2/19/2018. Learn and Understand:

Size: px
Start display at page:

Download "2/19/2018. Learn and Understand:"

Transcription

1 Muscular System with Special Emphasis on Skeletal Muscle Anatomy and Physiology Learn and Understand: The definition of cell changes again The contractile unit of muscle is the sarcomere. ATP and Ca 2+ must be available for muscle to contract and relax. Skeletal muscle is stimulated to contract by neurons of the CNS. Nervous system controls force applied. Ion movement and changes in electrical potential across the sarcolemma is the ultimate signal for contraction. Muscle cells vary in their ability to use sources of energy and their speed of contraction. Muscle Functions Four important functions Movement of bones or fluids (e.g., blood) Maintaining posture and body position Stabilizing joints Heat generation (especially skeletal muscle) Additional functions Protects organs, forms valves, controls pupil size, causes "goosebumps" Special Characteristics of Muscle Tissue Excitability (responsiveness): ability to receive and respond to stimuli Contractility: ability to shorten forcibly when stimulated Elasticity: ability to stretch beyond resting length and recoil Muscle Tissue Nearly half of body's mass Female skeletal muscle makes up 36% of body mass Male skeletal muscle makes up 42% of body mass, primarily due to testosterone Transforms chemical energy (ATP) to directed mechanical energy exerts force Three types Skeletal Cardiac Smooth Myo, mys, and sarco - prefixes for muscle 1

2 Figure 9.1 Connective tissue sheaths of skeletal muscle: epimysium, perimysium, and endomysium. Bone Tendon Epimysium Epimysium Perimysium Endomysium Muscle fiber in middle of a fascicle Blood vessel Perimysium wrapping a fascicle Endomysium (between individual muscle fibers) Muscle fiber Fascicle Perimysium Skeletal Muscles Each muscle served by one artery, one nerve, and one or more veins Connective tissue sheaths of skeletal muscle External to internal Epimysium: dense irregular connective tissue Perimysium: fibrous connective tissue surrounding fascicles Endomysium: fine areolar connective tissue Skeletal Muscle Fibers: Anatomy Long, cylindrical cell up to 30 cm long Multiple nuclei Sarcolemma Sarcoplasm Glycosomes for glycogen storage, myoglobin for O 2 storage amount of each dependent on muscle type Modified structures: myofibrils, sarcoplasmic reticulum, and T tubules 2

3 Figure 9.2b Microscopic anatomy of a skeletal muscle fiber. Sarcolemma Mitochondrion Dark A band Light I band Nucleus Myofibril Thin (actin) filament Z disc H zone Z disc Thick (myosin) filament I band A band I band M line Sarcomere Figure 9.2d Microscopic anatomy of the sarcomere Z disc Sarcomere M line Z disc Thin (actin) filament Elastic (titin) filaments Thick (myosin) filament Longitudinal section of filaments within one sarcomere of a myofibril Thick filament Thin filament In the center of the sarcomere, the thick filaments lack myosin heads. Myosin heads are present only in areas of myosin-actin overlap. Thick filament. Thin filament Each thick filament consists of many myosin A thin filament consists of two strands of actin molecules whose heads protrude at oppositeends subunits twisted into a helix plus two types of of the filament. regulatory proteins (troponin and tropomyosin). Portion of a thick filament Portion of a thin filament Myosin head Tropomyosin Troponin Actin Actin-binding sites Heads ATPbinding site Flexible hinge region Tail Actin subunits Active sites for myosin attachment Myosin molecule Actin subunits 3

4 Figure 9.5 Relationship of the sarcoplasmic reticulum and T tubules to myofibrils and sarcomeres of skeletal muscle. Part of a skeletal muscle fiber (cell) I band A band I band Z disc H zone Z disc M line Myofibril Sarcolemma Sarcolemma Triad: T tubule Terminal cisterns of the SR (2) Tubules of the SR Myofibrils Mitochondria Triad Relationships T tubules conduct impulses deep into muscle fiber; every sarcomere Integral proteins protrude into intermembrane space from T tubule and SR cistern membranes and connect with each other T tubule integral proteins act as voltage sensors and change shape in response to voltage changes SR integral proteins are channels that release Ca 2+ from SR cisterns when voltage sensors change shape Sliding Filament Model of Muscle Contraction In relaxed state, thin and thick filaments overlap only at ends of A band Actin myofilaments are pulled (slide) over myosin to shorten sarcomeres Actin and myosin do not change length Occurs when myosin heads bind to actin Shortening occurs when tension generated by cross bridges on thin filaments exceeds forces opposing shortening 4

5 Tension (percent of maximum) 2/19/2018 Figure 9.6 Sliding filament model of contraction. Slide 2 1 Fully relaxed sarcomere of a muscle fiber Z H Z I A I Figure 9.6 Sliding filament model of contraction. Slide 3 2 Fully contracted sarcomere of a muscle fiber Z I A Z I Figure 9.22 Length-tension relationships of sarcomeres in skeletal muscles. Sarcomeres greatly shortened Sarcomeres at resting length Sarcomeres excessively stretched 75% 100% 170% Optimal sarcomere operating length (80% 120% of resting length) Percent of resting sarcomere length 5

6 Stimulus for Contraction: Upsetting Ion Concentrations at the Sarcolemma Resting membrane potential (RMP) maintained by active transport Just outside the sarcolemma: high Na + concentration, some Cl -, some K + Just inside the sarcolemma: high K + and negativelycharged proteins Action potential (AP) stimulates contraction changes to membrane permeability resulting in ion movement Voltage change is the stimulus Resting potential re-established almost immediately Polarized Membrane: Resting Membrane Potential -90 mv potential across membrane Explanation of Resting Membrane Potential at Sarcolemma Unequally-distributed ions Plasma membrane Membrane is POLARIZED 6

7 Ion Channel Role in Maintaining/Upsetting Potential Types Ligand-gated. Ligands are molecules that bind to receptors. Receptor: protein or glycoprotein with a receptor site Example ligand: neurotransmitters Voltage-gated Open and close in response to small voltage changes across plasma membrane Each is specific for one ion Resting Potential Activation Gate What s missing: Open K + channels Na + /K + pump Inactivation gate Action Potentials -50 to -55 mv RMP Phases Graded (end plate) potential at NMJ Threshold Depolarization Repolarization All-or-none principle Propagation 7

8 Membrane potential (mv) 2/19/2018 Action Potential Resting Depolarization Repolarization Figure 9.10 Action potential tracing indicates changes in Na + and K + ion channels Depolarization due to Na + entry Na + channels open Na + channels close, K + channels open Repolarization due to K + exit K + channels closed Time (ms) The Nerve Stimulus and Events at the Neuromuscular Junction Skeletal muscles stimulated by somatic motor neurons Axons of motor neurons travel from central nervous system via nerves to skeletal muscle Each axon forms several branches as it enters muscle Each axon ending forms neuromuscular junction with single muscle fiber Usually only one per muscle fiber Situated midway along length of muscle fiber 8

9 Figure 9.8 When a nerve impulse reaches a neuromuscular junction, acetylcholine (ACh) is released. Action potential (AP) Myelinated axon of motor neuron Axon terminal of neuromuscular junction Sarcolemma of the muscle fiber Axon terminal of motor neuron Synaptic vesicle containing ACh Synaptic cleft Fusing synaptic vesicles ACh Junctional folds of sarcolemma Sarcoplasm of muscle fiber Postsynaptic membrane ion channel opens; ions pass. ACh Degraded ACh Ion channel closes; ions cannot pass. Acetylcholinesterase Figure 9.9 Summary of events in the generation and propagation of an action potential in a skeletal muscle fiber. + Closed K + Open Na channel channel Na ACh-containing synaptic vesicle Ca 2+ Ca 2+ Axon terminal of neuromuscular junction K + Action potential Synaptic cleft Wave of depolarization 1. Nerve impulse arrives at axon terminal acetylcholine released by synaptic terminal into synaptic cleft 2. ACh diffuses across cleft and binds with nicotinic (excitatory) receptors on sarcolemma opening sodium ion gates 3. Sodium influx depolarizes sarcolemma to threshold 4. Propagation of AP away from NMJ along fiber sarcolemma Closed Na + channel Na + K + Open K + channel Action Potential Propagation Propagation in one direction only due to refractory period 9

10 Excitation-Contraction (E-C) Coupling Steps in E-C Coupling: Sarcolemma Voltage-sensitive T tubule tubule protein 1 Ca 2+ release channel 2 Synaptic cleft Axon terminal of motor neuron at NMJ Terminal cistern of SR Muscle fiber Action potential is generated ACh T tubule Terminal cistern of SR Triad Sarcolemma Actin Troponin Tropomyosin blocking active sites Myosin 3 Active sites exposed and ready for myosin binding One sarcomere 4 One myofibril Myosin cross bridge Events that transmit AP along sarcolemma lead to sliding of myofilaments AP brief; ends before contraction Causes rise in intracellular Ca 2+ which initiates contraction Role of Calcium (Ca 2+ ) in Contraction At low intracellular Ca 2+ concentration Tropomyosin blocks active sites Myosin heads cannot attach to actin Muscle fiber relaxed At higher intracellular Ca 2+ concentrations Ca 2+ binds to troponin Troponin changes shape and moves tropomyosin away from myosin-binding sites Myosin heads bind to actin When nervous stimulation ceases, Ca 2+ pumped back into SR and contraction ends Figure 9.12 The cross bridge cycle is the series of events during which myosin heads pull thin filaments toward the center of the sarcomere. Actin Ca 2+ Thin filament PLAY A&P Flix : The Cross Bridge Cycle Myosin cross bridge Myosin 1 Thick filament ATP hydrolysis 4 2 In the absence of ATP, myosin heads will not detach, causing RIGOR MORTIS. *This cycle will continue as long as ATP is available and Ca 2+ is bound to troponin. 3 10

11 Relaxation Ca 2+ moves away from troponin-tropomyosin complex causing relaxation Ca 2+ diffuses out of the myofibril Transported back into sarcoplasmic reticulum by active transport. Troponin-tropomyosin complex re-establishes its position and blocks binding sites. Myosin cannot form cross bridges, filaments cannot slide Muscle recoil Sarcomere elements, connective tissue, antagonistic muscle action and opposing forces, gravity Figure 9.7 The phases leading to muscle fiber contraction. Action potential (AP) arrives at axon terminal at neuromuscular junction ACh released; binds to receptors on sarcolemma Phase 1 Motor neuron stimulates muscle fiber (see Figure 9.8). Ion permeability of sarcolemma changes Local change in membrane voltage (depolarization) occurs Local depolarization (end plate potential) ignites AP in sarcolemma AP travels across the entire sarcolemma AP travels along T tubules Phase 2: Excitation-contraction coupling occurs (see Figures 9.9 and 9.11). SR releases Ca 2+ ; Ca 2+ binds to troponin; myosin-binding sites (active sites) on actin exposed Myosin heads bind to actin; contraction begins Principles of Muscle Mechanics Same principles apply to contraction of single fiber and whole muscle Contraction produces muscle tension, force exerted on load or object to be moved 11

12 Percentage of maximum tension 2/19/2018 Latent Period of period contraction Figure 9.14a The muscle fiber twitch. Period of relaxation Latent period Time when E-C coupling events occur Time between AP initiation and beginning of contraction Time (ms) Single stimulus Myogram showing the three phases of an isometric twitch Motor Unit: The Nerve-Muscle Functional Unit Each muscle served by at least one motor nerve Motor nerve contains axons of up to hundreds of motor neurons Axons branch into terminals, each of which NMJ with single muscle fiber Motor unit = motor neuron and all (four to several hundred) muscle fibers it supplies Smaller number = fine control Figure 9.13 A motor unit consists of one motor neuron and all the muscle fibers it innervates. Spinal cord Motor Motor unit 1 unit 2 Axon terminals at Branching axon neuromuscular junctions to motor unit Nerve Motor neuron cell body Motor neuron axon Muscle Muscle fibers Axons of motor neurons extend from the spinal cord to the muscle. There each axon divides into a number of axon terminals that form neuromuscular junctions with muscle fibers scattered throughout the muscle. Branching axon terminals form neuromuscular junctions, one per muscle fiber (photomicrograph 330x). 12

13 Tension 2/19/2018 Motor Unit Muscle fibers from motor unit spread throughout muscle so single motor unit causes weak contraction of entire muscle Motor units in muscle usually contract asynchronously; helps prevent fatigue Graded Muscle Responses Graded muscle responses Varying strength of contraction for different demands Required for proper control of skeletal movement Responses graded by 1. Changing frequency of stimulation 2. Changing strength of stimulation Figure 9.15a A muscle's response to changes in stimulation frequency. Single stimulus single twitch Contraction Maximal tension of a single twitch Relaxation 0 Stimulus 100 Time (ms)

14 Tension Tension 2/19/2018 Figure 9.15b A muscle's response to changes in stimulation frequency. Low stimulation frequency unfused (incomplete) tetanus Partial relaxation 0 Stimuli 100 Time (ms) If another stimulus is applied before the muscle relaxes completely, then more tension results. This is wave (or temporal) summation and results in unfused (or incomplete) tetanus Figure 9.15c A muscle's response to changes in stimulation frequency. High stimulation frequency fused (complete) tetanus 0 Stimuli 100 Time (ms) At higher stimulus frequencies, there is no relaxation at all between stimuli. This is fused (complete) tetanus. Response to Change in Stimulus Strength Recruitment (multiple motor unit summation) controls force of contraction Subthreshold stimuli no observable contractions Threshold stimulus: stimulus strength causing first observable muscle contraction Maximal stimulus strongest stimulus that increases contractile force 14

15 Tension Stimulus voltage 2/19/2018 Figure 9.16 Relationship between stimulus intensity (graph at top) and muscle tension (tracing below). Stimulus strength Maximal stimulus Threshold stimulus Stimuli to nerve Proportion of motor units excited Strength of muscle contraction Maximal contraction Time (ms) Frog Gastrocnemius Muscle Tone Constant, slightly contracted state of all muscles Due to spinal reflexes Groups of motor units alternately activated in response to input from stretch receptors in muscles Keeps muscles firm, healthy, and ready to respond Less active when lying down or asleep 15

16 Muscle Metabolism: Energy for Contraction ATP only source used directly to move and detach cross bridges, calcium pumps in SR, return of Na + & K + after excitation-contraction coupling Available stores of ATP depleted in 4 6 seconds ATP regenerated by: Direct phosphorylation of ADP by creatine phosphate (CP) Anaerobic pathway (glycolysis lactic acid) Aerobic respiration Direct phosphorylation Coupled reaction of creatine Phosphate (CP) and ADP Energy source: CP Anaerobic pathway Glycolysis and lactic acid formation Energy source: glucose Creatine Creatine kinase Glucose (from glycogen breakdown or delivered from blood) Glycolysis in cytosol 2 net gain Released to blood Pyruvic acid Lactic acid Oxygen use: None Products: 1 ATP per CP, creatine Duration of energy provided: 15 seconds Oxygen use: None Products: 2 ATP per glucose, lactic acid Duration of energy provided: seconds, or slightly more Anaerobic Pathway Glycolysis does not require oxygen At 70% of maximum contractile activity Bulging muscles compress blood vessels; oxygen delivery impaired Anaerobic respiration yields only 5% as much ATP as aerobic respiration, but produces ATP 2½ times faster Anaerobic threshold Point at which muscle metabolism converts to anaerobic 16

17 Aerobic pathway Aerobic cellular respiration Energy source: glucose; pyruvic acid; free fatty acids from adipose tissue; amino acids from protein catabolism Glucose (from glycogen breakdown or delivered from blood) Pyruvic acid Fatty acids Amino Aerobic respiration acids in mitochondria 32 net gain per glucose Oxygen use: Required Products: 32 ATP per glucose, CO 2, H 2O Duration of energy provided: Hours Produces 95% of ATP during rest and light to moderate exercise; slow Series of chemical reactions that require oxygen Fuels: 1. stored glycogen 2. then bloodborne glucose 3. pyruvic acid from glycolysis 4. and free fatty acids Aerobic endurance Length of time muscle contracts using aerobic pathways Figure 9.20 Comparison of energy sources used during short-duration exercise and prolonged-duration exercise. Short-duration exercise Prolonged-duration exercise 6 seconds 10 seconds seconds End of exercise Hours ATP stored in muscles is used first. ATP is formed from Glycogen stored in muscles is broken down to glucose, creatine phosphate which is oxidized to generate ATP (anaerobic pathway). and ADP (direct phosphorylation). ATP is generated by breakdown of several nutrient energy fuels by aerobic pathway. Muscle Fatigue Physiological inability to contract despite continued stimulation Occurs when Ionic imbalances (K +, Ca 2+, P i ) interfere with E-C coupling Prolonged exercise may damage SR and interferes with Ca 2+ regulation and release Total lack of ATP occurs rarely, during states of continuous contraction, and causes contractures (continuous contractions) Includes rigor mortis 17

18 Excess Postexercise Oxygen Consumption To return muscle to resting state Oxygen reserves replenished Lactic acid converted to pyruvic acid Glycogen stores replaced ATP and creatine phosphate reserves replenished All require extra oxygen; occurs post exercise Muscle Fiber Type Most muscles contain mixture of fiber types Classified according to two characteristics Speed of contraction: slow or fast fibers according to Speed at which myosin ATPases split ATP Pattern of electrical activity of motor neurons Metabolic pathways for ATP synthesis Oxidative fibers use aerobic pathways Slow oxidative fibers; Fast oxidative fibers; Glycolytic fibers use anaerobic glycolysis Fast glycolytic fibers All fibers in one motor unit same type Genetics dictate individual's percentage of each Training can aid in development of what you currently have 18

Muscles and Muscle Tissue

Muscles and Muscle Tissue 1 Muscles and Muscle Tissue Chapter 9 2 Overview of Muscle Tissues Compare and Contrast the three basic types of muscle tissue List four important functions of muscle tissue 3 Muscle Terminology Muscle

More information

Muscle and Muscle Tissue

Muscle and Muscle Tissue Muscle and Muscle Tissue Make up about half of total body mass Exerts force by converting chemical energy, ATP, to mechanical energy Muscle tissue is classified based on Shape Number and position of nuclei

More information

Chapter 10 Muscle Tissue Lecture Outline

Chapter 10 Muscle Tissue Lecture Outline Chapter 10 Muscle Tissue Lecture Outline Muscle tissue types 1. Skeletal muscle = voluntary striated 2. Cardiac muscle = involuntary striated 3. Smooth muscle = involuntary nonstriated Characteristics

More information

Skeletal Muscle. Connective tissue: Binding, support and insulation. Blood vessels

Skeletal Muscle. Connective tissue: Binding, support and insulation. Blood vessels Chapter 12 Muscle Physiology Outline o Skeletal Muscle Structure o The mechanism of Force Generation in Muscle o The mechanics of Skeletal Muscle Contraction o Skeletal Muscle Metabolism o Control of Skeletal

More information

MUSCLE TISSUE (MUSCLE PHYSIOLOGY) PART I: MUSCLE STRUCTURE

MUSCLE TISSUE (MUSCLE PHYSIOLOGY) PART I: MUSCLE STRUCTURE PART I: MUSCLE STRUCTURE Muscle Tissue A primary tissue type, divided into: skeletal muscle cardiac muscle smooth muscle Functions of Skeletal Muscles Produce skeletal movement Maintain body position Support

More information

Muscle Tissue. Muscle Tissue Outline. General Function of Muscle Tissue

Muscle Tissue. Muscle Tissue Outline. General Function of Muscle Tissue Muscle Tissue Muscle Tissue Outline General Functions of Muscle Tissue Characteristics of Muscle Tissue Classification of Muscle Tissue Skeletal Muscle Structure and Function Muscle Energetics Muscle Mechanics

More information

About This Chapter. Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Pearson Education, Inc.

About This Chapter. Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Pearson Education, Inc. About This Chapter Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Skeletal Muscle Usually attached to bones by tendons Origin: closest to the trunk or to more stationary bone Insertion:

More information

Muscle Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc.

Muscle Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc. 10 Muscle Tissue PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris An Introduction to Muscle Tissue Muscle Tissue A primary tissue type, divided into: Skeletal muscle

More information

Chapter 10 Muscle Tissue and Physiology Chapter Outline

Chapter 10 Muscle Tissue and Physiology Chapter Outline Chapter 10 Muscle Tissue and Physiology Chapter Outline Module 10.1 Overview of muscle tissue (Figures 10.1 10.2) A. Types of Muscle Tissue (Figure 10.1) 1. The three types of cells in muscle tissue are,,

More information

Muscle Tissue- 3 Types

Muscle Tissue- 3 Types AN INTRODUCTION TO MUSCLE TISSUE Muscle Tissue- 3 Types Skeletal muscle (focus on these) Cardiac muscle Smooth muscle FUNCTIONS OF SKELETAL MUSCLES Produce movement of the skeleton Maintain posture and

More information

Muscles and Muscle Tissue

Muscles and Muscle Tissue Chapter 9 Part A Muscles and Muscle Tissue Annie Leibovitz/Contact Press Images PowerPoint Lecture Slides prepared by Karen Dunbar Kareiva Ivy Tech Community College Why This Matters Understanding skeletal

More information

MODULE 6 MUSCLE PHYSIOLOGY

MODULE 6 MUSCLE PHYSIOLOGY MODULE 6 MUSCLE PHYSIOLOGY III SEMESTER BOTANY Syllabi: Striated, Non striated and Cardiac muscle, Ultra structure of striated muscle fibre, Mechanism of muscle contraction, Threshold and spike potential,

More information

Skeletal Muscle Tissue

Skeletal Muscle Tissue Functions of Skeletal Muscle Skeletal Muscle Tissue Keri Muma Bio 6 Movement muscles attach directly or indirectly to bone, pull on bone or tissue when they contract Maintain posture / body position muscles

More information

Chapter 9 - Muscle and Muscle Tissue

Chapter 9 - Muscle and Muscle Tissue Chapter 9 - Muscle and Muscle Tissue I. Overview of muscle tissue A. Three muscle types in the body: B. Special characteristics 1. Excitability: able to receive and respond to a stimulus 2. Contractility:

More information

Anatomy and Physiology 1 Chapter 10 self quiz Pro, Dima Darwish,MD.

Anatomy and Physiology 1 Chapter 10 self quiz Pro, Dima Darwish,MD. Anatomy and Physiology 1 Chapter 10 self quiz Pro, Dima Darwish,MD. 1) Which of the following is a recognized function of skeletal muscle? A) produce movement B) maintain posture C) maintain body temperature

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 10 Muscular Tissue Introduction The purpose of the chapter is to: 1. Learn about the structure and function of the 3 types of muscular tissue

More information

Ch 12: Muscles sarcolemma, t-tubules, sarcoplasmic reticulum, myofibrils, myofilaments, sarcomere...

Ch 12: Muscles sarcolemma, t-tubules, sarcoplasmic reticulum, myofibrils, myofilaments, sarcomere... Ch 12: Muscles Review micro-anatomy of muscle tissue Terminology examples: sarcolemma, t-tubules, sarcoplasmic reticulum, myofibrils, myofilaments, sarcomere... SLOs Differentiate levels of muscle structure:

More information

MUSCULAR TISSUE. Dr. Gary Mumaugh

MUSCULAR TISSUE. Dr. Gary Mumaugh MUSCULAR TISSUE Dr. Gary Mumaugh MUSCLE OVERVIEW The three types of muscle tissue are skeletal, cardiac, and smooth These types differ in structure, location, function, and means of activation FUNCTIONAL

More information

Nerve Cell (aka neuron)

Nerve Cell (aka neuron) Nerve Cell (aka neuron) Neuromuscular Junction Nerve cell Muscle fiber (cell) The Nerve Stimulus and Action Potential The Nerve Stimulus and Action Potential Skeletal muscles must be stimulated by a motor

More information

Skeletal Muscle and the Molecular Basis of Contraction. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry

Skeletal Muscle and the Molecular Basis of Contraction. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry Skeletal Muscle and the Molecular Basis of Contraction Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry Like neurons, all muscle cells can be excited chemically, electrically, and

More information

Chapter 8 Notes. Muscles

Chapter 8 Notes. Muscles Chapter 8 Notes Muscles 8.1 Intro Three muscle types Skeletal Smooth cardiac 8.2 Structure of Skeletal Muscle Composition Skeletal muscle tissue Nervous tissue Blood Connective tissue Connective tissue

More information

Warm Up! Test review (already! ;))

Warm Up! Test review (already! ;)) Warm Up! Test review (already! ;)) Write a question you might find on the Unit 5 test next week! (Multiple choice, matching, fill in, or short answer!) - challenge yourself and be ready to share!!! PowerPoint

More information

10 - Muscular Contraction. Taft College Human Physiology

10 - Muscular Contraction. Taft College Human Physiology 10 - Muscular Contraction Taft College Human Physiology Muscular Contraction Sliding filament theory (Hanson and Huxley, 1954) These 2 investigators proposed that skeletal muscle shortens during contraction

More information

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system BIOH111 o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system Endeavour College of Natural Health endeavour.edu.au 1 Textbook and required/recommended

More information

Fig Copyright McGraw-Hill Education. Permission required for reproduction or display. Nucleus. Muscle fiber. Endomysium. Striations.

Fig Copyright McGraw-Hill Education. Permission required for reproduction or display. Nucleus. Muscle fiber. Endomysium. Striations. Fig. 11.1 Nucleus Muscle fiber Endomysium Striations Ed Reschke 1 Fig. 11.2 Muscle fiber Nucleus I band A band Z disc Mitochondria Openings into transverse tubules Sarcoplasmic reticulum Triad: Terminal

More information

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Gross Anatomy of Muscle:

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Gross Anatomy of Muscle: 1 Chapter 9: Muscle Tissue Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle Characteristics: Attaches to skeleton Voluntary control Striated / multi-nucleated Characteristics: Composes

More information

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Characteristics of Muscle:

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Characteristics of Muscle: 1 Chapter 9: Muscle Tissue Muscle little mouse Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle Characteristics: Attaches to skeleton Voluntary control Striated / multi-nucleated Characteristics:

More information

PSK4U THE NEUROMUSCULAR SYSTEM

PSK4U THE NEUROMUSCULAR SYSTEM PSK4U THE NEUROMUSCULAR SYSTEM REVIEW Review of muscle so we can see how the neuromuscular system works This is not on today's note Skeletal Muscle Cell: Cellular System A) Excitation System Electrical

More information

Chapter 9 Muscle. Types of muscle Skeletal muscle Cardiac muscle Smooth muscle. Striated muscle

Chapter 9 Muscle. Types of muscle Skeletal muscle Cardiac muscle Smooth muscle. Striated muscle Chapter 9 Muscle Types of muscle Skeletal muscle Cardiac muscle Smooth muscle Striated muscle Chapter 9 Muscle (cont.) The sliding filament mechanism, in which myosin filaments bind to and move actin

More information

Smooth Cardiac Skeletal Location Around tubes Heart tissue attached to skeleton Moves stuff thru Heart beat pumps Moves body parts

Smooth Cardiac Skeletal Location Around tubes Heart tissue attached to skeleton Moves stuff thru Heart beat pumps Moves body parts Biology 067 - Muscular system A. Type of muscles: Smooth Cardiac Skeletal Location Around tubes Heart tissue attached to skeleton Function Moves stuff thru Heart beat pumps Moves body parts tubes blood

More information

1/4/2017. Introduction. Connective Tissue Coverings. 9.1: Structure of a Skeletal Muscle. Skeletal Muscle Fibers. Connective Tissue Coverings

1/4/2017. Introduction. Connective Tissue Coverings. 9.1: Structure of a Skeletal Muscle. Skeletal Muscle Fibers. Connective Tissue Coverings Introduction Chapter 09 Lecture Outline See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright McGraw-Hill Education. Permission required for reproduction

More information

I. Overview of Muscle Tissues

I. Overview of Muscle Tissues I. Overview of Muscle Tissues A. Types of Muscle Tissue 1. Terminology 1. Muscle fibers = muscle cells are greatly elongated therefore known as fibers; true for skeletal and smooth muscles only 2. Myo

More information

Muscular Tissue. Functions of Muscular Tissue. Types of Muscular Tissue. Skeletal Muscular Tissue. Properties of Muscular Tissue

Muscular Tissue. Functions of Muscular Tissue. Types of Muscular Tissue. Skeletal Muscular Tissue. Properties of Muscular Tissue Muscular Tissue Functions of Muscular Tissue Muscle makes up a large percentage of the body s weight (40-50%) Their main functions are to: Create motion muscles work with nerves, bones, and joints to produce

More information

Lecture Overview. Muscular System. Marieb s Human Anatomy and Physiology. Chapter 9 Muscles and Muscle Tissue Lecture 16

Lecture Overview. Muscular System. Marieb s Human Anatomy and Physiology. Chapter 9 Muscles and Muscle Tissue Lecture 16 Marieb s Human Anatomy and Physiology Marieb Hoehn Chapter 9 Muscles and Muscle Tissue Lecture 16 1 Lecture Overview Types, characteristics, functions of muscle Structure of skeletal muscle Mechanism of

More information

Nerve Muscle Relationship and Neural Muscular Junction Quiz. Remember, you need to know the structure and the function!

Nerve Muscle Relationship and Neural Muscular Junction Quiz. Remember, you need to know the structure and the function! Nerve Muscle Relationship and Neural Muscular Junction Quiz Remember, you need to know the structure and the function! What is this called? What is this? Schwann cell What is this called? Basal lamina

More information

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system BIOH111 o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system Endeavour College of Natural Health endeavour.edu.au 1 TEXTBOOK AND REQUIRED/RECOMMENDED

More information

Session 3-Part 2: Skeletal Muscle

Session 3-Part 2: Skeletal Muscle Session 3-Part 2: Skeletal Muscle Course: Introduction to Exercise Science-Level 2 (Exercise Physiology) Presentation Created by Ken Baldwin, M.ED, ACSM-H/FI Copyright EFS Inc. All Rights Reserved. Skeletal

More information

Skeletal Muscle Qiang XIA (

Skeletal Muscle Qiang XIA ( Skeletal Muscle Qiang XIA ( 夏强 ), PhD Department of Physiology Rm C518, Block C, Research Building, School of Medicine Tel: 88208252 Email: xiaqiang@zju.edu.cn Course website: http://10.71.121.151/physiology

More information

Chapter 8: Skeletal Muscle: Structure and Function

Chapter 8: Skeletal Muscle: Structure and Function Chapter 8: Skeletal Muscle: Structure and Function Objectives Draw & label the microstructure of skeletal muscle Outline the steps leading to muscle shortening Define the concentric and isometric Discuss:

More information

Chapter 10: Muscle Tissue

Chapter 10: Muscle Tissue Chapter 10: Muscle Tissue Muscle is one of the 4 primary types of tissue. It is subdivided into skeletal, cardiac and smooth muscle. I. Skeletal Muscle Tissue and the Muscular System, p. 284 Objective

More information

Concept 50.5: The physical interaction of protein filaments is required for muscle function

Concept 50.5: The physical interaction of protein filaments is required for muscle function Concept 50.5: The physical interaction of protein filaments is required for muscle function Muscle activity is a response to input from the nervous system The action of a muscle is always to contract Vertebrate

More information

Skeletal Muscle. Skeletal Muscle

Skeletal Muscle. Skeletal Muscle Skeletal Muscle Skeletal Muscle Types of muscle Skeletal muscle-moves the skeleton by pulling on the tendons that are connected to the bones Cardiac muscle-pumps blood through the heart and blood vessels

More information

Microanatomy of Muscles. Anatomy & Physiology Class

Microanatomy of Muscles. Anatomy & Physiology Class Microanatomy of Muscles Anatomy & Physiology Class Three Main Muscle Types Objectives: By the end of this presentation you will have the information to: 1. 2. 3. 4. 5. 6. Describe the 3 main types of muscles.

More information

CHAPTER 6 2/9/2016. Learning Objectives List the four traits that all muscle types have in common.

CHAPTER 6 2/9/2016. Learning Objectives List the four traits that all muscle types have in common. Learning Objectives List the four traits that all muscle types have in common. CHAPTER 6 The Muscular System Demonstrate and explain the use of antagonistic muscle pairs. Describe the attachment of muscle

More information

Muscle Tissue. C h a p t e r. PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris

Muscle Tissue. C h a p t e r. PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris C h a p t e r 10 Muscle Tissue PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris Copyright 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings An Introduction

More information

The All-or-None Principle Motor units also comply to a rule known as the all-ornone principle (or law).

The All-or-None Principle Motor units also comply to a rule known as the all-ornone principle (or law). The All-or-None Principle Motor units also comply to a rule known as the all-ornone principle (or law). This principle stipulates that, when a motor unit is stimulated to contract, it will do so to its

More information

Musculoskeletal Systems. Anatomy: Arrangement of Cells Physiology: Contractions

Musculoskeletal Systems. Anatomy: Arrangement of Cells Physiology: Contractions Musculoskeletal Systems Anatomy: Arrangement of Cells Physiology: Contractions Characteristics of all muscle Contractile: it shortens Excitable: receives & responds to electrical signals Extensible: stretches

More information

Muscle Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc.

Muscle Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc. 10 Muscle Tissue PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris 10-1 An Introduction to Muscle Tissue Learning Outcomes 10-1 Specify the functions of skeletal

More information

Nerve regeneration. Somatic nervous system

Nerve regeneration. Somatic nervous system Somatic nervous system Signals from CNS are sent to skeletal muscles. Final result is a muscle contraction. Motor neuron starts in CNS and its axon ends at a muscle cell. Alpha motor neuron Alpha motor

More information

Nerve meets muscle. Nerve regeneration. Somatic nervous system

Nerve meets muscle. Nerve regeneration. Somatic nervous system Somatic nervous system Signals from CNS are sent to skeletal muscles. Final result is a muscle contraction. Alpha motor neurons branch into several terminals (can be over 1000), each contacting a separate

More information

Muscular System - Part III. Tension, Contractions, & Metabolism

Muscular System - Part III. Tension, Contractions, & Metabolism Do Now: What is the neurotransmitter that is released from the neuron at the NMJ? When it binds to sarcolemma receptors, what occurs? To what does calcium bind? What occurs when this bond forms? Muscular

More information

1. Locomotion. 2. Repositioning. 3. Internal movement

1. Locomotion. 2. Repositioning. 3. Internal movement MUSCLE and MOVEMENT Chapters 20, 8, 21 1. Locomotion A. Movement B. 2. Repositioning A. 3. Internal movement A. 1 Muscle Cells 1. Contractile 2. Myocytes 3. Striated A. Skeletal B. Cardiac 4. Smooth 5.

More information

1. Locomotion. 2. Repositioning. 3. Internal movement

1. Locomotion. 2. Repositioning. 3. Internal movement MUSCLE and MOVEMENT Chapters 20, 8, 21 1. Locomotion A. Movement B. 2. Repositioning A. 3. Internal movement A. Muscle Cells 1. Contractile 2. Myocytes 3. Striated A. Skeletal B. Cardiac 4. Smooth 5. Striated

More information

Muscular System. This chapter will focus on muscle cells and tissues. Muscle tissue has several functions:

Muscular System. This chapter will focus on muscle cells and tissues. Muscle tissue has several functions: Muscular System Slide 2 This chapter will focus on muscle cells and tissues. Muscle tissue has several functions: Movement: Muscles work as pulleys on bones to help create changes in body position. Muscles

More information

Ch.10 Muscle Tissue. Copyright 2009, John Wiley & Sons, Inc.

Ch.10 Muscle Tissue. Copyright 2009, John Wiley & Sons, Inc. Ch.10 Muscle Tissue Preview Chapter 10 In groups we will define the following terms 1. Skeletal muscle 2. Smooth muscle 3. Cardiac muscle 4. Sarcomere 5. Myofibril 6. Myofilament 7. Sarcoplasmic reticulum

More information

Chapter 10! Chapter 10, Part 2 Muscle. Muscle Tissue - Part 2! Pages !

Chapter 10! Chapter 10, Part 2 Muscle. Muscle Tissue - Part 2! Pages ! ! Chapter 10, Part 2 Muscle Chapter 10! Muscle Tissue - Part 2! Pages 308-324! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension! 2! Tension Production - Muscle FIBER! All-or-none

More information

Chapter 10 -Muscle Tissue

Chapter 10 -Muscle Tissue Chapter 10 -Muscle Tissue Muscles: 1. Overview of Muscle Tissue A. Review 5 functions of muscle tissue. B. Review the 5 properties of muscle tissue. WHICH do they share with nervous tissue? (2, plus the

More information

Chapter 10: Muscles. Vocabulary: aponeurosis, fatigue

Chapter 10: Muscles. Vocabulary: aponeurosis, fatigue Chapter 10: Muscles 37. Describe the structural components of skeletal muscle tissue from the molecular to the organ level. 38. Describe the structure, function, and importance of sarcomeres. 39. Identify

More information

Bio 103 Muscular System 61

Bio 103 Muscular System 61 61 Lecture Outline: MUSCULAR SYSTEM [Chapter 9] A. Functions of Skeletal Muscle 1. Movement 2. Maintain posture 3. Support 4. Guard openings 5. Maintain body temperature (thermogenesis) B. Muscle Tissue

More information

Anatomy & Physiology Muscular System Worksheet

Anatomy & Physiology Muscular System Worksheet Anatomy & Physiology Muscular System Worksheet 1. What are the three categories of muscle tissue? a) b) c) 2. The smallest functional unit of a muscle fiber is called a. 3. What are the four characteristics

More information

Essentials of Human Anatomy & Physiology. The Muscular System

Essentials of Human Anatomy & Physiology. The Muscular System Essentials of Human Anatomy & Physiology The Muscular System The Muscular System Muscles are responsible for all types of body movement they contract or shorten and are the machine of the body Three basic

More information

CLASS SET Unit 4: The Muscular System STUDY GUIDE

CLASS SET Unit 4: The Muscular System STUDY GUIDE NPHS Anatomy & Physiology Questions to answer: 1) List three functions of the muscular system. 1) movement 2) thermogenesis (generates heat) 3) posture & body/joint support CLASS SET Unit 4: The Muscular

More information

Human Anatomy. Muscle Tissue and Organization. DR.SADIQ ALI (K.E Medalist) 10-1

Human Anatomy. Muscle Tissue and Organization. DR.SADIQ ALI (K.E Medalist) 10-1 Human Anatomy Muscle Tissue and Organization DR.SADIQ ALI (K.E Medalist) 10-1 Tissue and Organization Over 700 skeletal muscles have been named. Form the muscular system. Muscle tissue is distributed almost

More information

Ch 12 can be done in one lecture

Ch 12 can be done in one lecture Ch 12 can be done in one lecture Developed by John Gallagher, MS, DVM Chapter 12: Muscles Review muscle anatomy (esp. microanatomy of skeletal muscle) Terminology: sarcolemma t-tubules sarcoplasmic reticulum

More information

Muscle Tissue. Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology

Muscle Tissue. Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology Muscle Tissue Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology Functions of muscle tissue Movement Maintenance of posture Joint stabilization Heat generation Tendon Belly Tendon Types of

More information

Muscle Tissue. Alternating contraction and relaxation of cells Chemical energy changed into mechanical energy 10:32

Muscle Tissue. Alternating contraction and relaxation of cells Chemical energy changed into mechanical energy 10:32 Muscle Tissue Alternating contraction and relaxation of cells Chemical energy changed into mechanical energy 1 Properties of Muscle Tissue Excitability responds to chemical messengers (neurotransmitters)

More information

Muscle Cells & Muscle Fiber Contractions. Packet #8

Muscle Cells & Muscle Fiber Contractions. Packet #8 Muscle Cells & Muscle Fiber Contractions Packet #8 Skeletal muscle is attached to bones and is responsible for movement. Introduction Introduction II Skeletal muscle is composed of bundles of muscle fibers

More information

Muscles & Muscle Tissue

Muscles & Muscle Tissue Muscles & Muscle Tissue Chapter 6 I. Overview of Muscle 1 A. MUSCLE TYPES SKELETAL: striated, voluntary CARDIAC: only in heart involuntary striated SMOOTH: walls of organs involuntary nonstriated All Muscle

More information

The Muscular System PART A

The Muscular System PART A 6 The Muscular System PART A PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB The Muscular System

More information

Muscle Tissue. Alternating contraction and relaxation of cells. Chemical energy changed into mechanical energy

Muscle Tissue. Alternating contraction and relaxation of cells. Chemical energy changed into mechanical energy Know these muscles Muscle Tissue Alternating contraction and relaxation of cells Chemical energy changed into mechanical energy 3 Types of Muscle Tissue Skeletal muscle attaches to bone, skin or fascia

More information

LECTURE NOTES BY: PROFESSOR RODRIGUEZ

LECTURE NOTES BY: PROFESSOR RODRIGUEZ LECTURE NOTES BY: PROFESSOR RODRIGUEZ Muscle Overview The three types of muscle tissue: 1. 2. 3. These types differ in structure, location,, and means of activation Muscle Similarities Skeletal and smooth

More information

Skeletal Muscle. Bởi: OpenStaxCollege

Skeletal Muscle. Bởi: OpenStaxCollege Bởi: OpenStaxCollege The best-known feature of skeletal muscle is its ability to contract and cause movement. Skeletal muscles act not only to produce movement but also to stop movement, such as resisting

More information

Chapter 10 Muscle Tissue

Chapter 10 Muscle Tissue Chapter 10 Muscle Tissue Skeletal muscle, cardiac muscle and smooth muscle. Differ in their microscopic anatomy, location and how they are controlled by the endocrine and nervous system. 3 Types of Muscle

More information

Hole s Human Anatomy and Physiology Eleventh Edition. Mrs. Hummer. Chapter 9 Muscular System

Hole s Human Anatomy and Physiology Eleventh Edition. Mrs. Hummer. Chapter 9 Muscular System Hole s Human Anatomy and Physiology Eleventh Edition Mrs. Hummer Chapter 9 Muscular System 1 Chapter 9 Muscular System Skeletal Muscle usually attached to bones under conscious control striated Three Types

More information

Chapter 10! Muscle Tissue - Part 2! Pages ! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension!

Chapter 10! Muscle Tissue - Part 2! Pages ! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension! ! Chapter 10, Part 2 Muscle Chapter 10! Muscle Tissue - Part 2! Pages 308-324! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension! 2! 1 Tension Production - MUSCLE FIBER! All-or-none

More information

Muscle Cell Anatomy & Function (mainly striated muscle tissue)

Muscle Cell Anatomy & Function (mainly striated muscle tissue) Muscle Cell Anatomy & Function (mainly striated muscle tissue) General Structure of Muscle Cells (skeletal) several nuclei (skeletal muscle) skeletal muscles are formed when embryonic cells fuse together

More information

Outline. Bio 105: Muscular System. Muscular System. Types of Muscles. Smooth Muscle. Cardiac Muscle 4/6/2016

Outline. Bio 105: Muscular System. Muscular System. Types of Muscles. Smooth Muscle. Cardiac Muscle 4/6/2016 Outline Bio 105: Muscular System Lecture 11 Chapter 6 Characteristics of muscles 3 types of muscles Functions of muscles Structure of skeletal muscles Mechanics of muscle contraction Energy sources for

More information

Anatomy & Physiology. Unit Two. Muscular System URLs Frog Dissection

Anatomy & Physiology. Unit Two. Muscular System URLs Frog Dissection Anatomy & Physiology 9 Muscular System URLs Frog Dissection http://curry.edschool.virginia.edu/go/frog/home.html Cat Dissection http://www.mhhe.com/biosci/ap/cat_dissect/index.htm List of Muscles http://www.meddean.luc.edu/lumen/meded/

More information

Skeletal Muscle Contraction 4/11/2018 Dr. Hiwa Shafiq

Skeletal Muscle Contraction 4/11/2018 Dr. Hiwa Shafiq Skeletal Muscle Contraction 4/11/2018 Dr. Hiwa Shafiq Skeletal Muscle Fiber About 40 per cent of the body is skeletal muscle, and 10 per cent is smooth and cardiac muscle. Skeletal muscles are composed

More information

MUSCULAR SYSTEM CHAPTER 09 BIO 211: ANATOMY & PHYSIOLOGY I

MUSCULAR SYSTEM CHAPTER 09 BIO 211: ANATOMY & PHYSIOLOGY I 1 BIO 211: ANATOMY & PHYSIOLOGY I 1 CHAPTER 09 MUSCULAR SYSTEM Part 2 of 2 Dr. Dr. Lawrence G. G. Altman www.lawrencegaltman.com Some illustrations are courtesy of McGraw-Hill. Some illustrations are courtesy

More information

Muscle Physiology. Dr. Ebneshahidi Ebneshahidi

Muscle Physiology. Dr. Ebneshahidi Ebneshahidi Muscle Physiology Dr. Ebneshahidi Skeletal Muscle Figure 9.2 (a) Functions of the muscular system 1. Locomotion body movements are due to skeletal muscle contraction. 2. Vasoconstriction and vasodilatation

More information

Contrac7on. Ch. 9 A- 2 Notes 11/30/14. Sliding Filament Model of Contrac7on. Requirements for Skeletal Muscle Contrac7on

Contrac7on. Ch. 9 A- 2 Notes 11/30/14. Sliding Filament Model of Contrac7on. Requirements for Skeletal Muscle Contrac7on Contrac7on Ch. 9 A- 2 Notes The genera7on of Does not necessarily cause shortening of the fiber Shortening occurs when tension generated by cross bridges on the thin filaments forces opposing shortening

More information

Organismic Biology Bio 207. Lecture 6. Muscle and movement; sliding filaments; E-C coupling; length-tension relationships; biomechanics. Prof.

Organismic Biology Bio 207. Lecture 6. Muscle and movement; sliding filaments; E-C coupling; length-tension relationships; biomechanics. Prof. Organismic Biology Bio 207 Lecture 6 Muscle and movement; sliding filaments; E-C coupling; length-tension relationships; biomechanics Prof. Simchon Today s Agenda Skeletal muscle Neuro Muscular Junction

More information

Chapter 09. APR Enhanced Lecture Slides

Chapter 09. APR Enhanced Lecture Slides Chapter 09 APR Enhanced Lecture Slides See separate PowerPoint slides for all figures and tables pre-inserted into PowerPoint without notes and animations. Copyright The McGraw-Hill Companies, Inc. Permission

More information

Functions of Muscle Tissue

Functions of Muscle Tissue The Muscular System Functions of Muscle Tissue Movement Facilitation Thermogenesis Postural Support Regulation of Organ Volume Protects Internal Organs Pumps Blood (HEART) Characteristics of Muscle Tissue

More information

Types of Muscle. Skeletal striated & voluntary Smooth involuntary Cardiac - heart

Types of Muscle. Skeletal striated & voluntary Smooth involuntary Cardiac - heart Muscular System Types of Muscle Skeletal striated & voluntary Smooth involuntary Cardiac - heart The word striated means striped. Skeletal muscle appears striped under a microscope. Muscles and Muscle

More information

The Musculoskeletal System. Chapter 46

The Musculoskeletal System. Chapter 46 The Musculoskeletal System Chapter 46 Types of Skeletal Systems Changes in movement occur because muscles pull against a support structure Zoologists recognize three types: 1. Hydrostatic skeletons a fluid

More information

Skeletal Muscle Contraction 5/11/2017 Dr. Hiwa Shafiq

Skeletal Muscle Contraction 5/11/2017 Dr. Hiwa Shafiq Skeletal Muscle Contraction 5/11/2017 Dr. Hiwa Shafiq Skeletal Muscle Fiber About 40 per cent of the body is skeletal muscle, and 10 per cent is smooth and cardiac muscle. Skeletal muscles are composed

More information

(c) sarcolemma with acethylcholine (protein) receptors

(c) sarcolemma with acethylcholine (protein) receptors (slide 1) Lecture Notes: Muscular System I. (slide 2) Introduction to Muscular System A) Tissues of the Muscular System: 1) Connective Tissues (a) dense fibrous (tendons and ligaments) 2) Nervous Tissue

More information

Warm-Up. 2. What structure connects muscle to bone?

Warm-Up. 2. What structure connects muscle to bone? Warm-Up 1. Based on what you know about Latin root words, what do you think these terms refer to? Sarcomere Sarcoplasm Myofibril Epimysium Perimysium Endomysium 2. What structure connects muscle to bone?

More information

The Muscular System. Objective: The student will become familiar with the structure and function of the muscular system

The Muscular System. Objective: The student will become familiar with the structure and function of the muscular system The Muscular System Objective: The student will become familiar with the structure and function of the muscular system 1 Question of the day: What moves you? Composition: The musclar system makes up 40-50%

More information

The Nervous and Muscular Systems and the role of ATP

The Nervous and Muscular Systems and the role of ATP The Nervous and Muscular Systems and the role of ATP Overview of the Nervous System General parts: The brain The spinal cord The nerves and sense organs General functions: controls and coordinates body

More information

SKELETAL MUSCLE CHARACTERISTICS

SKELETAL MUSCLE CHARACTERISTICS THE MUSCULAR SYSTEM SKELETAL MUSCLE CHARACTERISTICS Most are attached by tendons to bones Cells are multinucleate Striated have visible banding Voluntary subject to conscious control Cells are surrounded

More information

Connective tissue MUSCLE TISSUE

Connective tissue MUSCLE TISSUE Connective tissue MUSCLE TISSUE Part 1 General features of MT Develop from mesoderm Many cells, less intercellular matrix Function contraction (shortening) Skeletal (striated, voluntary) Types of MT Cardiac

More information

Lecture 9A. Muscle structure. Outline

Lecture 9A. Muscle structure. Outline Lecture 9A Muscle structure Outline Smooth, skeletal, and cardiac muscle tissues Structure and function of skeletal muscle cells. Sarcomeres structure and contraction Actin-myosin interaction and sliding

More information

Neuromuscular Junction (NMJ) Skeletal Muscle Structure. Motor Unit. Motor Units. Chapter 12 Outline

Neuromuscular Junction (NMJ) Skeletal Muscle Structure. Motor Unit. Motor Units. Chapter 12 Outline Chapter 12 Outline Skeletal Muscles Mechanisms of Contraction Contractions of Skeletal Muscle Energy Requirements of Skeletal Muscle Neural Control of Skeletal Muscles Cardiac and Smooth Muscle Muscle

More information

Muscles and Metabolism

Muscles and Metabolism Muscles and Metabolism How does the body provide the energy needed for contraction? -as muscles contract, ATP supplies the energy fro cross bridge movement and detachment and for operation of the calcium

More information

Chapter 50. You re on your own for: Sensory Reception Mechanoreceptors Gravity, Hearing and Equilibrium. Chemoreception taste and smell

Chapter 50. You re on your own for: Sensory Reception Mechanoreceptors Gravity, Hearing and Equilibrium. Chemoreception taste and smell 1 Sensory and Motor Mechanisms 2 Chapter 50 You re on your own for: Sensory Reception Mechanoreceptors Gravity, Hearing and Equilibrium Chemoreception taste and smell Photoreceptors vision It s interesting.

More information

BCH 450 Biochemistry of Specialized Tissues. V. Muscle Tissues

BCH 450 Biochemistry of Specialized Tissues. V. Muscle Tissues BCH 450 Biochemistry of Specialized Tissues V. Muscle Tissues Nomenclature Sarcolemma = plasma membrane Sarcoplasmic reticulum = endoplasmic reticulum Muscle fiber = cell Myofibril = subcellular fibers

More information

Honors Muscular System Notes CHAPTER 8

Honors Muscular System Notes CHAPTER 8 Honors Muscular System Notes CHAPTER 8 I. Types of Muscle Tissue Fill in the chart with the correct information (p.162) Type of muscle Location Characteristics Control Action 1. 2. 3. II. The Muscular

More information