM PSK4U THE NEUROMUSCULAR SYSTEM REVIEW Review of muscle so we can see how the neuromuscular system works This is not on today's note Skeletal Muscle Cell: Cellular System A) Excitation System Electrical

More information

Hole s Human Anatomy and Physiology Eleventh Edition. Mrs. Hummer. Chapter 9 Muscular System

Hole s Human Anatomy and Physiology Eleventh Edition. Mrs. Hummer. Chapter 9 Muscular System Hole s Human Anatomy and Physiology Eleventh Edition Mrs. Hummer Chapter 9 Muscular System 1 Chapter 9 Muscular System Skeletal Muscle usually attached to bones under conscious control striated Three Types

More information

Muscle Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc.

Muscle Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc. 10 Muscle Tissue PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris An Introduction to Muscle Tissue Muscle Tissue A primary tissue type, divided into: Skeletal muscle

More information

The Musculoskeletal System. Chapter 46

The Musculoskeletal System. Chapter 46 The Musculoskeletal System Chapter 46 Types of Skeletal Systems Changes in movement occur because muscles pull against a support structure Zoologists recognize three types: 1. Hydrostatic skeletons a fluid

More information

Skeletal Muscle. Skeletal Muscle

Skeletal Muscle. Skeletal Muscle Skeletal Muscle Skeletal Muscle Types of muscle Skeletal muscle-moves the skeleton by pulling on the tendons that are connected to the bones Cardiac muscle-pumps blood through the heart and blood vessels

More information

ANSC (FSTC) 607 Physiology and Biochemistry of Muscle as a Food MUSCLE CONTRACTION

ANSC (FSTC) 607 Physiology and Biochemistry of Muscle as a Food MUSCLE CONTRACTION I. Basic model of muscle contraction A. Overall ANSC (FSTC) 607 Physiology and Biochemistry of Muscle as a Food MUSCLE CONTRACTION 1. Calcium is released from sarcoplasmic reticulum. 2. Myosin globular

More information

Muscles 3: Contractions, Adaptations & Energy Use

Muscles 3: Contractions, Adaptations & Energy Use Muscles 3: Contractions, Adaptations & Energy Use Contractions Isotonic: Muscle changes length in response to resistance Concentric: muscle tension exceeds resistance & muscle shortens Eccentric: Resistance

More information

Chapter 13. Development of Muscular, Strength, Endurance, and Flexibility

Chapter 13. Development of Muscular, Strength, Endurance, and Flexibility Chapter 13 Development of Muscular, Strength, Endurance, and Flexibility Types of Contractions Dynamic, Isotonic, or concentric Muscle shortens with varying tension while lifting constant load Isometric,

More information

Muscle Physiology. Dr. Ebneshahidi Ebneshahidi

Muscle Physiology. Dr. Ebneshahidi Ebneshahidi Muscle Physiology Dr. Ebneshahidi Skeletal Muscle Figure 9.2 (a) Functions of the muscular system 1. Locomotion body movements are due to skeletal muscle contraction. 2. Vasoconstriction and vasodilatation

More information

Muscles 3: Contractions, Adaptations & Energy Use

Muscles 3: Contractions, Adaptations & Energy Use Muscles 3: Contractions, Adaptations & Energy Use Contractions Isotonic: Muscle changes length in response to resistance Concentric: muscle tension exceeds resistance & muscle shortens Eccentric: Resistance

More information

Fig Copyright McGraw-Hill Education. Permission required for reproduction or display. Nucleus. Muscle fiber. Endomysium. Striations.

Fig Copyright McGraw-Hill Education. Permission required for reproduction or display. Nucleus. Muscle fiber. Endomysium. Striations. Fig. 11.1 Nucleus Muscle fiber Endomysium Striations Ed Reschke 1 Fig. 11.2 Muscle fiber Nucleus I band A band Z disc Mitochondria Openings into transverse tubules Sarcoplasmic reticulum Triad: Terminal

More information

Muscles & Physiology

Muscles & Physiology Collin County Community College BIOL 2401 Muscles & Physiology 1 Tension Development The force exerted by a contracting muscle cell or muscle group on an object is called muscle tension, and the opposing

More information

Chapter 10 Muscle Tissue and Physiology Chapter Outline

Chapter 10 Muscle Tissue and Physiology Chapter Outline Chapter 10 Muscle Tissue and Physiology Chapter Outline Module 10.1 Overview of muscle tissue (Figures 10.1 10.2) A. Types of Muscle Tissue (Figure 10.1) 1. The three types of cells in muscle tissue are,,

More information

Nerve Muscle Relationship and Neural Muscular Junction Quiz. Remember, you need to know the structure and the function!

Nerve Muscle Relationship and Neural Muscular Junction Quiz. Remember, you need to know the structure and the function! Nerve Muscle Relationship and Neural Muscular Junction Quiz Remember, you need to know the structure and the function! What is this called? What is this? Schwann cell What is this called? Basal lamina

More information

Muscle Dr. Ted Milner (KIN 416)

Muscle Dr. Ted Milner (KIN 416) Muscle Dr. Ted Milner (KIN 416) Muscles are biological motors which actively generate force and produce movement through the process of contraction. The molecular mechanism responsible for muscle contraction

More information

III. The Mechanism of Muscle Contraction (Pages 2-13) A. Excitation and Contraction - Crossbridge Cycling (Pages 2-8)

III. The Mechanism of Muscle Contraction (Pages 2-13) A. Excitation and Contraction - Crossbridge Cycling (Pages 2-8) Content Display Unit 3 - Skeletal Muscle : Lesson 2 KINE xxxx Exercise Physiology 4 Unit 3 - Skeletal Muscle 3 Lesson 2 1 U3L2P1 - Introduction to Unit 3 - Lesson 2 Lesson 2 addresses the basic mechanism

More information

Muscle Tissue. C h a p t e r. PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris

Muscle Tissue. C h a p t e r. PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris C h a p t e r 10 Muscle Tissue PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris Copyright 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings An Introduction

More information

Muscle Tissue. Alternating contraction and relaxation of cells Chemical energy changed into mechanical energy 10:32

Muscle Tissue. Alternating contraction and relaxation of cells Chemical energy changed into mechanical energy 10:32 Muscle Tissue Alternating contraction and relaxation of cells Chemical energy changed into mechanical energy 1 Properties of Muscle Tissue Excitability responds to chemical messengers (neurotransmitters)

More information

Muscle Cell Anatomy & Function (mainly striated muscle tissue)

Muscle Cell Anatomy & Function (mainly striated muscle tissue) Muscle Cell Anatomy & Function (mainly striated muscle tissue) General Structure of Muscle Cells (skeletal) several nuclei (skeletal muscle) skeletal muscles are formed when embryonic cells fuse together

More information

CHAPTER 6 2/9/2016. Learning Objectives List the four traits that all muscle types have in common.

CHAPTER 6 2/9/2016. Learning Objectives List the four traits that all muscle types have in common. Learning Objectives List the four traits that all muscle types have in common. CHAPTER 6 The Muscular System Demonstrate and explain the use of antagonistic muscle pairs. Describe the attachment of muscle

More information

Muscles & Muscle Tissue

Muscles & Muscle Tissue Muscles & Muscle Tissue Chapter 6 I. Overview of Muscle 1 A. MUSCLE TYPES SKELETAL: striated, voluntary CARDIAC: only in heart involuntary striated SMOOTH: walls of organs involuntary nonstriated All Muscle

More information

1-Recognize the meaning of summation of contraction and its types. 2-detrmine the effect of changing length on skeletal muscle tension.

1-Recognize the meaning of summation of contraction and its types. 2-detrmine the effect of changing length on skeletal muscle tension. Lec7 Physiology Dr.HananLuay Objectives 1-Recognize the meaning of summation of contraction and its types. 2-detrmine the effect of changing length on skeletal muscle tension. 3-Differntiate between the

More information

Musculoskeletal Systems. Anatomy: Arrangement of Cells Physiology: Contractions

Musculoskeletal Systems. Anatomy: Arrangement of Cells Physiology: Contractions Musculoskeletal Systems Anatomy: Arrangement of Cells Physiology: Contractions Characteristics of all muscle Contractile: it shortens Excitable: receives & responds to electrical signals Extensible: stretches

More information

Chapter 50. You re on your own for: Sensory Reception Mechanoreceptors Gravity, Hearing and Equilibrium. Chemoreception taste and smell

Chapter 50. You re on your own for: Sensory Reception Mechanoreceptors Gravity, Hearing and Equilibrium. Chemoreception taste and smell 1 Sensory and Motor Mechanisms 2 Chapter 50 You re on your own for: Sensory Reception Mechanoreceptors Gravity, Hearing and Equilibrium Chemoreception taste and smell Photoreceptors vision It s interesting.

More information

Muscular System. Honors Anatomy & Physiology. Susan Chabot Lemon Bay High School

Muscular System. Honors Anatomy & Physiology. Susan Chabot Lemon Bay High School Muscular System Honors Anatomy & Physiology Susan Chabot Lemon Bay High School Skeletal, Smooth, or Cardiac SKELETAL Striated Voluntary Multinucleated Bound to bones Moves skeleton SMOOTH Not striated

More information

Essentials of Human Anatomy & Physiology. The Muscular System

Essentials of Human Anatomy & Physiology. The Muscular System Essentials of Human Anatomy & Physiology The Muscular System The Muscular System Muscles are responsible for all types of body movement they contract or shorten and are the machine of the body Three basic

More information

sliding filament mechanism cross-bridges myosin actin tropomyosin troponin transverse tubules (T tubules) motor unit

sliding filament mechanism cross-bridges myosin actin tropomyosin troponin transverse tubules (T tubules) motor unit CHAPTER 47: THE MUSCULOSKELETAL SYSTEM THE ESSENTIALS THEME ALERT ATP-induced phosphorylation and conformational change in proteins were principles learned earlier in the course the mechanism of muscle

More information

Biomechanics of Skeletal Muscle

Biomechanics of Skeletal Muscle Biomechanics of Skeletal Muscle Contents I. Composition & structure of skeletal muscle II. Mechanics of Muscle Contraction III. Force production in muscle IV. Muscle remodeling V. Summary 2 Muscle types:

More information

Collin County Community College BIOL Muscle Physiology. Muscle Length-Tension Relationship

Collin County Community College BIOL Muscle Physiology. Muscle Length-Tension Relationship Collin County Community College BIOL 2401 Muscle Physiology 1 Muscle Length-Tension Relationship The Length-Tension Relationship Another way that muscle cells can alter their force capability, is determined

More information

I. Overview of Muscle Tissues

I. Overview of Muscle Tissues I. Overview of Muscle Tissues A. Types of Muscle Tissue 1. Terminology 1. Muscle fibers = muscle cells are greatly elongated therefore known as fibers; true for skeletal and smooth muscles only 2. Myo

More information

Structure of the striated muscle general properties

Structure of the striated muscle general properties Structure of the striated muscle general properties Structure of the striated muscle membrane systems 1. Myofibrillum (contractile proteins) 2. Sarcoplasmic reticulum (SR) longitudinal tubule 3. SR terminal

More information

1. Differences in function of the 3 muscle types: a) Skeletal Muscle b) Cardiac Muscle c) Smooth Muscle

1. Differences in function of the 3 muscle types: a) Skeletal Muscle b) Cardiac Muscle c) Smooth Muscle Ch 9: Muscle Physiology Objectives: 1. Review 3 muscle types and how they are regulated. 2. Review muscle anatomy. 3. Sliding filament theory of how muscles contract and relax. 4. Energetics of muscle

More information

BIOMECHANICS OF SKELETAL MUSCLES

BIOMECHANICS OF SKELETAL MUSCLES 1 BIOMECHANICS OF SKELETAL MUSCLES DR.AYESHA MUSTAFA(DPT) SARGODHA MEDICAL COLLEGE mustafaqamar.com Muscles cardiac muscle: composes the heart Smooth muscle: lines hollow internal organs skeletal (striated

More information

1. Differences in function of the 3 muscle types: a) Skeletal Muscle b) Cardiac Muscle c) Smooth Muscle

1. Differences in function of the 3 muscle types: a) Skeletal Muscle b) Cardiac Muscle c) Smooth Muscle Ch 9: Muscle Physiology Objectives: 1. Review 3 muscle types and how they are regulated. 2. Review muscle anatomy. 3. Sliding filament theory of how muscles contract and relax. 4. What influences muscle

More information

The All-or-None Principle Motor units also comply to a rule known as the all-ornone principle (or law).

The All-or-None Principle Motor units also comply to a rule known as the all-ornone principle (or law). The All-or-None Principle Motor units also comply to a rule known as the all-ornone principle (or law). This principle stipulates that, when a motor unit is stimulated to contract, it will do so to its

More information

The Biomechanics of Human Skeletal Muscle

The Biomechanics of Human Skeletal Muscle AML2506 Biomechanics and Flow Simulation Day 03B The Biomechanics of Human Skeletal Muscle Session Speaker Dr. M. D. Deshpande 1 Session Objectives At the end of this session the delegate would have understood

More information

Muscle Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc.

Muscle Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc. 10 Muscle Tissue PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris 10-1 An Introduction to Muscle Tissue Learning Outcomes 10-1 Specify the functions of skeletal

More information