Bronchoscopy: approaches to evaluation and sampling

Similar documents
TRACHEOBRONCHIAL FOREIGN BODY REMOVAL ADVICE IN DOGS AND CATS

Discussing feline tracheal disease

Tracheal Collapse: Medical Management Versus Implantable Stents

Subject Index. Bacterial infection, see Suppurative lung disease, Tuberculosis

Endoscopy. Pulmonary Endoscopy

Bronchoscopy SICU Protocol

EndoWorld VET 31-E/ Small diameter, extended length fiberscopes for small animals

Anaesthetic considerations for laparoscopic surgery in canines

Translaryngeal tracheostomy

The Respiratory System. Dr. Ali Ebneshahidi

Aspiration of foreign material into the airway can result

Unconscious exchange of air between lungs and the external environment Breathing

Section 4.1 Paediatric Tracheostomy Introduction

Arkansas VMA Winter 2015

Novatech Products for Interventional Pulmonology

INDEPENDENT LUNG VENTILATION

Protocol for performing chest clearance techniques by nursing staff

FLEXIBLE FIBREOPTIC BRONCHOSCOPY IN 582 CHILDREN-VALUE OF ROUTE, SEDATION AND LOCAL ANESTHETIC

I. Subject: Therapeutic Bronchoscopy and Bronchoscope Assisted Intubation

Having a Bronchoscopy

LEVITAN S FIBREOPTIC STYLET: BEYOND BARRIERS. - Our Perspective.

Chapter 8. Other Important Tests and Procedures. Mosby items and derived items 2011, 2006 by Mosby, Inc., an affiliate of Elsevier Inc.

The Human Respiration System

The management of foreign bodies in air passages

RSPT Tracheal Aspiration. Tracheal Aspiration. RSPT 1410 Tracheal Aspiration

an inflammation of the bronchial tubes

Proceedings of the World Small Animal Veterinary Association Mexico City, Mexico 2005

BRONCHOSCOPY AND ASSOCIATED PROCEDURE CODING IN ICD-10-PCS AND CPT

Optimization of Imaging and Bronchoalveolar Lavage Techniques to Improve Diagnostic Yield of Feline Lower Respiratory Tract Samples

Telescopic Bronchoscopy via Laryngoscope

OSAMA A. ABDULMAJID, ABDELMOMEN M. EBEID, MOHAMED M. MOTAWEH, and IBRAHIM S. KLEIBO

The Respiratory System

CHAPTER 22 RESPIRATORY

Advanced Bronchoscopy

Methodological Aspects of Bronchoscopic Lung Volume Reduction with a Proprietary System

A Retrospective Study of Rigid Bronchoscopy in 58 Paediatric Cases with Acute Respiratory Distress

ISPUB.COM. Rare Cases: Tracheal/bronchial Obstruction. O Wenker, L Moehn, C Portera, G Walsh HISTORY ADMISSION

ACUTE TRACHEO-BRONCHITIS

Chapter 2. Relevant Thoracic Anatomy. Jed A. Gorden. 1. Central Airway Anatomy. 2. Upper Airway

Endobronchial valve insertion to reduce lung volume in emphysema

NONGYNECOLOGICAL CYTOLOGY PULMONARY SPECIMENS (Sputum, Post-Bronchoscopy Sputum, Bronchial Brushings, Bronchial Washings, Bronchoalveolar Lavage)

The Respiratory System

All bedside percutaneously placed tracheostomies

JMSCR Vol 06 Issue 03 Page March 2018

LUNG PATTERNS IN THE DOG NORMAL AND PATHOLOGICAL

Anatomy and Physiology. The airways can be divided in to parts namely: The upper airway. The lower airway.

How do you use a bougie as an airway adjunct for endotracheal intubation?

Lecture Overview. Respiratory System. Martini s Visual Anatomy and Physiology First Edition. Chapter 20 - Respiratory System Lecture 11

Bryan-Dumon Series II Rigid Bronchoscope and Stent Placement Kit USER MANUAL

11.3 RESPIRATORY SYSTEM DISORDERS

Tissue Acquisition. Introducing our large range of single use accessories for the collection of histology and cytology in the GI tract.

3/10/15. Summary. Anatomy Larynx. Anatomy Trachea

B. Correct! As air travels through the nasal cavities, it is warmed and humidified.

Carole Wegner RN, MSN And Lori Leiser CRT

PRODUCTS FOR THE DIFFICULT AIRWAY. Courtesy of Cook Critical Care

FLEXIBLE BRONCHOSCOPY INSPECTION, BAL, BX AND TBLB

Interventional procedures guidance Published: 20 December 2017 nice.org.uk/guidance/ipg600

Flexible bronchoscopy

Neonatal Airway Disorders, Treatments, and Outcomes. Steven Goudy, MD Pediatric Otolaryngology Emory University Medical Center

Tracheostomy and Ventilator Education Program Module 2: Respiratory Anatomy

CHAPTER 7.1 STRUCTURES OF THE RESPIRATORY SYSTEM

Overview. The Respiratory System. Chapter 18. Respiratory Emergencies 9/11/2012

Proceedings of the World Small Animal Veterinary Association Sydney, Australia 2007

Since central airway stenosis is often a lifethreatening. Double Y-stenting for tracheobronchial stenosis. Masahide Oki and Hideo Saka

INDICATIONS AND COMPLICATIONS OF BRONCHOSCOPY: AN EXPERIENCE OF 100 CASES IN A TERTIARY CARE HOSPITAL

DUMON-NOVATECH Y-STENTS: A FOUR-YEAR EXPERIENCE WITH 50 TRACHEOBRONCHIAL TUMORS INVOLVING THE CARINA

Introduction to Interventional Pulmonology

External trauma (MVA, surf board, assault, etc.) Internal trauma (Endotracheal intubation, tracheostomy) Other

SPIRATION. VALVE SYSTEM For the Treatment of Emphysema or Air Leaks.

Small animal thoracic surgery: approaches and techniques

October Paediatric Respiratory Workbook APCP RESPIRATORY COMMITTEE

Induction of Anaesthesia

Tracheal Trauma: Management and Treatment. Kosmas Iliadis, MD, PhD, FECTS

FOLLOWING the demonstration by Bovetet al (1949) and,

Anatomy of the Lungs. Dr. Gondo Gozali Department of anatomy

COBIS Management of airway burns and inhalation injury PAEDIATRIC

Chapter 10 The Respiratory System

Airway/Breathing. Chapter 5

Chapter 11 The Respiratory System

Tuesday, December 13, 16. Respiratory System

ADVANCED PATIENT MONITORING DURING ANAESTHESIA: PART ONE

Introduction to Emergency Medical Care 1

Epidural anaesthesia and analgesia

1 Chapter 40 Advanced Airway Management 2 Advanced Airway Management The advanced airway management techniques discussed in this chapter are to

The use of metallic expandable tracheal stents in the management of inoperable malignant tracheal obstruction

1 Chapter 13 Respiratory Emergencies 2 Respiratory Distress Patients often complain about. Shortness of breath Symptom of many different Cause can be

NURSE-UP RESPIRATORY SYSTEM

Thoracic anaesthesia. Simon May

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Airway Foreign Body in Children

FOREIGN BODY ASPIRATION in children. Dr. Xayyavong Bouathongthip, M.D Emergency department, children s hospital

Endeavour College of Natural Health endeavour.edu.au

Don t Panic! Dr. Karau s Guide to Respiratory Emergencies November 4, 2018


Bronchomalacia (BM) refers to weakness of the

Critical Care of the Post-Surgical Patient

Difficulty Breathing and Respiratory Distress Basics

Lung & Pleura. The Topics :

Respiratory System. Functional Anatomy of the Respiratory System

Ch16: Respiratory System

Transcription:

Vet Times The website for the veterinary profession https://www.vettimes.co.uk Bronchoscopy: approaches to evaluation and sampling Author : Simon Tappin Categories : Companion animal, Vets Date : December 13, 2010 Bronchoscopy or, more correctly, tracheobronchoscopy allows evaluation of the larynx, trachea and bronchial tree. The level to which they can be examined depends on the diameter and length of the endoscope used. However, evaluation to the level of the tertiary bronchi is possible in most cases. As with other forms of endoscopy, although gross evaluation may reveal a definitive diagnosis (such as the presence of an airway foreign body), it is most commonly performed at the end of a diagnostic pathway. 1 / 26

Table 1. Indications for bronchoscopy. As always, this should start with a full history and thorough clinical examination, and may include haematology, biochemistry, faecal parasitology and thoracic radiographs. If imaging is performed it is often done under the same anaesthetic as bronchoscopy (as inflated views may be more diagnostic), but it should always be performed prior to the endoscopic procedure. Bronchoscopy is useful in many patients (Table 1), but is most commonly used when assessing chronic coughing, respiratory distress and haemoptysis. Samples can also be collected and submitted for cytology and culture. Equipment Flexible fibreoptic or video bronchoscopes are preferred for bronchoscopy, as they allow a thorough evaluation of the respiratory tract (Figure 1). Paediatric bronchoscopes with a diameter of 3mm to 4mm are used in cats and small dogs, but their working length is usually short (50cm to 60cm), which can be prohibitive in larger patients. In this case, adult bronchoscopes (diameter 5mm to 6mm) or fine paediatric gastroscopes may be used as they have a longer working length (100mm to 120cm). 2 / 26

Figure 2. The bronchoscope hand piece, with suction, two-way deflection and open wash channel. Bronchoscopes usually only have two-way deflection (up and down), but rotation can be achieved by twisting the hand piece and, therefore, the insertion tube gently along its long axis (Figure 2). Rigid fibreoptic endoscopes can also be used and are valuable for evaluating the larynx and trachea, although evaluation of the lower airways is difficult. Cytological samples cannot be directed with a rigid endoscope. Hollow rigid endoscopes can be useful to allow removal of tracheal foreign bodies. Patient preparation Bronchoscopy is always performed under general anaesthesia to control reflex coughing and gagging on passage of the endoscope. Premedication with an opioid and low-dose acepromazine is used in most cases. Terbutaline, a bronchodilator, is useful to reduce bronchospasm and improve oxygenation. This is especially helpful in cats and is usually provided intra-muscularly at the time of induction. General 3 / 26

anaesthesia is most easily maintained by total intravenous anaesthesia (TIVA), with propofol being the agent of choice in most cases. This allows endoscopy without the risk of leakage of anaesthetic gases. In large dogs, the endotracheal tube may have a large enough diameter to allow passage of the endoscope without complete occlusion of the tube (at least 25 per cent of the diameter of the tube should remain with the endoscope in place). If this is the case, a T-adapter may be used to allow oxygen delivery (anaesthesia is usually still maintained via TIVA, as there is still a risk of anaesthetic gases escaping; Figure 3). Figure 3. A T-adapter allows passage of the endoscope (through the yellow port) into the endotracheal tube. Unfortunately, most cats and small dogs have airways too narrow to allow the endoscope to pass through the endotracheal tube. In these cases, the endoscope is advanced directly into the airway to allow evaluation. To facilitate this, the patient is anaesthetised and an endotracheal tube placed, initially to allow stabilisation of the patient and, if needed, inflated thoracic radiographs to be taken. Once ready, the endotracheal tube is removed and bronchoscopy is performed. Local anaesthetic can help reduce laryngospasm as the endoscope is passed. Once the bronchoscopy is finished, the endotracheal tube is replaced to allow the patient to recover. Endoscopy without an endotracheal tube does not allow assisted ventilation, so careful consideration should be given to oxygen supplementation. This can be provided through the endoscope wash channel, via a urinary catheter placed in the airway alongside the endoscope or via flow by oxygen. Oxygen flow rates of one to three litres a minute can be used safely in most cases. Care should be taken not to over-inflate the small airways and the patient should be carefully monitored to ensure adequate oxygenation; a pulse oximeter is very useful in this respect. Tracheobronchoscopy is best performed in sternal recumbency, with the head elevated on a 4 / 26

sandbag or foam pad to allow easy passage of the endoscope. A gag should be placed to protect the endoscope. Tracheobronchoscopy A laryngoscope is helpful to guide the passage of the endoscope through the larynx into the cervical trachea, which should be near circular in normal patients. The tracheal cartilages are seen as C-shaped rings under the mucosal surface and are connected by the dorsal membrane (Figure 4). This thin strip of muscle helps to orient the picture and should not deviate into the airway. The tracheal mucosa should appear smooth, with a light pink appearance. Submucosal vessels are normally visible, but become more prominent in inflammatory disease (Figure 5). Inflammatory disease can also lead to the airway having a hyperaemic, oedematous appearance. Bleeding is possible on passage of the endoscope and polypoid lesions are occasionally seen in chronic inflammatory conditions. Oslerus osleri infection leads to parasitic nodule formation in the distal trachea and larger bronchi. A small amount of airway secretion is normal in cats and dogs. Excessive mucus secretion is usually associated with chronic inflammatory processes, such as chronic bronchitis and eosinophilic bronchopneumopathy. Airway haemorrhage can also be seen in association with trauma, foreign bodies and Angiostrongylus infection (Figure 6). 5 / 26

Figure 4. Normal canine trachea. 6 / 26

Figure 5. Hyperaemic trachea with prominent submucosal vessels and mucus accumulation in a dog with infectious tracheobronchitis. 7 / 26

Figure 6. Airway haemorrhage in a dog with Angiostrongylus infection. In small dog breeds tracheal collapse is relatively common and changes in airway diameter should 8 / 26

be assessed during each phase of respiration, as collapse is often a dynamic process (Figures 7 and 8). If medical management fails to control signs of tracheal collapse, then endotracheal stent placement can be considered. Tracheoscopy is used to help stent deployment and to assess placement (Figure 9). 9 / 26

Figure 7. Mild tracheal collapse in a Yorkshire terrier. Figure 8. Severe tracheal collapse. 10 / 26

Figure 9. A tracheal stent in place. Once the cervical trachea has been examined, the endoscope is gradually advanced, through the 11 / 26

intrathoracic trachea to the tracheal bifurcation or carina. The endoscope should be centred in the middle of the airway to avoid trauma to the mucosal surface. The tracheal bifurcation is seen as a sharp division between the left and right mainstem bronchi (Figure 10). The right mainstem bronchus is usually straight ahead of the endoscope, with the left mainstem bronchi requiring some deflection to the right to allow entry. For this reason, airway foreign bodies are more commonly seen in the right mainstem bronchi (Figure 11). Segmental collapse can occur in the mainstem bronchi (alone or in association with tracheal collapse) and the left atrial enlargement can cause left mainstem bronchial compression (Figure 12). 12 / 26

Figure 10. View of the carina in a dog with chronic bronchitis. There is a large plug of mucus in the right mainstem bronchus. 13 / 26

Figure 11. A bronchial foreign body (head of corn) lodged in a right caudal bronchi. 14 / 26

Figure 12. Left mainstem bronchus compression as result of left atrial enlargement. The bronchial tree should be systematically and fully evaluated, allowing visualisation of each lobar 15 / 26

bronchus and as many segmental divisions as possible. Each lung has a cranial and caudal lobe, with the right side having both a middle and accessory lobe (Figures 13 and 14). Each segmental airway should be evaluated and changes in shape, size and mucosal appearance noted. The normal lower airways should have crisp divisions between the airways and have a pale pink mucosal appearance (Figure 15). 16 / 26

17 / 26

Figure 13. Schematic of the canine bronchial tree. Figure 14. Normal anatomy of the right mainstem bronchus. 18 / 26

Figure 15. Normal canine distal segmental airways, with a bronchoalveolar lavage (BAL) catheter in place. IMAGE: Jon Wray. 19 / 26

Sampling Once the airways have been fully examined, samples should be obtained for cytology and microbiology, as gross changes are not usually pathognomonic for specific disease. Figure 16. A wash tube used for collecting BAL samples. Sampling is best achieved via bronchoalveolar lavage (BAL), allowing material to be collected from the lower airways, which avoids potential contamination from the upper respiratory tract. Samples are obtained by wedging the endoscope into a terminal bronchus and instilling saline. This is best done via a wash tube inserted through the working channel of the endoscope (Figure 16), but can be performed using a wash trap directly through the wash channel (Figure 17).Aliquots of sterile saline (0.9 per cent sodium chloride) are instilled to allow collection of representative samples. Typically 1.0ml/kg saline is used, with aliquots of 3ml to 5ml used in dogs and 5ml to 10ml in larger dogs. Saline is absorbed readily from the lower airways so, although care should be taken, patients cope very well with the fluid volume instilled. Typically, only 25 per cent to 75 per cent of wash fluid is retrieved and should be stored into ethylenediaminetetraacetic acid (EDTA) tubes for cytology and plain tubes for culture. If the wash channel was used for sample collection, culture results should be interpreted with caution, and saline culture flushed through the wash channel prior to BAL collection may help exclude contamination. Culture results must always be interpreted in the light of the cytology results obtained. Once positioned in a terminal bronchus, saline is instilled and an assistant applies coupage to the dog s chest. The fluid is left for a few seconds and then suctioned via the wash tube or endoscope 20 / 26

channel. Moving the endoscope gently backwards and forwards by a few millimetres during suction may aid sample collection (Figure 18). Flushing is repeated until good samples are obtained. These should have a frothy appearance as a result of surfactant being present (Figure 19). BAL samples should be obtained from at least two sites (usually the left and right sides) as well as any focally abnormal areas. Brush cytology and aspirates taken via endoscopic injection needles can be helpful in investigating focal abnormalities and airway masses. Biopsies can also be taken, with forceps inserted through the working channel. These are helpful both for investigating masses and collecting samples for electron microscopy to evaluate ciliary function. 21 / 26

22 / 26

Figure 17. BAL collected through the endoscope working channel using a wash trap. Figure 18. Frothy liquid appearing from a terminal bronchus during BAL collection using a wash tube. IMAGE: Jon Wray. 23 / 26

24 / 26

Figure 19. Frothy BAL fluid, confirming fluid has been obtained from the alveoli as it contains surfactant. Postoperative management 25 / 26

Powered by TCPDF (www.tcpdf.org) Table 2. Possible complications of bronchoscopy. Post-bronchoscopy, the patient is usually intubated and maintained on 100 per cent oxygen until stable, and then recovered from anaesthesia. Patients need to be monitored closely on recovery and supplemental oxygen provided as needed. They are generally hospitalised for 12 to 24 hours after the procedure and monitored closely for complications. Bronchoscopy is generally a safe procedure, however, a number of complications are possible (Table 2). Perhaps the most common is bronchospasm seen post-bronchoscopy or BAL in cats, which can lead to severe respiratory distress immediately after the procedure or on recovery. Pretreatment with terbutaline may reduce its incidence. Oxygen supplementation and intravenous or inhaled steroids may be needed to control airway constriction post-procedure. Further reading Bexfield N (2007). Bronchoscopy in the dog and cat, UK Vet 12(6): 45-51. Levitan D and Kimmel S (2008). Flexible endoscopy: respiratory tract. In Lhermette P and Sobel D (eds), The BSAVA Manual of Canine and Feline Endoscopy and Endosurgery, BSAVA, Gloucester. McKiernan BC (2005). Bronchoscopy. In McCarthy T (ed), Veterinary Endoscopy for the Small Animal Practitioner, Elsevier Saunders, Missouri. // 26 / 26