Beyond Blind Averaging: Analyzing Event-Related Brain Dynamics. Scott Makeig. sccn.ucsd.edu

Size: px
Start display at page:

Download "Beyond Blind Averaging: Analyzing Event-Related Brain Dynamics. Scott Makeig. sccn.ucsd.edu"

Transcription

1 Beyond Blind Averaging: Analyzing Event-Related Brain Dynamics Scott Makeig Institute for Neural Computation University of California San Diego La Jolla CA sccn.ucsd.edu Talk given at the EEG/MEG course preceding the Human Brain Mapping meeting in Toronto, June,

2 EEGLAB An Open-Source EEG/MEG Signal Processing Environment for Matlab sccn.ucsd.edu/eeglab Software for applying most of the techniques covered in this talk are freely available in the EEGLAB open source toolbox for Matlab. EEGLAB consists of several hundred Matlab functions, integrated under a graphic user interface by Arnaud Delorme (pictured). A growing list of plug-in capabilities have been contributed or published by other groups, making EEGLAB an attractive open source environment for exploratory signal processing of EEG, MEG, or other electrophysiological data. 2

3 Adequacy of Blind Response Averaging IF. If equivalent stimuli (passively) evoke the same macro field responses (with fixed latencies and polarities or phase) in all trials If all the REST of the EEG can be considered to be Gaussian noise sources that are not affected by the stimuli.. THEN The stimulus-locked average contains all the meaningful event-related EEG/MEG brain dynamics. The adequacy of the blind response averaging paradigm has been too little questioned in electrophysiology 3

4 Inadequacy of Blind Response Averaging EEG data ERP mean + EEG NOISEh Highly questionable assumptions:? The living brain produces passive responses?????????????????????? Ongoing EEG processes are not perturbed by events no transient phase locking no ERP contributions from ongoing EEG processes.? Evoked response processes are spatially segregated from ongoing EEG processes.? The true response baseline is flat.? Equivalent stimulus events evoke equivalent brain responses eventrelated brain dynamics are stationary from trial to trial. EEG1 EEG2 EEG4 Blind response averaging does not capture all the important features of eventrelated brain dynamics (!). Taking the results of response averaging as real often leads to both explicit and tacit confusions 4

5 Monkey LOOK see Monkey Do Do Monkey see Monkey do Currently, much ERP research (as well as much neuroscience in general), remains focused on bottom-up (afferent) brain processing of stimulus events As this figure (based on one published in Science, 2001) shows. However, anatomically, much or even most of the visual system is devoted to top-down (efferent) communication, whose role has until recently been all but ignored. 5

6 EEG? ERP EEG? ERP EEG? EEG? EEG? ERP C20-50 EEG? ERP EEG? ERP However, much ERP research (as well as much neuroscience in general), remains focused on bottom-up (afferent) brain processing of stimulus events As this figure shows. However, anatomically, much or even most of the visual system is devoted to top-down (efferent) communication, whose role has until recently been all but ignored. 6

7 Electrodes EEG Local Synchrony Cortex Domains of synchrony Local Synchrony Spatial Source Filtering Scalp sensors average the dynamics of cortical (and non-brain) sources Skin Skull EEG sources must be areas of partially synchronous local field potentials. Because of volume conduction, scalp electrodes (or MEG sensors) record the sum of potentials from different source areas. Spatial source filtering is therefore necessary to accurately measure the synchronized cortical activities. 7

8 Spatial Filtering by ICA Standard Beamforming Blind Beamforming by ICA Uses a forward head Does not require a forward head model (approximation) model can separate both applied first to separate cortical and non-cortical sources. cortical signals. (But a head model may be applied last). Assumes the signals from both Assumes the signals at cortical and non-brain sources are every defined brain voxel independent no source are uncorrelated. geometry constraint. Minimizes 2 nd -order Minimizes all orders of source (pairwise) correlations. interaction minimum mutual information. A comparison of Independent component analysis (ICA) with current beamforming approaches to spatial filtering for cortical activity. 8

9 ICA Blind EEG Source Separation Unmixes scalp channel mixing (spatial averaging)! EEG Cocktail Party Independent Component Analysis (ICA) (right) can be used to separate N sound sources summed in recordings at N microphones, without relying on a detailed phonological model of the sounds characteristics of each source this is so-called blind separation. ICA uses the presumption that the waveforms of the individual sound sources are independent over time. Applied to EEG data (left), ICA assumes that the EEG is predominantly composed of a number of domains of synchronous neural (or neuroglial) activity, each of which must, by simple biophysics, project to most of the recording scalp electrodes. If synchronous activity within these domains are predominantly independent of each other, ICA can separate the summed signals from these domains into records of their separation activities, given that the number of such domains making large contributions to the recorded signals are smaller than the number of recording sites. 9

10 ERP-Image Plotting µv, green is 0! " #$ %&' ("# )*"+,!-- ERP-image plotting (Jung et al., 1999; Makeig et al., 1999) reveals trial-to-trial dependence on external or internal sorting variables (here, subject reaction time, RT). Here, on the left, ERP-image plotting shows the P3 feature of the visual target ERP (lower trace) at scalp site Cz is actually time locked to the subject button press, and is therefore not well represented in the stimuluslocked average. The right image shows the effects of smoothing the ERP image on the left using a (vertical) moving average of ~20 trials. Note the complex relationship of the P2 feature to subject RT 10

11 Collections of single trials are regular, but in multiple ways so they appear noisy! The ERP Image Stim RT Sorted Trials Time (ms µv Time (ms) 43.7 Detail of an ERP-image plot 11

12 ERP image EEG_epoch EEG_epoch EEG_epoch EEG_epoch EEG_epoch EEG_epoch EEG_epoch ERP EEG_epoch time ERP EEG_epoch EEG_epoch EEG_epoch EEG_epoch RT Cz One ERP Many ERP-image projections ERP-image plotting theory. Instead of averaging all trials (here conceived as living in a multidimensional space of trial differences), creating one average ERP (red lines), A sorting variable (here, a sorting direction) is used to group trials along a one-dimensional continuum (straight orange arrow), producing an ERP image. However, many sorting directions are possible, even curving lines (curving orange arrow). Thus, there are many ERP-image visualizations of a set of event-related trials 12

13 What produces event-related potential averages (ERPs)? Inter-trial Coherence (ITC) ( phase-locking factor ) Significant consistency of local phase of a physiological waveform across successive trials. EVENTS EVENT EVENT EVENT given delay given frequency LOCAL PHASE LOCAL PHASE LOCAL PHASE PHASE LOCKING Inter-trial coherence (= Tallon-Baudry s phase-locking factor ) measures frequency-domain phase coherence between an electrophysiological channel (or independent component!) and a (virtual) indicator channel marking occurrences of stimuli. The result is a measure of the degree of phase consistency (or phase-locking ) at each frequency and latency relative to a class of events. 13

14 SINGLE TRIALS ERP-image Plot µv AVERAGE ERP INTER-TRIAL COHERENCE (phase resetting) NO AMPLITUDE INCREASE 400 SIM. TRIALS... P = 0.02 INTER-TRIAL COHERENCE P = 0.02 Here, a stimulation of a post- event increase in inter-trial coherence (ITC) was created. Although the effect is hard to see in a set of a few trials, an ERP image of the simulated data shows it clearly. Although ITC increases, power in the simulated frequency band does not. The post- stimulus ERP (top trace), therefore, does NOT represent increased amplitude at one frequency following the simulated events. 14

15 Pure ERP ITC An example of a phase/latency-sorted ERP-image plot of the activity of an independent component accounting for a large portion of the early visual ERP to single target letters presented in a working memory paradigm (Onton and Makeig, in press). This component process does not exhibit prolonged phaseresetting but rather something like a true or pure ERP. However, its eventrelated dynamics also include a prolonged energy decrease (middle trace) at the same frequencies and its evoked response is triphasic, not contributing to just one ERP peak 15

16 Phase -Sorted Trials Stimulus Hz High Alpha, Non-target Lowest Alpha (10%) µv Ss +6 µv ITC 0 ERP ITC p = Time (ms) Makeig et al., Science 2002 An opposite extreme, from Makeig et al. (Science, 2002), showing partial phase-locking (ITC ~ 0.3) of an ongoing alpha process at the Pz electrode. This is indicated by the ITC trace (lower trace) and by the sigmoidal wave fronts, following stimulus onsets (vertical line) in the alpha phase-sorted ERP image. Note the relation of the ERP at the indicated (dotted line) latency to the individual trials in the phase-sorted ERP image 16

17 Event-Related Spectral Perturbation (ERSP) Frequency (Hz) 10 db Time (ms) Changes in the baseline-normalized mean power spectrum can be plotted in db in wideband time/frequency format I dubbed the Event-Related Spectral Perturbation (ERSP, Makeig, 1993). Here, the ERSP represents mean changes across the 31 scalp electrodes time locked to the subject button press (vertical solid line) following visual stimulus presentations (whose median latency is indicated by the vertical dotted line). At each time/frequency point, the scalp map of power changes is different, reflecting the mixed contributions to each scalp channel of the ERSP dynamics of multiple cortical source areas. (see Makeig et al., PLOS, 2004). 17

18 No single measure captures the event-related brain dynamics ERP Is a given ERP feature a true ERP, or phase resetting, or both (ITC)!? Does it coincide with an EEG power increase or decrease (ERSP)? ITC No amplitude effects (ERSP & ERP)! ERSP Does not show phase statistics (ITC). Is a given power increase also in the ERP, or not? But, are these measures enough?? No way! but first Event-related brain dynamics are complex. 18

19 ERP image of 9.6-Hz alpha power Load 7 Load 5 db Load 3 Onton & Makeig, in prep. EEG and MEG dynamics give clues as to the role of macrodynamics (producing EEG and MEG records) in brain function. Here, a cluster of lateral occipital independent component processes (from a group of subjects performing in a modified Sternberg visual letter working memory task), produce both the triphasic ERP (see 4-back single-subject slide) but also crisp changes in alpha power time locked to experimental events. Here, the ERP image plots the time course of alpha power in single trials (rather than potential). Not the sudden increase in alpha power following the auditory feedback (second curving black line) marking the end of the trial. This and other experiments associate alpha activity in sensory areas with a decrease in level of sensory attention. 19

20 Independent Alpha Processes An example from my laboratory of two independent components extracted from the same experimental session. Although the activity spectra and stimuluslocked ERPs of the two component processes are nearly identical, and both the scalp maps and equivalent dipole locations of the two processes are bilaterally symmetric, ICA determined that these were temporally independent processes in this session. Note: the scalp maps found by ICA to represent the projection of each source to all the channels very strongly resemble the projection of a single-equivalent dipole (in a simple spherical head model), with a residual variance, across all 253 scalp channels, of about 2% (doubtless the level of head model error)! Thus, the two process scalp maps are highly consistent with their possible generation in single patches of cortex. 20

21 Frontal Midline Theta Sources Onton et al., NeuroImage 05 A second example from the same Sternberg working memory task (from Onton et al., Neuroimage, 2005 available in press as of 6/05). Here, a cluster of frontal midline theta processes (from 19 of 22 subjects, pink dots) was identified. Their activity spectra (C) are strongly peaked in the theta range (about 6 Hz), while the activity of the overlying scalp channel (Fz) also includes other activity volume conducted from other areas of cortex. Only half of the theta power at Fz was contributed by the radially oriented sources located directly beneath it Yet (as shown in Onton et al., 2005), the fm cluster contributed ALL of the memory-related increase in theta power at Fz. 21

22 Independent Time-Frequency Modes (Medial Frontal Processes) Letter Onton et al., NeuroImage 05 In the same paper, we introduce a new mode of trial-by-trial decomposition, log spectral ICA. We use this method to demonstrate that the fm processes exhibit at least two modes of activity during presentation of letters to be memorized steady theta and its first harmonic (low beta) (left image) and isolated (and slightly higher-frequency) beta bursts (or their opposite, beta suppression, shown here). 22

23 Onton et al., NeuroImage 05 Plotting the weights on these two factors for all single trials from the fm process cluster allowed us to trace back and plot the actual time courses of the trials with extreme weights on one or another of the two spectral modes. This demonstrates the reality of the spectral decomposition, and further demonstrates the complexity of event-related activity, even from a set of wellfiltered cortical sources with distinct (mean) dynamics. 23

24 No single measure captures all the event-related brain dynamics Together, are the ERP, ERP image, ITC, & ERSP enough?? No! For one, they are still averages! TO DO: Explore the structure of (trials subjects source dynamics) Explore the effects of pre-event context and post-event expectation on event-related dynamics Cognition, perception, awareness, consciousness are all active! This is the fundamental shortcoming of average measures! Compare descriptive data models with generative cortical models And with invasive multiscale data! A deeper critique of blind trial averaging methods (either in time or time/frequency domains!) is that the brain subserves active cognition which cannot wait for results of averaging to act! In general, brain electrophysiology is in the midst of a fundamental advance made possible by the easy availability of intensive computational processing power For more information on our work, please visit the Swartz Center (SCCN) web pages: And/or my personal web pages: Scott Makeig La Jolla, CA 6/26/05 smakeig@ucsd.edu 24

Decisions Have Consequences

Decisions Have Consequences Decisions Have Consequences Scott Makeig Swartz Center for Computational Neuroscience Institute for Neural Computation UCSD, La Jolla CA Precis of talk given at the recent Banbury Center workshop on decision

More information

Multiscale Evidence of Multiscale Brain Communication

Multiscale Evidence of Multiscale Brain Communication Multiscale Evidence of Multiscale Brain Communication Scott Makeig Swartz Center for Computational Neuroscience Institute for Neural Computation University of California San Diego La Jolla CA Talk given

More information

EEG changes accompanying learned regulation of 12-Hz EEG activity

EEG changes accompanying learned regulation of 12-Hz EEG activity TNSRE-2002-BCI015 1 EEG changes accompanying learned regulation of 12-Hz EEG activity Arnaud Delorme and Scott Makeig Abstract We analyzed 15 sessions of 64-channel EEG data recorded from a highly trained

More information

From Single-trial EEG to Brain Area Dynamics

From Single-trial EEG to Brain Area Dynamics From Single-trial EEG to Brain Area Dynamics a Delorme A., a Makeig, S., b Fabre-Thorpe, M., a Sejnowski, T. a The Salk Institute for Biological Studies, 10010 N. Torey Pines Road, La Jolla, CA92109, USA

More information

From single-trial EEG to brain area dynamics

From single-trial EEG to brain area dynamics Neurocomputing 44 46 (2002) 1057 1064 www.elsevier.com/locate/neucom From single-trial EEG to brain area dynamics A. Delorme a;, S. Makeig a, M. Fabre-Thorpe b, T. Sejnowski a a The Salk Institute for

More information

Electroencephalographic brain dynamics following visual targets requiring manual responses

Electroencephalographic brain dynamics following visual targets requiring manual responses Electroencephalographic brain dynamics following visual targets requiring manual responses Scott Makeig* (1), Arnaud Delorme (1), Marissa Westerfield (4), Tzyy-Ping Jung (1), Jeanne Townsend (4), Eric

More information

Variability of frontal midline EEG dynamics during working memory

Variability of frontal midline EEG dynamics during working memory In Press, Neuroimage, 2005 Variability of frontal midline EEG dynamics during working memory Julie Onton * Arnaud Delorme Scott Makeig Swartz Center for Computational Neuroscience Institute for Neural

More information

Information-based modeling of event-related brain dynamics

Information-based modeling of event-related brain dynamics Neuper & Klimesch (Eds.) Progress in Brain Research, Vol. 159 ISSN 0079-6123 Copyright r 2006 Elsevier B.V. All rights reserved CHAPTER 7 Information-based modeling of event-related brain dynamics Julie

More information

ABSTRACT 1. INTRODUCTION 2. ARTIFACT REJECTION ON RAW DATA

ABSTRACT 1. INTRODUCTION 2. ARTIFACT REJECTION ON RAW DATA AUTOMATIC ARTIFACT REJECTION FOR EEG DATA USING HIGH-ORDER STATISTICS AND INDEPENDENT COMPONENT ANALYSIS A. Delorme, S. Makeig, T. Sejnowski CNL, Salk Institute 11 N. Torrey Pines Road La Jolla, CA 917,

More information

ISSN: (Online) Volume 3, Issue 7, July 2015 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 3, Issue 7, July 2015 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 3, Issue 7, July 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

More information

Information-based modeling of event-related brain dynamics

Information-based modeling of event-related brain dynamics Information-based modeling of event-related brain dynamics Julie Onton Scott Makeig Swartz Center for Computational Neuroscience University of California San Diego La Jolla CA 92093-0961 {julie,scott}@sccn.ucsd.edu

More information

Event Related Potentials: Significant Lobe Areas and Wave Forms for Picture Visual Stimulus

Event Related Potentials: Significant Lobe Areas and Wave Forms for Picture Visual Stimulus Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 6.017 IJCSMC,

More information

DATA MANAGEMENT & TYPES OF ANALYSES OFTEN USED. Dennis L. Molfese University of Nebraska - Lincoln

DATA MANAGEMENT & TYPES OF ANALYSES OFTEN USED. Dennis L. Molfese University of Nebraska - Lincoln DATA MANAGEMENT & TYPES OF ANALYSES OFTEN USED Dennis L. Molfese University of Nebraska - Lincoln 1 DATA MANAGEMENT Backups Storage Identification Analyses 2 Data Analysis Pre-processing Statistical Analysis

More information

Frontal midline EEG dynamics during working memory

Frontal midline EEG dynamics during working memory www.elsevier.com/locate/ynimg NeuroImage 27 (2005) 341 356 Frontal midline EEG dynamics during working memory Julie Onton,* Arnaud Delorme, and Scott Makeig Swartz Center for Computational Neuroscience,

More information

Electroencephalographic Brain Dynamics Following Manually Responded Visual Targets

Electroencephalographic Brain Dynamics Following Manually Responded Visual Targets PLoS BIOLOGY Electroencephalographic Brain Dynamics Following Manually Responded Visual Targets Scott Makeig 1*, Arnaud Delorme 1, Marissa Westerfield 2, Tzyy-Ping Jung 1, Jeanne Townsend 2, Eric Courchesne

More information

Measure Projection Analysis: A Probabilistic Approach to EEG Source Comparison and Multi-Subject Inference

Measure Projection Analysis: A Probabilistic Approach to EEG Source Comparison and Multi-Subject Inference Accepted Manuscript Measure Projection Analysis: A Probabilistic Approach to EEG Source Comparison and Multi-Subject Inference Nima Bigdely-Shamlo, Tim Mullen, Kenneth Kreutz-Delgado, Scott Makeig PII:

More information

Prestimulus Alpha as a Precursor to Errors in a UAV Target Orientation Detection Task

Prestimulus Alpha as a Precursor to Errors in a UAV Target Orientation Detection Task Prestimulus Alpha as a Precursor to Errors in a UAV Target Orientation Detection Task Carryl Baldwin 1, Joseph T. Coyne 2, Daniel M. Roberts 1, Jane H. Barrow 1, Anna Cole 3, Ciara Sibley 3, Brian Taylor

More information

Mining Electroencephalographic Data Using Independent Component Analysis

Mining Electroencephalographic Data Using Independent Component Analysis Mining Electroencephalographic Data Using Independent Component Analysis Tzyy-Ping Jung and Scott Makeig Swartz Center for Computational Neuroscience Institute for Neural Computation University of California,

More information

A Brain Computer Interface System For Auto Piloting Wheelchair

A Brain Computer Interface System For Auto Piloting Wheelchair A Brain Computer Interface System For Auto Piloting Wheelchair Reshmi G, N. Kumaravel & M. Sasikala Centre for Medical Electronics, Dept. of Electronics and Communication Engineering, College of Engineering,

More information

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute. Modified Combinatorial Nomenclature Montage, Review, and Analysis of High Density EEG Terrence D. Lagerlund, M.D., Ph.D. CP1208045-16 Disclosure Relevant financial relationships None Off-label/investigational

More information

EEG-Rhythm Dynamics during a 2-back Working Memory Task and Performance

EEG-Rhythm Dynamics during a 2-back Working Memory Task and Performance EEG-Rhythm Dynamics during a 2-back Working Memory Task and Performance Tsvetomira Tsoneva, Davide Baldo, Victor Lema and Gary Garcia-Molina Abstract Working memory is an essential component of human cognition

More information

What is novel in the novelty oddball paradigm? Functional significance of the novelty P3

What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 * Manuscript-title pg, abst, fig... Debener et al. Independent components of the auditory novelty oddball What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related

More information

Brain wave synchronization and entrainment to periodic acoustic stimuli

Brain wave synchronization and entrainment to periodic acoustic stimuli Neuroscience Letters 424 (2007) 55 60 Brain wave synchronization and entrainment to periodic acoustic stimuli Udo Will, Eric Berg School of Music, Cognitive Ethnomusicology, Ohio State University, 110

More information

Medial Prefrontal Theta Bursts Precede Rapid Motor Responses during Visual Selective Attention

Medial Prefrontal Theta Bursts Precede Rapid Motor Responses during Visual Selective Attention The Journal of Neuroscience, October 31, 2007 27(44):11949 11959 11949 Behavioral/Systems/Cognitive Medial Prefrontal Theta Bursts Precede Rapid Motor Responses during Visual Selective Attention Arnaud

More information

AUDL GS08/GAV1 Signals, systems, acoustics and the ear. Pitch & Binaural listening

AUDL GS08/GAV1 Signals, systems, acoustics and the ear. Pitch & Binaural listening AUDL GS08/GAV1 Signals, systems, acoustics and the ear Pitch & Binaural listening Review 25 20 15 10 5 0-5 100 1000 10000 25 20 15 10 5 0-5 100 1000 10000 Part I: Auditory frequency selectivity Tuning

More information

Neurophysiologically Driven Image Triage: A Pilot Study

Neurophysiologically Driven Image Triage: A Pilot Study Neurophysiologically Driven Image Triage: A Pilot Study Santosh Mathan Honeywell Laboratories 3660 Technology Dr Minneapolis, MN 55418 USA santosh.mathan@honeywell.com Stephen Whitlow Honeywell Laboratories

More information

Top-Down versus Bottom-up Processing in the Human Brain: Distinct Directional Influences Revealed by Integrating SOBI and Granger Causality

Top-Down versus Bottom-up Processing in the Human Brain: Distinct Directional Influences Revealed by Integrating SOBI and Granger Causality Top-Down versus Bottom-up Processing in the Human Brain: Distinct Directional Influences Revealed by Integrating SOBI and Granger Causality Akaysha C. Tang 1, Matthew T. Sutherland 1, Peng Sun 2, Yan Zhang

More information

Computational Perception /785. Auditory Scene Analysis

Computational Perception /785. Auditory Scene Analysis Computational Perception 15-485/785 Auditory Scene Analysis A framework for auditory scene analysis Auditory scene analysis involves low and high level cues Low level acoustic cues are often result in

More information

Depth/surface relationships: Confronting noninvasive measures to intracerebral EEG

Depth/surface relationships: Confronting noninvasive measures to intracerebral EEG Depth/surface relationships: Confronting noninvasive measures to intracerebral EEG Christian G Bénar Institut de Neurosciences des Systèmes; INSERM, Aix-Marseille Université christian.benar@univ-amu.fr

More information

WAVELET ENERGY DISTRIBUTIONS OF P300 EVENT-RELATED POTENTIALS FOR WORKING MEMORY PERFORMANCE IN CHILDREN

WAVELET ENERGY DISTRIBUTIONS OF P300 EVENT-RELATED POTENTIALS FOR WORKING MEMORY PERFORMANCE IN CHILDREN WAVELET ENERGY DISTRIBUTIONS OF P300 EVENT-RELATED POTENTIALS FOR WORKING MEMORY PERFORMANCE IN CHILDREN Siti Zubaidah Mohd Tumari and Rubita Sudirman Department of Electronic and Computer Engineering,

More information

Supporting Information

Supporting Information Supporting Information ten Oever and Sack 10.1073/pnas.1517519112 SI Materials and Methods Experiment 1. Participants. A total of 20 participants (9 male; age range 18 32 y; mean age 25 y) participated

More information

Oscillations: From Neuron to MEG

Oscillations: From Neuron to MEG Oscillations: From Neuron to MEG Educational Symposium, MEG UK 2014, Nottingham, Jan 8th 2014 Krish Singh CUBRIC, School of Psychology Cardiff University What are we trying to achieve? Bridge the gap from

More information

An Overview of BMIs. Luca Rossini. Workshop on Brain Machine Interfaces for Space Applications

An Overview of BMIs. Luca Rossini. Workshop on Brain Machine Interfaces for Space Applications An Overview of BMIs Luca Rossini Workshop on Brain Machine Interfaces for Space Applications European Space Research and Technology Centre, European Space Agency Noordvijk, 30 th November 2009 Definition

More information

Biomedical Research 2013; 24 (3): ISSN X

Biomedical Research 2013; 24 (3): ISSN X Biomedical Research 2013; 24 (3): 359-364 ISSN 0970-938X http://www.biomedres.info Investigating relative strengths and positions of electrical activity in the left and right hemispheres of the human brain

More information

Theta Oscillation Related to the Auditory Discrimination Process in Mismatch Negativity: Oddball versus Control Paradigm

Theta Oscillation Related to the Auditory Discrimination Process in Mismatch Negativity: Oddball versus Control Paradigm ORIGINAL ARTICLE J Clin Neurol 2012;8:35-42 Print ISSN 1738-6586 / On-line ISSN 2005-5013 http://dx.doi.org/10.3988/jcn.2012.8.1.35 Open Access Theta Oscillation Related to the Auditory Discrimination

More information

Stefan Debener a,b, *, Scott Makeig c, Arnaud Delorme c, Andreas K. Engel a,b. Research report

Stefan Debener a,b, *, Scott Makeig c, Arnaud Delorme c, Andreas K. Engel a,b. Research report Cognitive Brain Research 22 (2005) 309 321 Research report What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component

More information

Neuro Q no.2 = Neuro Quotient

Neuro Q no.2 = Neuro Quotient TRANSDISCIPLINARY RESEARCH SEMINAR CLINICAL SCIENCE RESEARCH PLATFORM 27 July 2010 School of Medical Sciences USM Health Campus Neuro Q no.2 = Neuro Quotient Dr.Muzaimi Mustapha Department of Neurosciences

More information

Sum of Neurally Distinct Stimulus- and Task-Related Components.

Sum of Neurally Distinct Stimulus- and Task-Related Components. SUPPLEMENTARY MATERIAL for Cardoso et al. 22 The Neuroimaging Signal is a Linear Sum of Neurally Distinct Stimulus- and Task-Related Components. : Appendix: Homogeneous Linear ( Null ) and Modified Linear

More information

Advances in Neural Information Processing Systems 8, D. Touretzky, M. Mozer and. Independent Component Analysis. Howard Hughes Medical Institute and

Advances in Neural Information Processing Systems 8, D. Touretzky, M. Mozer and. Independent Component Analysis. Howard Hughes Medical Institute and Advances in Neural Information Processing Systems 8, D. Touretzky, M. Mozer and M. Hasselmo (Eds.), MIT Press, Cambridge MA, 145-151, 1996. Independent Component Analysis of Electroencephalographic Data

More information

Neural Correlates of Human Cognitive Function:

Neural Correlates of Human Cognitive Function: Neural Correlates of Human Cognitive Function: A Comparison of Electrophysiological and Other Neuroimaging Approaches Leun J. Otten Institute of Cognitive Neuroscience & Department of Psychology University

More information

What do you notice? Woodman, Atten. Percept. Psychophys., 2010

What do you notice? Woodman, Atten. Percept. Psychophys., 2010 What do you notice? Woodman, Atten. Percept. Psychophys., 2010 You are trying to determine if a small amplitude signal is a consistent marker of a neural process. How might you design an experiment to

More information

Figure 1. Source localization results for the No Go N2 component. (a) Dipole modeling

Figure 1. Source localization results for the No Go N2 component. (a) Dipole modeling Supplementary materials 1 Figure 1. Source localization results for the No Go N2 component. (a) Dipole modeling analyses placed the source of the No Go N2 component in the dorsal ACC, near the ACC source

More information

EEG Analysis on Brain.fm (Focus)

EEG Analysis on Brain.fm (Focus) EEG Analysis on Brain.fm (Focus) Introduction 17 subjects were tested to measure effects of a Brain.fm focus session on cognition. With 4 additional subjects, we recorded EEG data during baseline and while

More information

The EEG Analysis of Auditory Emotional Stimuli Perception in TBI Patients with Different SCG Score

The EEG Analysis of Auditory Emotional Stimuli Perception in TBI Patients with Different SCG Score Open Journal of Modern Neurosurgery, 2014, 4, 81-96 Published Online April 2014 in SciRes. http://www.scirp.org/journal/ojmn http://dx.doi.org/10.4236/ojmn.2014.42017 The EEG Analysis of Auditory Emotional

More information

Neural Networks: Tracing Cellular Pathways. Lauren Berryman Sunfest 2000

Neural Networks: Tracing Cellular Pathways. Lauren Berryman Sunfest 2000 Neural Networks: Tracing Cellular Pathways Lauren Berryman Sunfest 000 Neural Networks: Tracing Cellular Pathways Research Objective Background Methodology and Experimental Approach Results and Conclusions

More information

Competing Streams at the Cocktail Party

Competing Streams at the Cocktail Party Competing Streams at the Cocktail Party A Neural and Behavioral Study of Auditory Attention Jonathan Z. Simon Neuroscience and Cognitive Sciences / Biology / Electrical & Computer Engineering University

More information

NeuroSky s esense Meters and Detection of Mental State

NeuroSky s esense Meters and Detection of Mental State NeuroSky s esense Meters and Detection of Mental State The Attention and Meditation esense meters output by NeuroSky s MindSet are comprised of a complex combination of artifact rejection and data classification

More information

Processed by HBI: Russia/Switzerland/USA

Processed by HBI: Russia/Switzerland/USA 1 CONTENTS I Personal and clinical data II Conclusion. III Recommendations for therapy IV Report. 1. Procedures of EEG recording and analysis 2. Search for paroxysms 3. Eyes Open background EEG rhythms

More information

Normal EEG of wakeful resting adults of years of age. Alpha rhythm. Alpha rhythm. Alpha rhythm. Normal EEG of the wakeful adult at rest

Normal EEG of wakeful resting adults of years of age. Alpha rhythm. Alpha rhythm. Alpha rhythm. Normal EEG of the wakeful adult at rest Normal EEG of wakeful resting adults of 20-60 years of age Suthida Yenjun, M.D. Normal EEG of the wakeful adult at rest Alpha rhythm Beta rhythm Mu rhythm Vertex sharp transients Intermittent posterior

More information

Functional connectivity in fmri

Functional connectivity in fmri Functional connectivity in fmri Cyril Pernet, PhD Language and Categorization Laboratory, Brain Research Imaging Centre, University of Edinburgh Studying networks fmri can be used for studying both, functional

More information

Seizure onset can be difficult to asses in scalp EEG. However, some tools can be used to increase the seizure onset activity over the EEG background:

Seizure onset can be difficult to asses in scalp EEG. However, some tools can be used to increase the seizure onset activity over the EEG background: This presentation was given during the Dianalund Summer School on EEG and Epilepsy, July 24, 2012. The main purpose of this introductory talk is to show the possibilities of improved seizure onset analysis

More information

Depth/Surface Relationships: Confronting noninvasive measures to intracerebral EEG

Depth/Surface Relationships: Confronting noninvasive measures to intracerebral EEG Depth/Surface Relationships: Confronting noninvasive measures to intracerebral EEG Christian G Bénar Institut de Neurosciences des Systèmes; INSERM, Aix-Marseille Université christian.benar@univ-amu.fr

More information

Towards natural human computer interaction in BCI

Towards natural human computer interaction in BCI Towards natural human computer interaction in BCI Ian Daly 1 (Student) and Slawomir J Nasuto 1 and Kevin Warwick 1 Abstract. BCI systems require correct classification of signals interpreted from the brain

More information

Amy Kruse, Ph.D. Strategic Analysis, Inc. LCDR Dylan Schmorrow USN Defense Advanced Research Projects Agency

Amy Kruse, Ph.D. Strategic Analysis, Inc. LCDR Dylan Schmorrow USN Defense Advanced Research Projects Agency What can modern neuroscience technologies offer the forward-looking applied military psychologist? Exploring the current and future use of EEG and NIR in personnel selection and training. Amy Kruse, Ph.D.

More information

Toward Extending Auditory Steady-State Response (ASSR) Testing to Longer-Latency Equivalent Potentials

Toward Extending Auditory Steady-State Response (ASSR) Testing to Longer-Latency Equivalent Potentials Department of History of Art and Architecture Toward Extending Auditory Steady-State Response (ASSR) Testing to Longer-Latency Equivalent Potentials John D. Durrant, PhD, CCC-A, FASHA Department of Communication

More information

NeuroImage. EEG correlates of haptic feedback in a visuomotor tracking task

NeuroImage. EEG correlates of haptic feedback in a visuomotor tracking task NeuroImage 60 (2012) 2258 2273 Contents lists available at SciVerse ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg EEG correlates of haptic feedback in a visuomotor tracking task

More information

Supplementary Material for

Supplementary Material for Supplementary Material for Selective neuronal lapses precede human cognitive lapses following sleep deprivation Supplementary Table 1. Data acquisition details Session Patient Brain regions monitored Time

More information

Functional Connectivity and the Neurophysics of EEG. Ramesh Srinivasan Department of Cognitive Sciences University of California, Irvine

Functional Connectivity and the Neurophysics of EEG. Ramesh Srinivasan Department of Cognitive Sciences University of California, Irvine Functional Connectivity and the Neurophysics of EEG Ramesh Srinivasan Department of Cognitive Sciences University of California, Irvine Outline Introduce the use of EEG coherence to assess functional connectivity

More information

Nikos Laskaris ENTEP

Nikos Laskaris ENTEP Nikos Laskaris ENTEP Reflections of learning at the University of Patras and opportunities to discover at BSI/RIKEN Understanding begins by elucidating basic brain mechanisms. This area of research is

More information

Studying the time course of sensory substitution mechanisms (CSAIL, 2014)

Studying the time course of sensory substitution mechanisms (CSAIL, 2014) Studying the time course of sensory substitution mechanisms (CSAIL, 2014) Christian Graulty, Orestis Papaioannou, Phoebe Bauer, Michael Pitts & Enriqueta Canseco-Gonzalez, Reed College. Funded by the Murdoch

More information

Spectrograms (revisited)

Spectrograms (revisited) Spectrograms (revisited) We begin the lecture by reviewing the units of spectrograms, which I had only glossed over when I covered spectrograms at the end of lecture 19. We then relate the blocks of a

More information

Effects of Light Stimulus Frequency on Phase Characteristics of Brain Waves

Effects of Light Stimulus Frequency on Phase Characteristics of Brain Waves SICE Annual Conference 27 Sept. 17-2, 27, Kagawa University, Japan Effects of Light Stimulus Frequency on Phase Characteristics of Brain Waves Seiji Nishifuji 1, Kentaro Fujisaki 1 and Shogo Tanaka 1 1

More information

International Journal of Neurology Research

International Journal of Neurology Research International Journal of Neurology Research Online Submissions: http://www.ghrnet.org/index./ijnr/ doi:1.1755/j.issn.313-511.1..5 Int. J. of Neurology Res. 1 March (1): 1-55 ISSN 313-511 ORIGINAL ARTICLE

More information

Analysis of in-vivo extracellular recordings. Ryan Morrill Bootcamp 9/10/2014

Analysis of in-vivo extracellular recordings. Ryan Morrill Bootcamp 9/10/2014 Analysis of in-vivo extracellular recordings Ryan Morrill Bootcamp 9/10/2014 Goals for the lecture Be able to: Conceptually understand some of the analysis and jargon encountered in a typical (sensory)

More information

How is the stimulus represented in the nervous system?

How is the stimulus represented in the nervous system? How is the stimulus represented in the nervous system? Eric Young F Rieke et al Spikes MIT Press (1997) Especially chapter 2 I Nelken et al Encoding stimulus information by spike numbers and mean response

More information

Spectro-temporal response fields in the inferior colliculus of awake monkey

Spectro-temporal response fields in the inferior colliculus of awake monkey 3.6.QH Spectro-temporal response fields in the inferior colliculus of awake monkey Versnel, Huib; Zwiers, Marcel; Van Opstal, John Department of Biophysics University of Nijmegen Geert Grooteplein 655

More information

EEG reveals divergent paths for speech envelopes during selective attention

EEG reveals divergent paths for speech envelopes during selective attention EEG reveals divergent paths for speech envelopes during selective attention Cort Horton a, Michael D Zmura a, and Ramesh Srinivasan a,b a Dept. of Cognitive Sciences, University of California, Irvine,

More information

Mining EEG Brain Dynamics: New Directions in Functional Brain Imaging

Mining EEG Brain Dynamics: New Directions in Functional Brain Imaging Mining EEG Brain Dynamics: New Directions in Functional Brain Imaging!"#$%&'()*+%!"#$%&%'()*+(,'&+-.(/*01&%-$*"( 2"34'+#3%5(*)(/-.3)*+"3-(6-"(73'8*(,/92:(9-3;-"( 6'1%'0

More information

Distinguishing concept categories from single-trial electrophysiological activity

Distinguishing concept categories from single-trial electrophysiological activity Distinguishing concept categories from single-trial electrophysiological activity Brian Murphy, Michele Dalponte, Massimo Poesio & Lorenzo Bruzzone CogSci08 25 th July 2008 Motivation The long-term question:

More information

Mental representation of number in different numerical forms

Mental representation of number in different numerical forms Submitted to Current Biology Mental representation of number in different numerical forms Anna Plodowski, Rachel Swainson, Georgina M. Jackson, Chris Rorden and Stephen R. Jackson School of Psychology

More information

Human Brain Institute Russia-Switzerland-USA

Human Brain Institute Russia-Switzerland-USA 1 Human Brain Institute Russia-Switzerland-USA CONTENTS I Personal and clinical data II Conclusion. III Recommendations for therapy IV Report. 1. Procedures of EEG recording and analysis 2. Search for

More information

The role of amplitude, phase, and rhythmicity of neural oscillations in top-down control of cognition

The role of amplitude, phase, and rhythmicity of neural oscillations in top-down control of cognition The role of amplitude, phase, and rhythmicity of neural oscillations in top-down control of cognition Chair: Jason Samaha, University of Wisconsin-Madison Co-Chair: Ali Mazaheri, University of Birmingham

More information

EEG Recordings from Parent/Child Dyads in a Turn-Taking Game with Prediction Error

EEG Recordings from Parent/Child Dyads in a Turn-Taking Game with Prediction Error EEG Recordings from Parent/Child Dyads in a Turn-Taking Game with Prediction Error Julia Anna Adrian Department of Cognitive Science University of California San Diego La Jolla, 92093 jadrian@ucsd.edu

More information

Neurophysiologically Driven Image Triage: A Pilot Study

Neurophysiologically Driven Image Triage: A Pilot Study Neurophysiologically Driven Image Triage: A Pilot Study Santosh Mathan 3660 Technology Dr Minneapolis, MN 55418 USA santosh.mathan@honeywell.com Stephen Whitlow 3660 Technology Dr Minneapolis, MN 55418

More information

Description of the Spectro-temporal unfolding of temporal orienting of attention.

Description of the Spectro-temporal unfolding of temporal orienting of attention. Description of the Spectro-temporal unfolding of temporal orienting of attention. All behaviors unfold over time; therefore, our ability to perceive and adapt our behavior according to the temporal constraints

More information

Entrainment of neuronal oscillations as a mechanism of attentional selection: intracranial human recordings

Entrainment of neuronal oscillations as a mechanism of attentional selection: intracranial human recordings Entrainment of neuronal oscillations as a mechanism of attentional selection: intracranial human recordings J. Besle, P. Lakatos, C.A. Schevon, R.R. Goodman, G.M. McKhann, A. Mehta, R.G. Emerson, C.E.

More information

AccuScreen ABR Screener

AccuScreen ABR Screener AccuScreen ABR Screener Test Methods Doc no. 7-50-1015-EN/02 0459 Copyright notice No part of this Manual or program may be reproduced, stored in a retrieval system, or transmitted, in any form or by any

More information

Analysis of EEG Signals For EEG-based Brain-Computer Interface

Analysis of EEG Signals For EEG-based Brain-Computer Interface Analysis of EEG Signals For EEG-based Brain-Computer Interface Jessy Parokaran Varghese School of Innovation, Design and Technology Mälardalen University Vasteras, Sweden Supervisor and Examiner: Dr. BARAN

More information

Novel single trial movement classification based on temporal dynamics of EEG

Novel single trial movement classification based on temporal dynamics of EEG Novel single trial movement classification based on temporal dynamics of EEG Conference or Workshop Item Accepted Version Wairagkar, M., Daly, I., Hayashi, Y. and Nasuto, S. (2014) Novel single trial movement

More information

CS/NEUR125 Brains, Minds, and Machines. Due: Friday, April 14

CS/NEUR125 Brains, Minds, and Machines. Due: Friday, April 14 CS/NEUR125 Brains, Minds, and Machines Assignment 5: Neural mechanisms of object-based attention Due: Friday, April 14 This Assignment is a guided reading of the 2014 paper, Neural Mechanisms of Object-Based

More information

Introduction to EEG del Campo. Introduction to EEG. J.C. Martin del Campo, MD, FRCP University Health Network Toronto, Canada

Introduction to EEG del Campo. Introduction to EEG. J.C. Martin del Campo, MD, FRCP University Health Network Toronto, Canada Introduction to EEG J.C. Martin, MD, FRCP University Health Network Toronto, Canada What is EEG? A graphic representation of the difference in voltage between two different cerebral locations plotted over

More information

Binaural Hearing. Why two ears? Definitions

Binaural Hearing. Why two ears? Definitions Binaural Hearing Why two ears? Locating sounds in space: acuity is poorer than in vision by up to two orders of magnitude, but extends in all directions. Role in alerting and orienting? Separating sound

More information

Working Memory Impairments Limitations of Normal Children s in Visual Stimuli using Event-Related Potentials

Working Memory Impairments Limitations of Normal Children s in Visual Stimuli using Event-Related Potentials 2015 6th International Conference on Intelligent Systems, Modelling and Simulation Working Memory Impairments Limitations of Normal Children s in Visual Stimuli using Event-Related Potentials S. Z. Mohd

More information

The neurolinguistic toolbox Jonathan R. Brennan. Introduction to Neurolinguistics, LSA2017 1

The neurolinguistic toolbox Jonathan R. Brennan. Introduction to Neurolinguistics, LSA2017 1 The neurolinguistic toolbox Jonathan R. Brennan Introduction to Neurolinguistics, LSA2017 1 Psycholinguistics / Neurolinguistics Happy Hour!!! Tuesdays 7/11, 7/18, 7/25 5:30-6:30 PM @ the Boone Center

More information

Title of Thesis. Study on Audiovisual Integration in Young and Elderly Adults by Event-Related Potential

Title of Thesis. Study on Audiovisual Integration in Young and Elderly Adults by Event-Related Potential Title of Thesis Study on Audiovisual Integration in Young and Elderly Adults by Event-Related Potential 2014 September Yang Weiping The Graduate School of Natural Science and Technology (Doctor s Course)

More information

Physiological and Physical Basis of Functional Brain Imaging 6. EEG/MEG. Kâmil Uludağ, 20. November 2007

Physiological and Physical Basis of Functional Brain Imaging 6. EEG/MEG. Kâmil Uludağ, 20. November 2007 Physiological and Physical Basis of Functional Brain Imaging 6. EEG/MEG Kâmil Uludağ, 20. November 2007 Course schedule 1. Overview 2. fmri (Spin dynamics, Image formation) 3. fmri (physiology) 4. fmri

More information

Mind Monitoring via Mobile Brain-Body Imaging. Scott Makeig. Human-Computer Interface International 2009 San Diego, CA, 2009

Mind Monitoring via Mobile Brain-Body Imaging. Scott Makeig. Human-Computer Interface International 2009 San Diego, CA, 2009 Mind Monitoring via Mobile Brain-Body Imaging Scott Makeig Human-Computer Interface International 2009 San Diego, CA, 2009 Mind Monitoring via Mobile Brain-body Imaging Scott Makeig 1 1 Swartz Center for

More information

Restoring Communication and Mobility

Restoring Communication and Mobility Restoring Communication and Mobility What are they? Artificial devices connected to the body that substitute, restore or supplement a sensory, cognitive, or motive function of the nervous system that has

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Large-scale calcium imaging in vivo.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Large-scale calcium imaging in vivo. Supplementary Figure 1 Large-scale calcium imaging in vivo. (a) Schematic illustration of the in vivo camera imaging set-up for large-scale calcium imaging. (b) High-magnification two-photon image from

More information

Neural correlates of the perception of sound source separation

Neural correlates of the perception of sound source separation Neural correlates of the perception of sound source separation Mitchell L. Day 1,2 * and Bertrand Delgutte 1,2,3 1 Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.

More information

Transcranial direct current stimulation modulates shifts in global/local attention

Transcranial direct current stimulation modulates shifts in global/local attention University of New Mexico UNM Digital Repository Psychology ETDs Electronic Theses and Dissertations 2-9-2010 Transcranial direct current stimulation modulates shifts in global/local attention David B.

More information

Rhythm and Rate: Perception and Physiology HST November Jennifer Melcher

Rhythm and Rate: Perception and Physiology HST November Jennifer Melcher Rhythm and Rate: Perception and Physiology HST 722 - November 27 Jennifer Melcher Forward suppression of unit activity in auditory cortex Brosch and Schreiner (1997) J Neurophysiol 77: 923-943. Forward

More information

Electrophysiological Substrates of Auditory Temporal Assimilation Between Two Neighboring Time Intervals

Electrophysiological Substrates of Auditory Temporal Assimilation Between Two Neighboring Time Intervals Electrophysiological Substrates of Auditory Temporal Assimilation Between Two Neighboring Time Intervals Takako Mitsudo *1, Yoshitaka Nakajima 2, Gerard B. Remijn 3, Hiroshige Takeichi 4, Yoshinobu Goto

More information

The Sonification of Human EEG and other Biomedical Data. Part 3

The Sonification of Human EEG and other Biomedical Data. Part 3 The Sonification of Human EEG and other Biomedical Data Part 3 The Human EEG A data source for the sonification of cerebral dynamics The Human EEG - Outline Electric brain signals Continuous recording

More information

THRESHOLD PREDICTION USING THE ASSR AND THE TONE BURST CONFIGURATIONS

THRESHOLD PREDICTION USING THE ASSR AND THE TONE BURST CONFIGURATIONS THRESHOLD PREDICTION USING THE ASSR AND THE TONE BURST ABR IN DIFFERENT AUDIOMETRIC CONFIGURATIONS INTRODUCTION INTRODUCTION Evoked potential testing is critical in the determination of audiologic thresholds

More information

Reward prediction error signals associated with a modified time estimation task

Reward prediction error signals associated with a modified time estimation task Psychophysiology, 44 (2007), 913 917. Blackwell Publishing Inc. Printed in the USA. Copyright r 2007 Society for Psychophysiological Research DOI: 10.1111/j.1469-8986.2007.00561.x BRIEF REPORT Reward prediction

More information

Timing and Sequence of Brain Activity in Top-Down Control of Visual-Spatial Attention

Timing and Sequence of Brain Activity in Top-Down Control of Visual-Spatial Attention Timing and Sequence of Brain Activity in Top-Down Control of Visual-Spatial Attention Tineke Grent- t-jong 1,2, Marty G. Woldorff 1,3* PLoS BIOLOGY 1 Center for Cognitive Neuroscience, Duke University,

More information

Power-Based Connectivity. JL Sanguinetti

Power-Based Connectivity. JL Sanguinetti Power-Based Connectivity JL Sanguinetti Power-based connectivity Correlating time-frequency power between two electrodes across time or over trials Gives you flexibility for analysis: Test specific hypotheses

More information

The impact of numeration on visual attention during a psychophysical task; An ERP study

The impact of numeration on visual attention during a psychophysical task; An ERP study The impact of numeration on visual attention during a psychophysical task; An ERP study Armita Faghani Jadidi, Raheleh Davoodi, Mohammad Hassan Moradi Department of Biomedical Engineering Amirkabir University

More information