[U- 13 C5] glutamine. Glutamate. Acetyl-coA. Citrate. Citrate. Malate. Malate. Isocitrate OXIDATIVE METABOLISM. Oxaloacetate CO2.

Size: px
Start display at page:

Download "[U- 13 C5] glutamine. Glutamate. Acetyl-coA. Citrate. Citrate. Malate. Malate. Isocitrate OXIDATIVE METABOLISM. Oxaloacetate CO2."

Transcription

1 Supplementary Figures a. Relative mrna levels Supplementary Figure 1 (Christofk) LAT1 Fumarate Succinate Palmitate Acetyl-coA Oxaloacetate OXIDATIVE METABOLISM α-ketoglutarate Acetyl-coA α-ketoglutarate Oxaloacetate tamate e artate Fumarate [U- 13 C5] glutamine MID (U tracer) c. % 13 C labeled (U tracer) M5 tamate M5 αkg Succinate Fumarate d. e. AD D68A Relative mrna levels artate C. 0 M0 M1 M2 M3 M5 M6 0.0 IDH1 IDH2 NNT PDK1 GOT2 Supplementary Figure 1: (a) qrt-pcr was performed on RNA collected from MCF10A cells 8 hours post infection with or AD ORF1 D68A virus. Relative levels of and LAT1 are shown. For (b)-(e), NHBE cells were labeled with U- 13 C-glutamine (U tracer) and mock infected or infected with or AD ORF1 D68A at an MOI of hours post infection, intracellular metabolites were extracted and analyzed by LC-MS/MS. (b) Schematic tracing the fate of 13 C atoms from U- 13 C 5 -glutamine in oxidative metabolism in the TCA cycle. (c) Percentage of 13 C-labeled isotopomers of intermediates in oxidative TCA cycle metabolism. (d) mass isotopomer distribution (MID) resulting from U- 13 C-glutamine labeling. (e) qrt-pcr was performed as described in (a), and relative levels of transcripts involved in reductive carboxylation are shown.

2 Supplementary Figure 2 (Christofk) Pyr OAA Mal Fum AcCoA Pyr PDH Asn PDK1 NADP+ NADPH α-kg IDH2 GOT2 OAA NADP+ NADPH Pro NNT KEY: Metabolite increased labeling from U-13C- in but not AD ORF1 D68A infected cells Metabolite difficult to measure via current LC-MS method Enzyme transcript level elevated in but not AD ORF1 D68A infected cells NEAA EAA LAT1 Supplementary Figure 2: Schematic of reductive glutamine carboxylation and glutamine-associated amino acid metabolism events summarizing the MYC-dependent changes observed in adenovirus-infected cells.

3 Supplementary Figure 3 (Christofk) 2" a. Relative mrna Levels 1.5" 1" 0.5" GFPT1 NAGK KEY: Metabolite level elevated in but not AD ORF1 D68 infected cells Metabolite level elevated and increased M2 labeling from U-13C- in but not AD ORF1 D68A infected cells Enzyme transcript level elevated in but not AD ORF1 D68A infected cells cose HK2 cose-6-phosphate Fructose-6-Phosphate GFAT1 cosamine-6-phosphate Acetyl CoA CoA GlcNAc-6-Phosphate GlcNAc-1-Phosphate UDP-GlcNAc NAGK Pentose Phosphate Pathway Glycolysis GlcNAc HEXOSAMINE BIOSYNTHESIS N-glycosylation initiation N-glycan branching O-GlcNAc modification Supplementary Figure 3: (a) qrt-pcr was performed on RNA collected from MCF10A cells 8 hours post infection with or AD ORF1 D68A virus. Relative levels of GFPT1 (glutamine fructose-6-phosphate amidotransferase 1) and NAGK (N-acetylglucosamine kinase) are shown. (b) Schematic of the hexosamine biosynthesis pathway summarizing the MYC-dependent changes observed in adenovirus-infected cells.

4 Supplementary Figure 4 (Christofk) a. ODC1 FPKM values FPKM values 5" 4" 3" 2" 1" PRODH Supplementary Figure 4: Preliminary RNA-sequencing data comparing uninfected NHBE cells () versus cells infected for 8 hours with (). The fragments per kilobase of transcript per million mapped (FPKM) values indicate that RNA levels of (a) ornithine decarboxylase (ODC1) and (b) proline dehydrogenase (PRODH) are increased at 8 hours post- infection.

5 Supplementary Figure 5 (Christofk) Mock ADWT 48h ADWT 24h a. Figure 1b MYC MYC Figure 1d GLS GLS1 shgls1-2 shgls1-1 shgls1-2 c. shgls1-1 Figure 3b Supplementary Figure 5: Uncropped Western Blot images presented in this manuscript. Figure labeling corresponds to the figure in the main manuscript.

Supplementary Material. Contents include:

Supplementary Material. Contents include: Supplementary Material Contents include: 1. Supplementary Figures (p. 2-7) 2. Supplementary Figure Legends (p. 8-9) 3. Supplementary Tables (p. 10-12) 4. Supplementary Table Legends (p. 13) 1 Wellen_FigS1

More information

doi: /nature10642

doi: /nature10642 doi:10.1038/nature10642 Supplementary Fig. 1. Citric acid cycle (CAC) metabolism in WT 143B and CYTB 143B cells. a, Proliferation of WT 143B and CYTB 143B cells. Doubling times were 28±1 and 33±2 hrs for

More information

Integrative Metabolism: Significance

Integrative Metabolism: Significance Integrative Metabolism: Significance Energy Containing Nutrients Carbohydrates Fats Proteins Catabolism Energy Depleted End Products H 2 O NH 3 ADP + Pi NAD + NADP + FAD + Pi NADH+H + NADPH+H + FADH2 Cell

More information

Chem 109 C. Fall Armen Zakarian Office: Chemistry Bldn 2217

Chem 109 C. Fall Armen Zakarian Office: Chemistry Bldn 2217 Chem 109 C Fall 2014 Armen Zakarian ffice: Chemistry Bldn 2217 o Catabolism of carbohydrates: 10 reactions of glycolysis Chapter 25 C C 2 C 2 D-glucose α-d-glucopyranose aworth projection α-d-glucopyranose

More information

Welcome to Class 14! Class 14: Outline and Objectives. Overview of amino acid catabolism! Introductory Biochemistry!

Welcome to Class 14! Class 14: Outline and Objectives. Overview of amino acid catabolism! Introductory Biochemistry! Welcome to Class 14 Introductory Biochemistry Class 14: Outline and Objectives Amino Acid Catabolism Fates of amino groups transamination urea cycle Fates of carbon skeletons important cofactors metabolic

More information

Principles and Practice of Mass Isotopomeric MultiOrdinate Spectral Analysis (MIMOSA) to Assess Metabolic Flux"

Principles and Practice of Mass Isotopomeric MultiOrdinate Spectral Analysis (MIMOSA) to Assess Metabolic Flux Principles and Practice of Mass Isotopomeric MultiOrdinate Spectral Analysis (MIMOSA) to Assess Metabolic Flux" Richard G. Kibbey M.D., Ph.D. Associate Professor Departments of Internal Medicine and Cellular

More information

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM 1 2018/19 BY: MOHAMAD FAHRURRAZI TOMPANG Chapter Outline (19-1) The central role of the citric acid cycle in metabolism (19-2) The overall pathway of the citric

More information

Discussion of Prism modules and predicted interactions (Fig. 4)

Discussion of Prism modules and predicted interactions (Fig. 4) SUPPLEMENTARY NOTES Discussion of Prism modules and predicted interactions (Fig. 4) a. Interactions of the TCA-cycle, respiratory chain, and ATP synthetase with the amino acid biosynthesis modules. Given

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Still having trouble understanding the material? Check

More information

ANSC/NUTR 618 Lipids & Lipid Metabolism

ANSC/NUTR 618 Lipids & Lipid Metabolism I. Overall concepts A. Definitions ANC/NUTR 618 Lipids & Lipid Metabolism 1. De novo synthesis = synthesis from non-fatty acid precursors a. Carbohydrate precursors (glucose, lactate, and pyruvate) b.

More information

Midterm 2. Low: 14 Mean: 61.3 High: 98. Standard Deviation: 17.7

Midterm 2. Low: 14 Mean: 61.3 High: 98. Standard Deviation: 17.7 Midterm 2 Low: 14 Mean: 61.3 High: 98 Standard Deviation: 17.7 Lecture 17 Amino Acid Metabolism Review of Urea Cycle N and S assimilation Last cofactors: THF and SAM Synthesis of few amino acids Dietary

More information

Tricarboxylic Acid Cycle. TCA Cycle; Krebs Cycle; Citric Acid Cycle

Tricarboxylic Acid Cycle. TCA Cycle; Krebs Cycle; Citric Acid Cycle Tricarboxylic Acid ycle TA ycle; Krebs ycle; itric Acid ycle The Bridging Step: Pyruvate D hase O H 3 - - pyruvate O O - NAD + oash O 2 NADH O H 3 - - S - oa acetyl oa Pyruvate D hase omplex Multienzyme

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course Second Edition CHAPTER 30 Amino Acid Degradation and the Urea Cycle 2013 W. H. Freeman and Company In the cytosol of a cell amino groups from amino acids

More information

What is the Warburg Effect

What is the Warburg Effect What is the Warburg Effect Roles nutrients play in the biochemistry of a cell Thus, proliferating cells must acquire more nutrients, convert them into biosynthetic building blocks, and coordinate the reactions

More information

Krebs cycle Energy Petr Tůma Eva Samcová

Krebs cycle Energy Petr Tůma Eva Samcová Krebs cycle Energy - 215 Petr Tůma Eva Samcová Overview of Citric Acid Cycle Key Concepts The citric acid cycle (Krebs cycle) is a multistep catalytic process that converts acetyl groups derived from carbohydrates,

More information

Amino Acid Oxidation and the Urea Cycle

Amino Acid Oxidation and the Urea Cycle Amino Acid Oxidation and the Urea Cycle Amino Acids: Final class of biomolecules whose oxidation contributes significantly to the generation of energy Undergo oxidation in three metabolic circumstances

More information

Biochemistry 463, Summer II University of Maryland, College Park Your SID #:

Biochemistry 463, Summer II University of Maryland, College Park Your SID #: Biochemistry 463, Summer II Your Name: University of Maryland, College Park Your SID #: Biochemistry and Physiology Prof. Jason Kahn Final Exam (150 points total) August 16, 2013 You have 90 minutes for

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

(de novo synthesis of glucose)

(de novo synthesis of glucose) Gluconeogenesis (de novo synthesis of glucose) Gluconeogenesis Gluconeogenesis is the biosynthesis of new glucose. The main purpose of gluconeogenesis is to maintain the constant blood Glc concentration.

More information

Pathway overview. Glucose + 2NAD + + 2ADP +2Pi 2NADH + 2pyruvate + 2ATP + 2H 2 O + 4H +

Pathway overview. Glucose + 2NAD + + 2ADP +2Pi 2NADH + 2pyruvate + 2ATP + 2H 2 O + 4H + Glycolysis Glycolysis The conversion of glucose to pyruvate to yield 2ATP molecules 10 enzymatic steps Chemical interconversion steps Mechanisms of enzyme conversion and intermediates Energetics of conversions

More information

Amino acid metabolism

Amino acid metabolism Amino acid metabolism The important reaction commonly employed in the breakdown of an amino acid is always the removal of its -amino group. The product ammonia is excreted after conversion to urea or other

More information

Information transmission

Information transmission 1-3-3 Case studies in Systems Biology Goutham Vemuri goutham@chalmers.se Information transmission Fluxome Metabolome flux 1 flux flux 3 Proteome metabolite1 metabolite metabolite3 protein 1 protein protein

More information

Integration of Metabolism

Integration of Metabolism Integration of Metabolism Metabolism is a continuous process. Thousands of reactions occur simultaneously in order to maintain homeostasis. It ensures a supply of fuel, to tissues at all times, in fed

More information

Energy storage in cells

Energy storage in cells Energy storage in cells Josef Fontana EC - 58 Overview of the lecture Introduction to the storage substances of human body Overview of storage compounds in the body Glycogen metabolism Structure of glycogen

More information

Integration & Hormone Regulation

Integration & Hormone Regulation Integration Branchpoints in metabolism where metabolites can go several directions 1. Glucose 6-phosphate Energy needed (low energy charge): glycolysis Low blood sugar: high [glucagon], low [insulin] glycogen

More information

Metabolic engineering some basic considerations. Lecture 9

Metabolic engineering some basic considerations. Lecture 9 Metabolic engineering some basic considerations Lecture 9 The 90ties: From fermentation to metabolic engineering Recruiting heterologous activities to perform directed genetic modifications of cell factories

More information

E.coli Core Model: Metabolic Core

E.coli Core Model: Metabolic Core 1 E.coli Core Model: Metabolic Core 2 LEARNING OBJECTIVES Each student should be able to: Describe the glycolysis pathway in the core model. Describe the TCA cycle in the core model. Explain gluconeogenesis.

More information

Metabolism of amino acids. Vladimíra Kvasnicová

Metabolism of amino acids. Vladimíra Kvasnicová Metabolism of amino acids Vladimíra Kvasnicová Classification of proteinogenic AAs -metabolic point of view 1) biosynthesis in a human body nonessential (are synthesized) essential (must be present in

More information

TCA CYCLE (Citric Acid Cycle)

TCA CYCLE (Citric Acid Cycle) TCA CYCLE (Citric Acid Cycle) TCA CYCLE The Citric Acid Cycle is also known as: Kreb s cycle Sir Hans Krebs Nobel prize, 1953 TCA (tricarboxylic acid) cycle The citric acid cycle requires aerobic conditions!!!!

More information

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 Name Write your name on the back of the exam Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 This examination consists of forty-four questions, each having 2 points. The remaining

More information

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM. Triacylglycerol and Fatty Acid Metabolism

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM. Triacylglycerol and Fatty Acid Metabolism ANSC/NUTR 618 LIPIDS & LIPID METABOLISM II. Triacylglycerol synthesis A. Overall pathway Glycerol-3-phosphate + 3 Fatty acyl-coa à Triacylglycerol + 3 CoASH B. Enzymes 1. Acyl-CoA synthase 2. Glycerol-phosphate

More information

Glycolysis Part 2. BCH 340 lecture 4

Glycolysis Part 2. BCH 340 lecture 4 Glycolysis Part 2 BCH 340 lecture 4 Regulation of Glycolysis There are three steps in glycolysis that have enzymes which regulate the flux of glycolysis These enzymes catalyzes irreversible reactions of

More information

NITROGEN METABOLISM: An Overview

NITROGEN METABOLISM: An Overview NITROGEN METABOLISM: An Overview University of PNG School of Medicine and Health Sciences Division of Basic Medical Sciences Discipline of Biochemistry & Molecular Biology VJ Temple 1 How are nitrogen-containing

More information

Control vs. HFD-lipid

Control vs. HFD-lipid Animals Control vs. T1D vs. T1D-leptin and Hyperinsulinemic-diabetic vs. hyperinsulinemic-diabetic-leptin STZ ± nicotinamide injection Leptin or saline 6 8 1 12 2 4 6 8 1 12 2 4 6 8 1 12 Control vs. HFD-lipid

More information

III. 6. Test. Respiració cel lular

III. 6. Test. Respiració cel lular III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways

More information

Chem 109 C. Fall Armen Zakarian Office: Chemistry Bldn 2217

Chem 109 C. Fall Armen Zakarian Office: Chemistry Bldn 2217 Chem 109 C Fall 2014 Armen Zakarian ffice: Chemistry Bldn 2217 Chapter 25 o Glycolysis : fates of pyruvate NADH, H + H + C 2 NADH, H + H - (S)-lactic acid lactate dehydrogenase; anaerobic conditions -

More information

Tracing compartmentspecific. using stable isotopes and mass spectrometry. Christian Metallo IECM 2017

Tracing compartmentspecific. using stable isotopes and mass spectrometry. Christian Metallo IECM 2017 Tracing compartmentspecific redox pathways using stable isotopes and mass spectrometry Christian Metallo IECM 2017 Department of Bioengineering Moores Cancer Center UCSD Diabetes Research Center Michal

More information

Synthesis of Fatty Acids and Triacylglycerol

Synthesis of Fatty Acids and Triacylglycerol Synthesis of Fatty Acids and Triacylglycerol Lippincott s Chapter 16 Fatty Acid Synthesis Mainly in the Liver Requires Carbon Source: Acetyl CoA Reducing Power: NADPH 8 CH 3 COO C 15 H 33 COO Energy Input:

More information

AMINO ACID METABOLISM. Sri Widia A Jusman Dept. of Biochemistry & Molecular Biology FMUI

AMINO ACID METABOLISM. Sri Widia A Jusman Dept. of Biochemistry & Molecular Biology FMUI AMINO ACID METABOLISM Sri Widia A Jusman Dept. of Biochemistry & Molecular Biology FMUI Amino acids derived from dietary protein absorbed from intestine through blood taken up by tissues used for biosynthesis

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

This is an example outline of 3 lectures in BSC (Thanks to Dr. Ellington for sharing this information.)

This is an example outline of 3 lectures in BSC (Thanks to Dr. Ellington for sharing this information.) This is an example outline of 3 lectures in BSC 2010. (Thanks to Dr. Ellington for sharing this information.) Topic 10: CELLULAR RESPIRATION (lectures 14-16) OBJECTIVES: 1. Know the basic reactions that

More information

CHEM/MBIO 2370 Biochemistry 2: Catabolism, Synthesis and Information Pathways--Syllabus

CHEM/MBIO 2370 Biochemistry 2: Catabolism, Synthesis and Information Pathways--Syllabus An introductory course dealing with the basic metabolic processes that occur in living cells including the production and use of metabolic energy, the breakdown and synthesis of biomolecules, the synthesis

More information

Page 2 (out of 13) Page 3 (out of 14) Page 4 (out of 16) Page 5 (out of 13) Page 6 (out of 15) Page 7 (out of 14) Page 8 (out of 15)

Page 2 (out of 13) Page 3 (out of 14) Page 4 (out of 16) Page 5 (out of 13) Page 6 (out of 15) Page 7 (out of 14) Page 8 (out of 15) Fa13 BIBC102 final, page 1 Hello Fine Fit Metabolites! This test will be handed in, and will be available for pickup sometime next week. The key will be posted on the website TONIGHT. Feel free to register

More information

Tumor Metabolism. Hypoxia-inducible factor (HIF)

Tumor Metabolism. Hypoxia-inducible factor (HIF) Tumor Metabolism Kevin M. Brindle Department of Biochemistry, University of Cambridge Tennis Court Road, Cambridge CB2 1GA and Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson

More information

Chapter 22. Before the class. 10 Steps of glycolysis. Outline. Can you tell the ten steps of glycolysis? Do you know how glucoses are

Chapter 22. Before the class. 10 Steps of glycolysis. Outline. Can you tell the ten steps of glycolysis? Do you know how glucoses are Chapter 22 Gluconeogenesis, Glycogen metabolism, and the Pentose Phosphate Pathway Reginald H. Garrett Charles M. Grisham 1 Before the class Can you tell the ten steps of glycolysis? Do you know how glucoses

More information

Biological oxidation II. The Cytric acid cycle

Biological oxidation II. The Cytric acid cycle Biological oxidation II The Cytric acid cycle Outline The Cytric acid cycle (TCA tricarboxylic acid) Central role of Acetyl-CoA Regulation of the TCA cycle Anaplerotic reactions The Glyoxylate cycle Localization

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION CITRIC ACID CYCLE (T.C.A) PRODUCTION OF ACETYL CoA REACTIONS OF THE CITIRC ACID CYCLE THE AMPHIBOLIC NATURE OF THE T.C.A CYCLE THE GLYOXYLATE CYCLE

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature22359 Supplementary Discussion KRAS and regulate central carbon metabolism, including pathways supplied by abundant fuels like glucose and glutamine. Under control

More information

Independent Study Guide Metabolism I. Principles of metabolism (section 6.1) a. Cells must: (figure 6.1) i. Synthesize new components

Independent Study Guide Metabolism I. Principles of metabolism (section 6.1) a. Cells must: (figure 6.1) i. Synthesize new components Independent Study Guide Metabolism I. Principles of metabolism (section 6.1) a. Cells must: (figure 6.1) i. Synthesize new components (anabolism/biosynthesis) ii. Harvest energy and convert it to a usable

More information

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete loss of electrons Reduction: partial or complete gain of electrons

More information

CH395G FINAL (3 rd ) EXAM Kitto/Hackert - Fall 2003

CH395G FINAL (3 rd ) EXAM Kitto/Hackert - Fall 2003 CH395G FINAL (3 rd ) EXAM Kitto/Hackert - Fall 2003 1. A cell in an active, catabolic state has a. a high (ATP/ADP) and a high (NADH/NAD + ) ratio b. a high (ATP/ADP) and a low (NADH/NAD + ) ratio c. a

More information

Lecture 17: Nitrogen metabolism 1. Urea cycle detoxification of NH 3 2. Amino acid degradation

Lecture 17: Nitrogen metabolism 1. Urea cycle detoxification of NH 3 2. Amino acid degradation Lecture 17: Nitrogen metabolism 1. Urea cycle detoxification of NH 3 2. Amino acid degradation Reference material Biochemistry 4 th edition, Mathews, Van Holde, Appling, Anthony Cahill. Pearson ISBN:978

More information

Nitrogen Metabolism. Overview

Nitrogen Metabolism. Overview Nitrogen Metabolism Pratt and Cornely Chapter 18 Overview Nitrogen assimilation Amino acid biosynthesis Nonessential aa Essential aa Nucleotide biosynthesis Amino Acid Catabolism Urea Cycle Juicy Steak

More information

Relative Rates. SUM159 CB- 839-Resistant *** n.s Intracellular % Labeled by U- 13 C-Asn 0.

Relative Rates. SUM159 CB- 839-Resistant *** n.s Intracellular % Labeled by U- 13 C-Asn 0. A Relative Growth Rates 1.2 1.8.6.4.2 B Relative Rates 1.6 1.4 1.2 1.8.6.4.2 LPS2 Parental LPS2 Q-Independent SUM159 Parental SUM159 CB-839-Resistant LPS2 Parental LPS2 Q- Independent SUM159 Parental SUM159

More information

Dr. Abir Alghanouchi Biochemistry department Sciences college

Dr. Abir Alghanouchi Biochemistry department Sciences college Dr. Abir Alghanouchi Biochemistry department Sciences college Under aerobic conditions, pyruvate(the product of glycolysis) passes by special pyruvatetransporter into mitochondria which proceeds as follows:

More information

page1 (of9) BIBC102 Midterm 1 Sp 2009

page1 (of9) BIBC102 Midterm 1 Sp 2009 page1 (of9) 1) (2 pts) Define catabolism and anabolism. One sentence each should be fine. Catabolism- group of metabolic pathways that break down molecules to gain energy and precursors for biosynthesis

More information

Krebs Cycle. Color Index: Original slides. Important. 436 Notes 438 notes. Extra information Biochemistry team 438. Red boxes are IMPORTANT!

Krebs Cycle. Color Index: Original slides. Important. 436 Notes 438 notes. Extra information Biochemistry team 438. Red boxes are IMPORTANT! Red boxes are IMPORTANT! Krebs Cycle Color Index: Original slides. Important. 436 Notes 438 notes : ل ی د ع ت ل ا ط ب ا ر https://docs.google.com/document/d/1wvdec1atp7j- ZKWOUSukSLsEcosjZ0AqV4z2VcH2TA0/edit?usp=sharing

More information

The citric acid cycle Sitruunahappokierto Citronsyracykeln

The citric acid cycle Sitruunahappokierto Citronsyracykeln The citric acid cycle Sitruunahappokierto Citronsyracykeln Ove Eriksson BLL/Biokemia ove.eriksson@helsinki.fi Metabolome: The complete set of small-molecule metabolites to be found in a cell or an organism.

More information

We must be able to make glucose

We must be able to make glucose Biosynthesis of Carbohydrates Synthesis of glucose (gluconeogenesis) Glycogen Formation of pentoses and NADPH Photosynthesis We must be able to make glucose Compulsory need for glucose (above all the brain)

More information

Citrate Cycle. Lecture 28. Key Concepts. The Citrate Cycle captures energy using redox reactions

Citrate Cycle. Lecture 28. Key Concepts. The Citrate Cycle captures energy using redox reactions Citrate Cycle Lecture 28 Key Concepts The Citrate Cycle captures energy using redox reactions Eight reactions of the Citrate Cycle Key control points in the Citrate Cycle regulate metabolic flux What role

More information

Supplementary information

Supplementary information Supplementary information Supplementary Figure 1: Components of Arabidopsis tricarboxylic acid (TCA) cycle. Schematic summary of the TCA cycle and the enzymes related to the reactions. The large text and

More information

METABOLISM Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI

METABOLISM Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI METABOLISM Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI 1 METABOLISM Process of how cells acquire, transform, store and use energy Study of the chemistry, regulation and energetics

More information

Integration Of Metabolism

Integration Of Metabolism Integration Of Metabolism Metabolism Consist of Highly Interconnected Pathways The basic strategy of catabolic metabolism is to form ATP, NADPH, and building blocks for biosyntheses. 1. ATP is the universal

More information

Spring 2012 BIBC 102 midterm Hampton et al. Metabolic Biochemistry Midterm Tuesday May 8, 2012; 3:30-5:50

Spring 2012 BIBC 102 midterm Hampton et al. Metabolic Biochemistry Midterm Tuesday May 8, 2012; 3:30-5:50 Metabolic Biochemistry Midterm Tuesday May 8, 2012; 3:30-5:50 Good afternoon and goooood evening. This midterm has two purposes. One is to solidify your knowledge of the frequently-used ideas and information

More information

AMINOACID METABOLISM FATE OF AMINOACIDS & UREA CYCLE

AMINOACID METABOLISM FATE OF AMINOACIDS & UREA CYCLE AMINOACID METABOLISM FATE OF AMINOACIDS & UREA CYCLE SOURCE & FATE OF AA The aminoacids obtained from DIETARY SOURCE or BODY PROTEIN TURNOVER are utilized for protein biosynthesis and the production of

More information

Vocabulary. Chapter 19: The Citric Acid Cycle

Vocabulary. Chapter 19: The Citric Acid Cycle Vocabulary Amphibolic: able to be a part of both anabolism and catabolism Anaplerotic: referring to a reaction that ensures an adequate supply of an important metabolite Citrate Synthase: the enzyme that

More information

Aerobic Respiration. The four stages in the breakdown of glucose

Aerobic Respiration. The four stages in the breakdown of glucose Aerobic Respiration The four stages in the breakdown of glucose 1 I. Aerobic Respiration Why can t we break down Glucose in one step? (Flaming Gummy Bear) Enzymes gently lower the potential energy until

More information

Chapter-5 Respiration in Plants Very Short Answers Questions: 1. Different substrates get oxidized during respiration. How does respiratory quotient (RQ) indicate which type of substrate i.e. carbohydrate,

More information

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 Notes NAME DATE HOUR SUMMARY EQUATION CELLULAR RESPIRATION C 6 H 12 O 6 + O 2 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course Second Edition CHAPTER 30 Amino Acid Degradation and the Urea Cycle 2013 W. H. Freeman and Company Chapter 30 Outline Amino acids are obtained from the

More information

Name: Chem 351 Exam 3

Name: Chem 351 Exam 3 Multiple hoice: Pick the BEST answer and write it in the box at the end of the section. 1) The TA (Krebs) ycle depends on oxygen availability, though it does not directly use it. How can you best explain

More information

2. What is molecular oxygen directly converted into? a. Carbon Dioxide b. Water c. Glucose d. None of the Above

2. What is molecular oxygen directly converted into? a. Carbon Dioxide b. Water c. Glucose d. None of the Above Biochem 1 Mock Exam 3 Chapter 11: 1. What is glucose completely oxidized into? a. Carbon Dioxide and Water b. Carbon Dioxide and Oxygen c. Oxygen and Water d. Water and Glycogen 2. What is molecular oxygen

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course First Edition CHAPTER 19 Harvesting Electrons from the Cycle 2013 W. H. Freeman and Company Chapter 19 Outline The citric acid cycle oxidizes the acetyl

More information

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I n n Chapter 9 Overview Aerobic Metabolism I: The Citric Acid Cycle Live processes - series of oxidation-reduction reactions Ingestion of proteins, carbohydrates, lipids Provide basic building blocks for

More information

Regulation of Citric Acid Cycle

Regulation of Citric Acid Cycle Paper : 04 Metabolism of carbohydrates Module : 30 Principal Investigator, Paper Coordinator and Content Writer Dr. Ramesh Kothari, Professor UGC-CAS Department of Biosciences Saurashtra University, Rajkot-5

More information

Chapter 16. The Citric Acid Cycle: CAC Kreb s Cycle Tricarboxylic Acid Cycle: TCA

Chapter 16. The Citric Acid Cycle: CAC Kreb s Cycle Tricarboxylic Acid Cycle: TCA Chapter 16 The Citric Acid Cycle: CAC Kreb s Cycle Tricarboxylic Acid Cycle: TCA The Citric Acid Cycle Key topics: To Know Also called Tricarboxylic Acid Cycle (TCA) or Krebs Cycle. Three names for the

More information

Nitrogen Metabolism. Overview

Nitrogen Metabolism. Overview Nitrogen Metabolism Pratt and Cornely Chapter 18 Overview Nitrogen assimilation Amino acid biosynthesis Nonessential aa Essential aa Nucleotide biosynthesis Amino Acid Catabolism Urea Cycle Juicy Steak

More information

Metabolic requirements for cancer cell proliferation

Metabolic requirements for cancer cell proliferation Keibler et al. Cancer & Metabolism (2016) 4:16 DOI 10.1186/s40170-016-0156-6 RESEARCH Open Access Metabolic requirements for cancer cell proliferation Mark A. Keibler 1, Thomas M. Wasylenko 1,3, Joanne

More information

Acyl-Coenzyme A Thioesters for Pesticides, Parkinson s, and Metabolism. Nathaniel W Snyder, PhD, MPH Blair Lab August 11, 2014

Acyl-Coenzyme A Thioesters for Pesticides, Parkinson s, and Metabolism. Nathaniel W Snyder, PhD, MPH Blair Lab August 11, 2014 Acyl-Coenzyme A Thioesters for Pesticides, Parkinson s, and Metabolism Nathaniel W Snyder, PhD, MPH Blair Lab August 11, 214 1 Biological Importance of Acyl-CoAs Krebs Cycle Fatty Acid Metabolism Acyl-

More information

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh 8 Marah Bitar Faisal Nimri... Nafeth Abu Tarboosh Summary of the 8 steps of citric acid cycle Step 1. Acetyl CoA joins with a four-carbon molecule, oxaloacetate, releasing the CoA group and forming a six-carbon

More information

MITOCW watch?v=4bwb43smu7o

MITOCW watch?v=4bwb43smu7o MITOCW watch?v=4bwb43smu7o The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

Evidence for an Alternative Glycolytic Pathway in Rapidly Proliferating Cells. Matthew G. Vander Heiden, et al. Science 2010

Evidence for an Alternative Glycolytic Pathway in Rapidly Proliferating Cells. Matthew G. Vander Heiden, et al. Science 2010 Evidence for an Alternative Glycolytic Pathway in Rapidly Proliferating Cells Matthew G. Vander Heiden, et al. Science 2010 Introduction The Warburg Effect Cancer cells metabolize glucose differently Primarily

More information

Points 1. Following is the overall reaction catalyzed by the Calvin-Benson cycle:

Points 1. Following is the overall reaction catalyzed by the Calvin-Benson cycle: BCH 4054 February 22, 2002 HOUR TEST 2 NAME_ Points 1. Following is the overall reaction catalyzed by the Calvin-Benson cycle: CO 2 + 3ATP + 2NADPH 1/3 glyceraldehyde-3-p + 3ADP + 2NADP + Give the structures

More information

Aerobic Fate of Pyruvate. Chapter 16 Homework Assignment. Chapter 16 The Citric Acid Cycle

Aerobic Fate of Pyruvate. Chapter 16 Homework Assignment. Chapter 16 The Citric Acid Cycle Chapter 16 Homework Assignment The following problems will be due once we finish the chapter: 1, 3, 7, 10, 16, 19, 20 Additional Problem: Write out the eight reaction steps of the Citric Acid Cycle, using

More information

The human DEK oncogene: metabolic reprogramming of engineered epidermis

The human DEK oncogene: metabolic reprogramming of engineered epidermis The human DEK oncogene: metabolic reprogramming of engineered epidermis Markey Cancer Center, CESB, University of Kentucky 218 Metabolomics Symposium NMR Based Metabolomics Core CESB Co-director, UKY Marion

More information

Case Study: Carbohydrate Metabolism. eating an early dinner the night before and skipping breakfast that morning, Sid goes to the

Case Study: Carbohydrate Metabolism. eating an early dinner the night before and skipping breakfast that morning, Sid goes to the Student Name Biochemistry 4320 Case Study Part I 4 November 2013 Case Study: Carbohydrate Metabolism Sid is a high school student who has decided to start exercising before school. After eating an early

More information

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lecture 16. Based on Profs. Kevin Gardner & Reza Khayat

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lecture 16. Based on Profs. Kevin Gardner & Reza Khayat Biochemistry - I Mondays and Wednesdays 9:30-10:45 AM (MR-1307) SPRING 2017 Lecture 16 Based on Profs. Kevin Gardner & Reza Khayat 1 Catabolism of Di- and Polysaccharides Catabolism (digestion) begins

More information

Yield of energy from glucose

Yield of energy from glucose Paper : Module : 05 Yield of Energy from Glucose Principal Investigator, Paper Coordinator and Content Writer Prof. Ramesh Kothari, Professor Dept. of Biosciences, Saurashtra University, Rajkot - 360005

More information

BCH Graduate Survey of Biochemistry

BCH Graduate Survey of Biochemistry BCH 5045 Graduate Survey of Biochemistry Instructor: Charles Guy Producer: Ron Thomas Director: Glen Graham Lecture 50 Slide sets available at: http://hort.ifas.ufl.edu/teach/guyweb/bch5045/index.html

More information

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 Notes NAME DATE HOUR SUMMARY EQUATION CELLULAR RESPIRATION C 6 H 12 O 6 + O 2 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete

More information

Amino Acid Metabolism

Amino Acid Metabolism Amino Acid Metabolism Last Week Most of the Animal Kingdom = Lazy - Most higher organisms in the animal kindom don t bother to make all of the amino acids. - Instead, we eat things that make the essential

More information

The Kidney and Metabolism

The Kidney and Metabolism August 28, 2014 Semmelweis University The 21st Budapest Nephrology School The Kidney and Metabolism Division of nephrology, Endocrinology and Vascular Medicine Tohoku University School of Medicine Sadayoshi

More information

Ahmad Ulnar. Faisal Nimri ... Dr.Faisal

Ahmad Ulnar. Faisal Nimri ... Dr.Faisal 24 Ahmad Ulnar Faisal Nimri... Dr.Faisal Fatty Acid Synthesis - Occurs mainly in the Liver (to store excess carbohydrates as triacylglycerols(fat)) and in lactating mammary glands (for the production of

More information

Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism

Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism Charlotte Lussey-Lepoutre, Kate ER Hollinshead, Christian Ludwig, Mélanie Menara, Aurélie

More information

Metabolic Biochemistry / BIBC 102 Midterm Exam / Spring 2005

Metabolic Biochemistry / BIBC 102 Midterm Exam / Spring 2005 Metabolic Biochemistry / BIBC 102 Midterm Exam / Spring 2005 I. (20 points) Fill in all of the enzyme catalyzed reactions which convert glycogen to lactate. Draw the correct structure for each intermediate

More information

How do we retain emphasis on function?

How do we retain emphasis on function? Systems Biology Systems biology studies biological systems by systematically perturbing them (biologically, genetically, or chemically); monitoring the gene, protein, and informational pathway responses;

More information

Midterm 2 Results. Standard Deviation:

Midterm 2 Results. Standard Deviation: Midterm 2 Results High: Low: Mean: Standard Deviation: 97.5% 16% 58% 16.3 Lecture 17 Amino Acid Metabolism Urea Cycle N and S assimilation Last cofactors: THF and SAM Dietary (Exogenous) Proteins Hydrolyzed

More information