Principles of Electrical Currents. HuP 272

Size: px
Start display at page:

Download "Principles of Electrical Currents. HuP 272"

Transcription

1 Principles of Electrical Currents HuP 272

2 Electricity is an element of PT modalities most frightening and least understood. Understanding the basis principles will later aid you in establishing treatment protocols.

3 General Therapeutic Uses of Electricity Controlling acute and chronic pain Edema reduction Muscle spasm reduction Reducing joint contractures Minimizing disuse/ atrophy Facilitating tissue healing Strengthening muscle Facilitating fracture healing

4 Contraindications of Electrotherapy Cardiac disability Pacemakers Pregnancy Menstruation (over abdomen, lumbar or pelvic region) Cancerous lesions Site of infection Exposed metal implants Nerve Sensitivity

5 Terms of electricity Electrical current: the flow of energy between two points Needs A driving force (voltage) some material which will conduct the electricity Amper: unit of measurement, the amount of current (amp) Conductors: Materials and tissues which allow free flow of energy

6 Fundamentals of Electricity Electricity is the force created by an imbalance in the number of electrons at two points Negative pole an area of high electron concentration (Cathode) Positive pole and area of low electron concentration (Anode)

7 Charge An imbalance in energy. The charge of a solution has significance when attempting to drive medicinal drugs topically via inotophoresis and in attempting to artificially fires a denervated muscle

8 Charge: Factors to understand Coulomb s Law: Like charges repel, unlike charges attract Like charges repel allow the drug to be driven Reduce edema/blood

9 Charge: Factors Membranes rest at a resting potential which is an electrical balance of charges. This balance must be disrupted to achieve muscle firing Muscle depolarization is difficult to achieve with physical therapy modalities Nerve depolarization occurs very easily with PT modalities

10 Terms of electricity Insulators: materials and tissues which deter the passage of energy Semiconductors: both insulators and conductors. These materials will conduct better in one direction than the other Rate: How fast the energy travels. This depends on two factors: the voltage (the driving force) and the resistance.

11 Terms of electricity Voltage: electromotive force or potential difference between the two poles Voltage: an electromotive force, a driving force. Two modality classification are: Hi Volt: greater than V Lo Volt: less than V

12 Terms of electricity Resistance: the opposition to flow of current. Factors affecting resistance: Material composition Length (greater length yields greater resistance) Temperature (increased temperature, increase resistance)

13 Clinical application of Electricity: minimizing the resistance Reduce the skin-electrode resistance Minimize air-electrode interface Keep electrode clean of oils, etc. Clean the skill on oils, etc. Use the shortest pathway for energy flow Use the largest electrode that will selectively stimulate the target tissues If resistance increases, more voltage will be needed to get the same current flow

14 Clinical application of Electricity: Temperature Relationship An increase in temperature increases resistance to current flow Applicability Preheating the tx area may increase the comfort of the tx but also increases resistance and need for higher output intensities

15 Clinical Application of Electricity: Length of Circuit Relationship: Greater the cross-sectional area of a path the less resistance to current flow Application: Nerves having a larger diameter are depolarized before nerves having smaller diameters

16 Clinical Application of Electricity: Material of Circuit Not all of the body s tissues conduct electrical current the same Excitable Tissues Nerves Muscle fibers blood cells cell membranes Non-excitable tissues Bone Cartilage Tendons Ligaments Current prefers to travel along excitable tissues

17 Laws and Principles of Electricity Ohm s Law: V-IR (V is voltage, a measure of the driving force which is equal to the IxR where I is the Ampere (the amount of current flow) and R is the resistance. Or, expressed differently: The Ampere is equal to the Voltage divided by the resistance. If you know the inter-relationship you can understand if one increased what happens to the other Watt= electrical power=volt x amps- ohms

18 Stimulation Parameter: Amplitude: the intensity of the current, the magnitude of the charge. The amplitude is associated with the depth of penetration. The deeper the penetration the more muscle fiber recruitment possible remember the all or none response and the Arndt-Schultz Principle

19 Simulation Parameter Pulse duration: the length of time the electrical flow is on also known as the pulse width. It is the time of 1 cycle to take place (will be both phases in a biphasic current) phase duration important factor in determining which tissue stimulated: if too short there will be no action potential

20 Stimulation Parameter: Pulse rise time: the time to peak intensity of the pulse (ramp) rapid rising pulses cause nerve depolarization Slow rise: the nerve accommodates to stimulus and a action potential is not elicited Good for muscle re-education with assisted contraction - ramping (shock of current is reduced)

21 Stimulation Parameters Pulse Frequency: (PPS=Hertz) How many pulses occur in a unit of time Do not assume the lower the frequency the longer the pulse duration Low Frequency: 1K Hz and below (MENS.1-1K Hz), muscle stim units) Medium frequency: 1K to 100K Hz (Interferential, Russian stim LVGS) High Frequency: above 100K Hz (TENS, HVGS, diathermies)

22 Stimulation Parameter: Current types: alternating or Direct Current (AC or DC) AC indicates that the energy travels in a positive and negative direction. The wave form which occurs will be replicated on both sides of the isoelectric line DC indicated that the energy travels only in the positive or on in the negative direction DC AC

23 Stimulation Parameter: Waveforms; the path of the energy. May be smooth (sine) spiked, square,, continuous etc. Method to direct current Peaked - sharper Sign - smoother

24 Stimulation Parameter: Duty cycles: on-off time. May also be called inter-pulse interval which is the time between pulses. The more rest of off time, the less muscle fatigue will occur 1:1 Raito fatigues muscle rapidly 1:5 ratio less fatigue 1:7 no fatigue (passive muscle exercise)

25 Stimulation Parameter: Average current (also called Root Mean Square) the average intensity Factors effective the average current: pulse amplitude pulse duration waveform (DC has more net charge over time thus causing a thermal effect. AC has a zero net charge (ZNC). The DC may have long term adverse physiological effects)

26 Stimulation Parameter: Current Density The amount of charge per unit area. This is usually relative to the size of the electrode. Density will be greater with a small electrode, but also the small electrode offers more resistance.

27 Capacitance: The ability of tissue (or other material) to store electricity. For a given current intensity and pulse duration The higher the capacitance the longer before a response. Body tissues have different capacitance. From least to most: Nerve (will fire first, if healthy) Muscle fiber Muscle tissue

28 Capacitance: Increase intensity (with decrease pulse duration) is needed to stimulate tissues with a higher capacitance. Muscle membrane has 10x the capacitance of nerve

29 Factors effecting the clinical application of electricity Factors effecting the clinical application of electricity Rise Time: the time to peak intensity The onset of stimulation must be rapid enough that tissue accommodation is prevented The lower the capacitance the less the charge can be stored If a stimulus is applied too slowly, it is dispersed

30 Factors effecting the clinical application of electricity An increase in the diameter of a nerve decreased it s capacitance and it will respond more quickly. Thus, large nerves will respond more quickly than small nerves. Denervated muscles will require a long rise time to allow accommodation of sensory nerves. Best source for denervated muscle stimulation is continuous current DC

31 Factors effecting the clinical application of electricity: Ramp: A group of waveforms may be ramped (surge function) which is an increase of intensity over time. The rise time is of the specific waveform and is intrinsic to the machine.

32 Law of DuBois Reymond: The amplitude of the individual stimulus must be high enough so that depolarization of the membrane will occur. The rate of change of voltage must be sufficiently rapid so that accommodation does not occur The duration of the individual stimulus must be long enough so that the time course of the latent period (capacitance), action potential, and recovery can take place

33 Muscle Contractions Are described according to the pulse width 1 pps = twitch 10 pps = summation pps = tetanus (most fibers will reach tetany by 50 pps)

34 Frequency selection: 100Hz - pain relief Hz = muscle contraction 1-50 Hz = increased circulation The higher the frequency (Hz) the more quickly the muscle will fatigue

35 Electrodes used in clinical application of current: Electrodes used in clinical application of current: At least two electrodes are required to complete the circuit The body becomes the conductor Monophasic application requires one negative electrode and one positive electrode The strongest stimulation is where the current exists the body Electrodes placed close together will give a superficial stimulation and be of high density

36 Electrodes used in clinical application of current: Electrodes spaced far apart will penetrate more deeply with less current density Generally the larger the electrode the less density. If a large dispersive pad is creating muscle contractions there may be areas of high current concentration and other areas relatively inactive, thus functionally reducing the total size of the electrode A multitude of placement techniques may be used to create the clinical and physiological effects you desire

37 General E-Stim Parameters Pain Edema Muscle Re-ed. Tissue Healing Hz: 100+ Tens, HVGS, IFC Hz: HVGS, IFC Hz: Type: depends on purpose Hz: 100+ or 1(? inc. circ) IFC, Ionto, Mens (?) PPS: Polarity: purpose & comfort PPS: 120 Polarity: negative PPS: 1-20 Polarity: purpose & comfort PPS: vary but typically tens like Polarity: purpose & comfort Time: min Time: 20 min Time: Fatigue (1-15 min) Time: 20 min Other: Electrode Spacing Burst Option, Voltage/Acc. Accupoint (1-5pps) Other: Electrode Spacing Voltage/Acc. With muscle cxn or pain reduction Other: Electrode Spacing, surge Burst Option, Voltage/Acc. Accupoint (1-5pps) Other: Electrode Spacing Voltage/Acc. Accupoint

38 E-Stim for Pain Control: typical Settings Neuromuscular Stimulation High Volt Pulsed Stim Gate Control Theory High-Volt Pulsed Stim Opiate Release High-Volt Pulsed Stim Brief-Intense (Probe) High-Volt Pulsed Stim Intensity: Stong & comfortable Intensity: Sensory Intensity: Motor level Intensity: Noxious Type title here Pulse Rate: < for tonic contraction Pulse Rate: pps Pulse Rate 2-4 pps Pulse Rate: 120pps Polarity: + or - Phase Duration < 100 usec Phase Duration: usec Phase Duration: usec Alternating Rate: Alternating Mode: continuous Mode: Continuous Mode: sec at each site Electrode Placement Biopolar: Distal & Proximal to muscle Monopolar: Over motor points Electrode Placement Directly over motor points Electrode Placement Directly over motor points Electrode Placement Grid Tech: distal & proximal to site

Clinical Decision Making. Haneul Lee, DSc, PT

Clinical Decision Making. Haneul Lee, DSc, PT Clinical Decision Making Haneul Lee, DSc, PT Why electrical stimulation has been included in a plan of care? The initial evaluation should clearly delineate the goals of electrical stimulation. ES goals

More information

GLOSSARY OF TERMS ASSOCIATED WITH TENS

GLOSSARY OF TERMS ASSOCIATED WITH TENS GLOSSARY OF TERMS ASSOCIATED WITH TENS ATP Adenosine Triphosphate that helps to promote protein synthesis. Accommodation Becoming accustomed to stimulation resulting in nerve and muscle fatigue. Acute

More information

Intelect Advanced EPR

Intelect Advanced EPR Intelect Advanced EPR 2776 Intelect Mobile Ultra sound 2778 Intelect Mobile Stim DJO Incorporated 2762CC Intelect Advanced Color Combo + EMG 2752CC Intelect advanced color Combo 2772MC Intelect Advanced

More information

High Voltage Pulsed Current (HVPC) Mohammed Taher Ahmed Associate professor of PT Mobile phone :

High Voltage Pulsed Current (HVPC) Mohammed Taher Ahmed Associate professor of PT   Mobile phone : High Voltage Pulsed Current (HVPC) Mohammed Taher Ahmed Associate professor of PT E-Mail: momarar@ksu.edu.sa Mobile phone : 0542115404 Objective To review the core concepts and terminology used in high

More information

DEFIBRILLATORS ATRIAL AND VENTRICULAR FIBRILLATION

DEFIBRILLATORS ATRIAL AND VENTRICULAR FIBRILLATION 1 DEFIBRILLATORS The two atria contract together and pump blood through the valves into the two ventricles, when the action potentials spread rapidly across the atria surface. After a critical time delay,

More information

EE 4BD4 Lecture 20. Therapeutic Stimulation

EE 4BD4 Lecture 20. Therapeutic Stimulation EE 4BD4 Lecture 20 Therapeutic Stimulation 1 2 Extracellular Stimulation (at cathode) 3 4 Design of FES (cont.): Example stimulus waveform shapes: monophasic, biphasic, chopped, triphasic, and asymmetric,

More information

Yasser Moh. Aneis, PhD, MSc., PT. Lecturer of Physical Therapy Basic Sciences Department

Yasser Moh. Aneis, PhD, MSc., PT. Lecturer of Physical Therapy Basic Sciences Department Yasser Moh. Aneis, PhD, MSc., PT. Lecturer of Physical Therapy Basic Sciences Department Learning Objectives Define Electrodiagnosis and its theoretical background. Describe the anatomical and functional

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #10 Wednesday, November 22, 2006 14. FUNDAMENTALS OF FUNCTIONAL ELECTRICAL STIMULATION (FES) We will look at: Design issues for FES Subthreshold

More information

Biomedical Instrumentation

Biomedical Instrumentation University of Zagreb Faculty of Electrical Engineering and Computing Biomedical Instrumentation Electrical stimulation prof.dr.sc. Ratko Magjarević December 2015 Electrical stimulation The effect of electric

More information

Muscle Stimulation. Page 1

Muscle Stimulation. Page 1 Muscle Stimulation Page 1 Page 2 Page 3 Table of Contents: Get Started with the E-Wave Pg 4 Controls and Features Pg 4 Factory Settings Pg 6 Electrodes and Skin Care Pg 7 Batteries Pg 7 Indications Pg

More information

Shortwave Diathermy. Objectives. What is Shortwave Diathermy? What is Shortwave Diathermy? Physiological Responses

Shortwave Diathermy. Objectives. What is Shortwave Diathermy? What is Shortwave Diathermy? Physiological Responses Shortwave Diathermy http://www.rehaboutlet.com/images/me300.jpg Michael Banes Deep Bhavsar Ryan Machuca ATPE 414 11/6/05 http://www.btlnet.com/imgen/shortwave.jpg Objectives To learn what shortwave diathermy

More information

Electrical Stimulation for the Upper Limb

Electrical Stimulation for the Upper Limb Electrical Stimulation for the Upper Limb CHARLES COSTELLO, PT, PHD, CHT Electrotherapy has been used for a long time 2 Since it s discovery, practitioners have looked for therapeutic applications Charles

More information

Cellular Bioelectricity

Cellular Bioelectricity ELEC ENG 3BB3: Cellular Bioelectricity Notes for Lecture #30 Thursday, March 30, 2006 Nerve excitation: To evaluate the pattern of nerve activation that is produced by a particular electrode configuration,

More information

Four Channels Pre-Programmed TENS and EMS ELECTRODE PLACEMENT. Edition: V1.0 Date of issue: 09 January 2017

Four Channels Pre-Programmed TENS and EMS ELECTRODE PLACEMENT. Edition: V1.0 Date of issue: 09 January 2017 Four Channels Pre-Programmed TENS and EMS ELECTRODE PLACEMENT Edition: V1.0 Date of issue: 09 January 2017 1 1. PROGRAMME SETTINGS The effect of Electrical stimulation on the body depends on the following

More information

Interferential Current Therapy. Interferential current is essentially a deeper form of electrical stimulation

Interferential Current Therapy. Interferential current is essentially a deeper form of electrical stimulation IFC Interferential current is essentially a deeper form of electrical stimulation In essence, IFC uses a carrier frequency, usually 4000 Hz and by crossing 2 individual current generators they interfere

More information

Medium Frequency: Interferential Therapy

Medium Frequency: Interferential Therapy Medium Frequency: Interferential Therapy Mohammed T, Ahmed PhD PT, PGDCR-CLT Rehabilitation Health Sciences CAMS-KSU Momarar@ksu.edu.sa Dr.taher_M@yahoo.com Objectives Explain the physical principles of

More information

Modalities. A review of commonly used modalities

Modalities. A review of commonly used modalities Modalities A review of commonly used modalities Determine patient response Always monitor the patient s response to modalities Interview the patient and obtain verbal and non-verbal responses Identify

More information

Nerve. (2) Duration of the stimulus A certain period can give response. The Strength - Duration Curve

Nerve. (2) Duration of the stimulus A certain period can give response. The Strength - Duration Curve Nerve Neuron (nerve cell) is the structural unit of nervous system. Nerve is formed of large numbers of nerve fibers. Types of nerve fibers Myelinated nerve fibers Covered by myelin sheath interrupted

More information

Introduction to Physical Agents Part II: Principles of Heat for Thermotherapy

Introduction to Physical Agents Part II: Principles of Heat for Thermotherapy Introduction to Physical Agents Part II: Principles of Heat for Thermotherapy Mohammed TA, Omar momarar@ksu.edu.sa Dr.taher_m@yahoo.com Mobile : 542115404 Office number: 2074 Objectives After studying

More information

Biomedical Instrumentation

Biomedical Instrumentation University of Zagreb Faculty of Electrical Engineering and Computing Biomedical Instrumentation Safety of electrical medical devices prof.dr.sc. Ratko Magjarević Medical technology Achievements Significant

More information

TRANSCUTANEOUS ELECTRICAL NERVE STIMULATION (TENS) Dr. Mohammed TA, Omar, PhD, PT Rehabilitation Science Department CAMS-KSU

TRANSCUTANEOUS ELECTRICAL NERVE STIMULATION (TENS) Dr. Mohammed TA, Omar, PhD, PT Rehabilitation Science Department CAMS-KSU TRANSCUTANEOUS ELECTRICAL NERVE STIMULATION (TENS) Dr. Mohammed TA, Omar, PhD, PT Rehabilitation Science Department CAMS-KSU momarar@ksu.edu.sa Definition of TENS and current specifications Modes of TENS

More information

Electrical Currents. Chapter 8. Sara Shapiro OUTLINE

Electrical Currents. Chapter 8. Sara Shapiro OUTLINE Chapter 8 Electrical Currents Sara Shapiro OUTLINE Terminology Introduction and History Effects of Electrical Currents Nerve Depolarization Muscle Depolarization Ionic Effects of Electrical Currents Clinical

More information

Clinical Application of Electrotherapy

Clinical Application of Electrotherapy Clinical Application of Electrotherapy MICHAEL G. DOLAN, MA, ATC, CSCS Canisius College FRANK C. MENDEL, PhD State University of New York at Buffalo Key Points Using electrotherapy in the management of

More information

EE 791 Lecture 2 Jan 19, 2015

EE 791 Lecture 2 Jan 19, 2015 EE 791 Lecture 2 Jan 19, 2015 Action Potential Conduction And Neural Organization EE 791-Lecture 2 1 Core-conductor model: In the core-conductor model we approximate an axon or a segment of a dendrite

More information

Omar Sami. Muhammad Abid. Muhammad khatatbeh

Omar Sami. Muhammad Abid. Muhammad khatatbeh 10 Omar Sami Muhammad Abid Muhammad khatatbeh Let s shock the world In this lecture we are going to cover topics said in previous lectures and then start with the nerve cells (neurons) and the synapses

More information

Shock-induced termination of cardiac arrhythmias

Shock-induced termination of cardiac arrhythmias Shock-induced termination of cardiac arrhythmias Group members: Baltazar Chavez-Diaz, Chen Jiang, Sarah Schwenck, Weide Wang, and Jinglei Zhang Cardiac arrhythmias, also known as irregular heartbeat, occur

More information

User Manual. PRO4 and PRO2. Problem Solving Through Innovation!

User Manual. PRO4 and PRO2. Problem Solving Through Innovation! Problem Solving Through Innovation! User Manual PRO4 and PRO2 Vectra Vision Vectra Touch Clinical Protocol System User Defined Protocols Dual Frequency Ultrasound Optical IrDA Port Zip Drive Gel Warmer

More information

ITEC Unit 13 Facial Electrical Treatments Recommended guided learning hours 250

ITEC Unit 13 Facial Electrical Treatments Recommended guided learning hours 250 ITEC Unit 13 Facial Electrical Treatments Recommended guided learning hours 250 Pre-requisite Students must hold the ITEC Level 2 Diploma for Beauty Specialists or equivalent Unit 13 Facial Electrical

More information

Sample Lab Report 1 from 1. Measuring and Manipulating Passive Membrane Properties

Sample Lab Report 1 from  1. Measuring and Manipulating Passive Membrane Properties Sample Lab Report 1 from http://www.bio365l.net 1 Abstract Measuring and Manipulating Passive Membrane Properties Biological membranes exhibit the properties of capacitance and resistance, which allow

More information

Manual Defibrillators, Automatic External Defibrillators, Cardioversion, and External Pacing

Manual Defibrillators, Automatic External Defibrillators, Cardioversion, and External Pacing Manual Defibrillators, Automatic External Defibrillators, Cardioversion, and External Pacing Key Points Defibrillators: - know the definition & electrical value of a joule - monophasic vs biphasic types:

More information

BSL PRO Lesson H03: Nerve Conduction Velocity: Along the Ulnar Nerve of a Human Subject

BSL PRO Lesson H03: Nerve Conduction Velocity: Along the Ulnar Nerve of a Human Subject Updated 12-22-03 BSL PRO Lesson H03: Nerve Conduction Velocity: Along the Ulnar Nerve of a Human Subject This PRO lesson describes hardware and software setup of the BSL PRO System to record and measure

More information

ULTRASOUND. To be able to undertake prescribed ultrasound treatment safely and effectively.

ULTRASOUND. To be able to undertake prescribed ultrasound treatment safely and effectively. ULTRASOUND Aim To be able to undertake prescribed ultrasound treatment safely and effectively. To be aware of contra indications and warning signs when undertaking the treatment Background Ultrasound is

More information

Relation between Membrane Potential Changes and Tension in Barnacle Muscle Fibers

Relation between Membrane Potential Changes and Tension in Barnacle Muscle Fibers Relation between Membrane Potential Changes and Tension in Barnacle Muscle Fibers CHARLES EDWARDS, SHIKO CHICHIBU, and SUSUMU HAGIWARA From the Department of Physiology, University of Minnesota, Minneapolis,

More information

Clare Goodman, Physiotherapist Julia Schmidt, Occupational Therapist. With thanks to the team of Master Trainers:

Clare Goodman, Physiotherapist Julia Schmidt, Occupational Therapist. With thanks to the team of Master Trainers: Clare Goodman, Physiotherapist Julia Schmidt, Occupational Therapist With thanks to the team of Master Trainers: Natasha Lannin, Ruth Barker, Simone Dorsch, Annie McCluskey, John Cannell Goal orientated

More information

What is a Microcurrent and how it CURE

What is a Microcurrent and how it CURE What is a Microcurrent and how it CURE Author: Mitchell Reiff Microcurrent is a physical therapy modality providing electro muscle stimulation through the means of an electric current delivered in millionths

More information

Basic Electrophysiology, the Electroretinogram (ERG) and the Electrooculogram (EOG) - Signal origins, recording methods and clinical applications

Basic Electrophysiology, the Electroretinogram (ERG) and the Electrooculogram (EOG) - Signal origins, recording methods and clinical applications Basic Electrophysiology, the Electroretinogram (ERG) and the Electrooculogram (EOG) - Signal origins, recording methods and clinical applications The body is a complex machine consisting of the central

More information

Technologies and architectures" Stimulator, electrodes, system flexibility, reliability, security, etc."

Technologies and architectures Stimulator, electrodes, system flexibility, reliability, security, etc. March 2011 Introduction" Basic principle (Depolarization, hyper polarization, etc.." Stimulation types (Magnetic and electrical)" Main stimulation parameters (Current, voltage, etc )" Characteristics (Muscular

More information

From last week: The body is a complex electrical machine. Basic Electrophysiology, the Electroretinogram ( ERG ) and the Electrooculogram ( EOG )

From last week: The body is a complex electrical machine. Basic Electrophysiology, the Electroretinogram ( ERG ) and the Electrooculogram ( EOG ) From last week: Differential Amplification This diagram shows a low frequency signal from the patient that differs between the two inputs and is therefore amplified, with an interfering high frequency

More information

NOVIN medical engineering Co. Designer and manufacturer of physiotherapy equipment

NOVIN medical engineering Co. Designer and manufacturer of physiotherapy equipment NOVIN medical engineering Co. Designer and manufacturer of physiotherapy equipment NOVIN medical engineering Co. started its journey in the field of physiotherapy equipment in 1998. Using senior and experienced

More information

SIX PACK ABS Item No INSTRUCTION MANUAL. Read entire manual before operating this product. Use only as directed.

SIX PACK ABS Item No INSTRUCTION MANUAL. Read entire manual before operating this product. Use only as directed. SIX PACK ABS Item No. 206098 INSTRUCTION MANUAL Read entire manual before operating this product. Use only as directed. WARNINGS If you are in the care of a physician, consult your physician before using

More information

BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013

BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013 BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013 Tutorial Assignment Page Due Date Week 1/Assignment 1: Introduction to NIA 1 January 28 The Membrane Tutorial 9 Week 2/Assignment 2: Passive

More information

Scientific and experimental bases of electroconvulsive therapy

Scientific and experimental bases of electroconvulsive therapy Part I Scientific and experimental bases of electroconvulsive therapy 1 Electricity and electroconvulsive therapy Conrad M. Swartz Information about electricity helps ensure electroconvulsive therapy (ECT)

More information

Compound Action Potential, CAP

Compound Action Potential, CAP Stimulus Strength UNIVERSITY OF JORDAN FACULTY OF MEDICINE DEPARTMENT OF PHYSIOLOGY & BIOCHEMISTRY INTRODUCTION TO NEUROPHYSIOLOGY Spring, 2013 Textbook of Medical Physiology by: Guyton & Hall, 12 th edition

More information

Contra-Indications, Warnings, Cautions & Precautions

Contra-Indications, Warnings, Cautions & Precautions Quick Reference Training Contra-Indications, Warnings, Cautions & Precautions BEST Devices Biofeedback Electro-Stimulation Technology 13140 Coit Road, Suite 515, Dallas, TX 75240 (T) 214.575.2820 avazzia.com

More information

Manual Defibrillators, Automatic External Defibrillators, Cardioversion, and External Pacing. D. J. McMahon cewood rev

Manual Defibrillators, Automatic External Defibrillators, Cardioversion, and External Pacing. D. J. McMahon cewood rev Manual Defibrillators, Automatic External Defibrillators, Cardioversion, and External Pacing D. J. McMahon 141001 cewood rev 2017-10-04 Key Points Defibrillators: - know the definition & electrical value

More information

Pacing Lead Implant Testing. Document Identifier

Pacing Lead Implant Testing. Document Identifier Pacing Lead Implant Testing 1 Objectives Upon completion of this presentation, the participant should be able to: Name the two primary surgical options for implanting pacing leads Describe three significant

More information

Sensory Analgesia. Pain Definitions a distressing feeling due to disease, bodily injury or organic disorder. uneasiness of mind or grief.

Sensory Analgesia. Pain Definitions a distressing feeling due to disease, bodily injury or organic disorder. uneasiness of mind or grief. Sensory Analgesia Anesthesia- Analgesia- Partial or complete loss of sensation with or without loss of consciousness Relieving pain, being in a state without pain Pain Definitions a distressing feeling

More information

Humans make voluntary decisions to talk, walk, stand up, or sit down. The

Humans make voluntary decisions to talk, walk, stand up, or sit down. The 2 E X E R C I S E Skeletal Muscle Physiology O B J E C T I V E S 1. To define motor unit, twitch, latent period, contraction phase, relaxation phase, threshold, summation, tetanus, fatigue, isometric contraction,

More information

Review of Electrotherapy Devices for Use in Veterinary Medicine

Review of Electrotherapy Devices for Use in Veterinary Medicine Review of Electrotherapy Devices for Use in Veterinary Medicine Sheila J. Schils, MS, PhD Electrotherapy devices used for rehabilitation provide an electrical current that activates sensory and motor neurons

More information

9/11/2018. Property of Aegis Therapies. Do not duplicate without written permission 1

9/11/2018. Property of Aegis Therapies. Do not duplicate without written permission 1 EFFECTIVENESS OF BIO PHYSICAL AGENTS ON OUTCOMES FOR THE OLDER ADULT WITH CHRONIC CONDITIONS Presented by Shonda McCauley, OTR/L And Mason Smith, COTA 2 TRAINING AGENDA Electrotherapy Overview Quality

More information

Electromyography II Laboratory (Hand Dynamometer Transducer)

Electromyography II Laboratory (Hand Dynamometer Transducer) (Hand Dynamometer Transducer) Introduction As described in the Electromyography I laboratory session, electromyography (EMG) is an electrical signal that can be recorded with electrodes placed on the surface

More information

LEADING THERAPY IN A NEW DIRECTION!

LEADING THERAPY IN A NEW DIRECTION! LEADING THERAPY IN A NEW DIRECTION! BUILT-IN semg PAIN MAP PROFILE CLINICAL INDICATIONS PATHOLOGICAL LIBRARY The Vectra Genisys is the first modular therapy system that consolidates six therapeutic modalities

More information

The Nervous System AP Biology

The Nervous System AP Biology The Nervous System 2005-2006 Neuron (nerve cell) signal direction dendrites cell body Structure fits function, it have many entry points for signal one path out transmits signal Nodes of Ranvier axon signal

More information

Skeletal muscles are composed of hundreds to thousands of individual cells,

Skeletal muscles are composed of hundreds to thousands of individual cells, 2 E X E R C I S E Skeletal Muscle Physiology O B J E C T I V E S 1. To define these terms used in describing muscle physiology: multiple motor unit summation, maximal stimulus, treppe, wave summation,

More information

What is Anatomy and Physiology?

What is Anatomy and Physiology? Introduction BI 212 BI 213 BI 211 Ecosystems Organs / organ systems Cells Organelles Communities Tissues Molecules Populations Organisms Campbell et al. Figure 1.4 Introduction What is Anatomy and Physiology?

More information

Modalities in Rehab Faizan zaffar kashoo

Modalities in Rehab Faizan zaffar kashoo Modalities in Rehab Faizan zaffar kashoo most commonly used cryotherapy thermotherapy electrical stimulation iontophoresis traction ultrasound Modalities in Rehab modalities are adjuncts to treatments

More information

NATIONAL COMPETENCY SKILL STANDARDS FOR PERFORMING NERVE CONDUCTION STUDIES

NATIONAL COMPETENCY SKILL STANDARDS FOR PERFORMING NERVE CONDUCTION STUDIES NATIONAL COMPETENCY SKILL STANDARDS FOR PERFORMING NERVE CONDUCTION STUDIES Nerve Conduction Study (NCS) providers practice in accordance with the facility policy and procedure manual which details every

More information

The heart's "natural" pacemaker is called the sinoatrial (SA) node or sinus node.

The heart's natural pacemaker is called the sinoatrial (SA) node or sinus node. PACEMAKER Natural pacemaker: The heart's "natural" pacemaker is called the sinoatrial (SA) node or sinus node. Artificial pacemaker: It is a small, battery-operated device that helps the heart beat in

More information

Neurophysiology scripts. Slide 2

Neurophysiology scripts. Slide 2 Neurophysiology scripts Slide 2 Nervous system and Endocrine system both maintain homeostasis in the body. Nervous system by nerve impulse and Endocrine system by hormones. Since the nerve impulse is an

More information

T.E.N.S (Transcutaneous Electrical Nerve Stimulation)

T.E.N.S (Transcutaneous Electrical Nerve Stimulation) You have been prescribed a T.E.N.S machine to help in the management of your pain. You should use it only for the condition for which it is prescribed. Not all pain will respond to the use of T.E.N.S and

More information

1724 Lab: Frog Skeletal Muscle Physiology (Marieb Exercise 16A) Marieb/iWorx / Ziser, 2002

1724 Lab: Frog Skeletal Muscle Physiology (Marieb Exercise 16A) Marieb/iWorx / Ziser, 2002 1724 Lab: Frog Skeletal Muscle Physiology (Marieb Exercise 16A) Marieb/iWorx / Ziser, 2002 I. Introduction. Read the introductory material in your lab manual Marieb Ex 16A: Skeletal Muscle Physiology Frog

More information

Neuromuscular Stimulation and Musculo-Skeletal Disorders: A Technology Approach to Prevention and Intervention in Workers

Neuromuscular Stimulation and Musculo-Skeletal Disorders: A Technology Approach to Prevention and Intervention in Workers Neuromuscular Stimulation and Musculo-Skeletal Disorders: A Technology Approach to Prevention and Intervention in Workers Lovely Krishen, PhD Sr. Advisor, Research and Development Biosysco, Inc. Edison

More information

Modalities and Rehab in the Athletic Training Room. Thomas Hunkele MPT, ATC, NASM-PES,CES Coordinator of Rehabilitation

Modalities and Rehab in the Athletic Training Room. Thomas Hunkele MPT, ATC, NASM-PES,CES Coordinator of Rehabilitation Modalities and Rehab in the Athletic Training Room Thomas Hunkele MPT, ATC, NASM-PES,CES Coordinator of Rehabilitation Disclosures The Great Debate To Be or Not To Be (Included) Active vs Passive rehabilitation

More information

Transcutaneous Electrical Nerve Stimulation Device GF-3 / GF-3T

Transcutaneous Electrical Nerve Stimulation Device GF-3 / GF-3T Transcutaneous Electrical Nerve Stimulation Device GF-3 / GF-3T Operation Manual Read Before Using GF-3-INS-LAB-RevA08 TABLE OF CONTENTS INTRODUCTION TO TENS INDICATIONS AND CONTRAINDICATIONS WARNINGS

More information

Ameen Alsaras. Ameen Alsaras. Mohd.Khatatbeh

Ameen Alsaras. Ameen Alsaras. Mohd.Khatatbeh 9 Ameen Alsaras Ameen Alsaras Mohd.Khatatbeh Nerve Cells (Neurons) *Remember: The neural cell consists of: 1-Cell body 2-Dendrites 3-Axon which ends as axon terminals. The conduction of impulse through

More information

Erigo User Script 1. Erigo Background Information. 2. Intended use and indications

Erigo User Script 1. Erigo Background Information. 2. Intended use and indications Erigo User Script 1. Erigo Background Information The Erigo was developed in collaboration with the Spinal Cord Injury Center at the Balgrist University Hospital in Zurich, Switzerland and the Orthopaedic

More information

Puzzling Pacemakers Cheryl Herrmann, APN, CCRN, CCNS-CSC-CMC

Puzzling Pacemakers Cheryl Herrmann, APN, CCRN, CCNS-CSC-CMC Puzzling Pacemakers Cheryl Herrmann, APN, CCRN, CCNS-CSC-CMC Pacemaker: An electric device implanted in the body to regulate the heart beat. Delivers electrical stimuli over leads with electrodes in contact

More information

Exercise 2: Skeletal Muscle Physiology: Activity 3: The Effect of Stimulus Frequency on Skeletal Muscle Contraction Lab Report

Exercise 2: Skeletal Muscle Physiology: Activity 3: The Effect of Stimulus Frequency on Skeletal Muscle Contraction Lab Report Name: Courtney.Sims Exercise 2: Skeletal Muscle Physiology: Activity 3: The Effect of Stimulus Frequency on Skeletal Muscle Contraction Lab Report Pre-lab Quiz Results You scored 100% by answering 4 out

More information

Therapeutic Modalities KIN 4345

Therapeutic Modalities KIN 4345 Therapeutic Modalities KIN 4345 Instructor: Sherry Ann Miller, MS, ATC, LAT Term: Fall 2016 Office: Center for Human Performance Room 104; 942-2173/486-6171 E-mail address: sherryann.miller@angelo.edu

More information

Sheet 5 physiology Electrocardiography-

Sheet 5 physiology Electrocardiography- *questions asked by some students Sheet 5 physiology Electrocardiography- -why the ventricles lacking parasympathetic supply? if you cut both sympathetic and parasympathetic supply of the heart the heart

More information

Labs #7 and #8: Vertebrate Skeletal Muscle

Labs #7 and #8: Vertebrate Skeletal Muscle Labs #7 and #8: Vertebrate Skeletal Muscle In this experiment, you will investigate the physiological properties of skeletal muscle from the isolated toad gastrocnemius. Concepts to understand include

More information

PART I. Disorders of the Heart Rhythm: Basic Principles

PART I. Disorders of the Heart Rhythm: Basic Principles PART I Disorders of the Heart Rhythm: Basic Principles FET01.indd 1 1/11/06 9:53:05 AM FET01.indd 2 1/11/06 9:53:06 AM CHAPTER 1 The Cardiac Electrical System The heart spontaneously generates electrical

More information

Shock-induced termination of cardiac arrhythmias

Shock-induced termination of cardiac arrhythmias Shock-induced termination of cardiac arrhythmias Group members: Baltazar Chavez-Diaz, Chen Jiang, Sarah Schwenck, Weide Wang, and Jinglei Zhang Abstract: Cardiac arrhythmias occur when blood flow to the

More information

1- Cochlear Impedance Telemetry

1- Cochlear Impedance Telemetry INTRA-OPERATIVE COCHLEAR IMPLANT MEASURMENTS SAMIR ASAL M.D 1- Cochlear Impedance Telemetry 1 Cochlear implants used presently permit bi--directional communication between the inner and outer parts of

More information

Therapeutic Ultrasound

Therapeutic Ultrasound THERAPEUTIC ULTRASOUND Therapeutic is a form of MECHANICAL energy Mechanical vibration at increasing frequencies is known as sound energy. Below 16Hz, these vibrations are not recognizable as sound The

More information

Electrotherapy. - Low-Frequency Electrotherapy - Diathermy and Hyperthermia - Electroconvulsive Therapy - Bibliography

Electrotherapy. - Low-Frequency Electrotherapy - Diathermy and Hyperthermia - Electroconvulsive Therapy - Bibliography Página 1 de 5 Electrotherapy - Low-Frequency Electrotherapy - Diathermy and Hyperthermia - Electroconvulsive Therapy - Bibliography The use of electric current to treat disease. Electrotherapy is based

More information

Occupational Therapy Association of Oregon By the end of the session you will all be Raving Fans of Physical Agent Modalities!

Occupational Therapy Association of Oregon By the end of the session you will all be Raving Fans of Physical Agent Modalities! Occupational Therapy Association of Oregon 2016 Ernie Escovedo OTD, OTR/L Lyn Cikara OTR/L Objectives By the end of the session you will all be Raving Fans of Physical Agent Modalities! Know what AOTA

More information

Understand the New 2019 Neurostimulator Analysis-Programming CPT Coding Structure and Associated Relative Value Units

Understand the New 2019 Neurostimulator Analysis-Programming CPT Coding Structure and Associated Relative Value Units Understand the New 2019 Neurostimulator Analysis-Programming CPT Coding Structure and Associated Relative Units The American Academy of Neurology (AAN) presents the following case studies to help you understand

More information

Higher National Unit specification. General information. Unit title: Electrotherapy (SCQF level 8) Unit code: H71N 35. Unit purpose.

Higher National Unit specification. General information. Unit title: Electrotherapy (SCQF level 8) Unit code: H71N 35. Unit purpose. Higher National Unit specification General information Unit code: H71N 35 Superclass: PB Publication date: May 2014 Source: Scottish Qualifications Authority Version: 01 Unit purpose This Unit is designed

More information

Applied Neuroscience. Conclusion of Science Honors Program Spring 2017

Applied Neuroscience. Conclusion of Science Honors Program Spring 2017 Applied Neuroscience Conclusion of Science Honors Program Spring 2017 Review Circle whichever is greater, A or B. If A = B, circle both: I. A. permeability of a neuronal membrane to Na + during the rise

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) Page 1 Summer 15 EXAMINATION Subject Code: 17671 Model Answer Page No: 1/ 16 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the

More information

biowave Biowave Corporation 16 Knight Street, Norwalk, CT 06851

biowave Biowave Corporation 16 Knight Street, Norwalk, CT 06851 biowave Biowave Corporation 16 Knight Street, Norwalk, CT 06851 1 877 BIOWAVE www.biowave.com Biowave PENS BiowavePRO System with Biowave Percutaneous Electrodes Percutaneous Neuromodulation Pain Therapy

More information

Electrostimulation Part 3: Bladder dysfunctions

Electrostimulation Part 3: Bladder dysfunctions GBM8320 Dispositifs Médicaux Intelligents Electrostimulation Part 3: Bladder dysfunctions Mohamad Sawan et al Laboratoire de neurotechnologies Polystim!!! http://www.cours.polymtl.ca/gbm8320/! mohamad.sawan@polymtl.ca!

More information

GBM8320 Dispositifs Médicaux Intelligents. Electrostimulation. Part 3: Bladder dysfunctions

GBM8320 Dispositifs Médicaux Intelligents. Electrostimulation. Part 3: Bladder dysfunctions GBM8320 Dispositifs Médicaux Intelligents Electrostimulation Part 3: Bladder dysfunctions Mohamad Sawan et al Laboratoire de neurotechnologies Polystim!!! http://www.cours.polymtl.ca/gbm8320/! mohamad.sawan@polymtl.ca!

More information

Principles and Applications of Electrical Circuits and Signal Theories in EP

Principles and Applications of Electrical Circuits and Signal Theories in EP Principles and Applications of Electrical Circuits and Signal Theories in EP Graydon Beatty, VP Therapy Development Atrial Fibrillation Division, St. Jude Medical, Inc. CardioRhythm 2009 Background Biophysics

More information

EE 791 Lecture 10. FES April 1, EE 791 Lecture 10 1

EE 791 Lecture 10. FES April 1, EE 791 Lecture 10 1 EE 791 Lecture 10 FES April 1, 2013 EE 791 Lecture 10 1 Normal Functional Control EE 791 Lecture 10 2 Current uses of FES Cardiovascular Exercise Breathing assist Grasping and Reaching Transfer and Standing

More information

Pain Relief Patch. Operation Manual Read Before Using MODEL # ET

Pain Relief Patch. Operation Manual Read Before Using MODEL # ET Pain Relief Patch Operation Manual Read Before Using Intended Use The ireliev Pain Relief Patch is intended for temporary relief of pain associated with sore and aching muscles in the upper and lower extremities

More information

Chapter 23 Unit 28. Therapeutic Modalities

Chapter 23 Unit 28. Therapeutic Modalities Chapter 23 Unit 28 Therapeutic Modalities Chapter Objectives Discuss the purpose of therapeutic modalities Explain the legal implications associated with the use of therapeutic modalities List the different

More information

Cell Physiolgy By: Dr. Foadoddini Department of Physiology & Pharmacology Birjand University of Medical Sciences

Cell Physiolgy By: Dr. Foadoddini Department of Physiology & Pharmacology Birjand University of Medical Sciences Chapt. 6,7,8 Cell Physiolgy By: Department of Physiology & Pharmacology Birjand University of Medical Sciences ١ Contraction of Skeletal Muscle ٢ ٣ ٤ T tubule ٥ Sliding Filament Mechanism ٦ ٧ ٨ ٩ ١٠ ١١

More information

Electrical Stimulation for Muscle Recovery Post CVA. Allison Larson PT, DPT

Electrical Stimulation for Muscle Recovery Post CVA. Allison Larson PT, DPT Electrical Stimulation for Muscle Recovery Post CVA Allison Larson PT, DPT Objectives Be able to discuss the indications, contraindications/ precautions related to using electrical stimulation post cerebral

More information

Lab #3: Electrocardiogram (ECG / EKG)

Lab #3: Electrocardiogram (ECG / EKG) Lab #3: Electrocardiogram (ECG / EKG) An introduction to the recording and analysis of cardiac activity Introduction The beating of the heart is triggered by an electrical signal from the pacemaker. The

More information

Muscle Weakness Or Paralysis With Compromise Of Peripheral Nerve

Muscle Weakness Or Paralysis With Compromise Of Peripheral Nerve Muscle Weakness Or Paralysis With Compromise Of Peripheral Nerve Muscle weakness or complete paralysis may be secondary to an interruption in the communication between the brain and nerve cells in the

More information

Electrodiagnostics; Chronaxymetry Honorata Nawrocka-Bogusz, Marek Tuliszka, Leszek Kubisz

Electrodiagnostics; Chronaxymetry Honorata Nawrocka-Bogusz, Marek Tuliszka, Leszek Kubisz Electrodiagnostics; Chronaxymetry Honorata Nawrocka-Bogusz, Marek Tuliszka, Leszek Kubisz Introduction Electrodiagnostics is a part of medicine encompassing methods of studying nerve and muscle stimulation

More information

Mini Pulse Electronic Stimulator

Mini Pulse Electronic Stimulator Mini Pulse Electronic Stimulator Model: PM-180 Operating Manual IMPORTANT: Please read all instructions before using this product. Retain this manual for future reference. www.santamedical.com IMPORTANT

More information

Cardiovascular system progress chart

Cardiovascular system progress chart Neural muscular system Topic 3A: Characteristics and functions of different muscle fibre types for a variety of sporting activities Term Muscle fibre Slow twitch (type I) Fast oxidative glycolytic (type

More information

User Manual Table of Contents

User Manual Table of Contents All Natural, Drug-Free Pain Relief User Manual Table of Contents Table of Contents...1 Contraindications, Warnings, and Precautions...2-4 Introduction - The Dolphin Neurostim OTC...5 Product Contents...6

More information

Neuromuscular Stimulation (NMS)

Neuromuscular Stimulation (NMS) Neuromuscular Stimulation (NMS) Electrode Placement Manual Visit our website: www.veritymedical.co.uk for detailed application protocols 1 Contents Contents Page Introduction 4 Muscle profile 4 Classification

More information

Electrotherapy Application Procedures

Electrotherapy Application Procedures Electrotherapy Application Procedures Part 1 patient s preparation procedures a-verify identity of the patients Good morning sir / madam. I am your therapist who is going to treat you. Don t worry; I will

More information