Morphological and physiological comparison of taxa comprising the Sporothrix schenckii complex *

Similar documents
宫颈上皮内瘤变 ; IgG1 IgG2 亚类 ; 酶联免疫吸附试验 R A (2009)

Health: Acupuncture in the UK 健康 : 针灸在英国

Expression of three essential antioxidants of Helicobacter pylori in clinical isolates *

Molecular phylogeny of Australian isolates of Sporothrix schenckii sensu lato. David New Microbiology Registrar, PathWest

MACC1 upregulation promotes gastric cancer tumor cell metastasis and predicts a poor prognosis *

病毒基因组学与 病毒进化 刘翟博士研究员 中国科学院微生物研究所

Contour changes in human alveolar bone following tooth extraction of the maxillary central incisor

Study on current situation and development trends of domestic and foreign lead maximum level standards in food

Doing Business in China

500 中国肺癌杂志2010年5月第13卷第5期 C h i n J L u n g C a n c e r, M ay , Vo l. 1 3, No. 5 临床研究 血清TPS CEA Pro-GRP和CYFRA21-1 水平在肺癌患者中的临床意义 王敬慧 时广利 张树才 王群慧

读书报告 2015 年 月 唐之韵

Analyzing and modeling rheological behavior of liver fibrosis in rats using shear viscoelastic moduli *

间歇性低氧运动对大鼠骨骼肌线粒体自由基代谢的影响

中国 HIV 新发感染检测发展及未来 Development and Future of HIV-1 Incidence Assay in China

Dietary Guidelines for Chinese Residents (2016): comments and comparisons

Received Accepted This work was supported by the National Natural Science Foundation of China (No ).

Welding of shape memory alloy to stainless steel for medical occluder

芬美意对嗅觉受体的研究和应用 - 服务社会, 创造商机

Different firing patterns induced by veratridine and aconitine in injured dorsal root ganglion neurons

Field Control Efficiency of a Microbial Seed Dressing Agent of Bacillus Strain on Soybean Fungal Root Rot

Maternal high-fat diet inversely affects insulin sensitivity in dams and young adult male rat offspring *#

不对称社会困境中的决策 : 行为的双重模式

Invasive fungal infection in allogeneic hematopoietic stem cell transplant recipients: single center experiences of 12 years *

课程四 : 药物共晶 - 药物晶型开发的 新热点

病理学. Pathology 白求恩医学院病理学系 李伟

Uric acid status and its correlates in Hangzhou urban population

Cross-sectional study on the relationship between life events and mental health of secondary school students in Shanghai, China

陈建华孙捷吕福娇高国富赵明文张克云. Isolation and bioactive characters of a novel lectin SHL24 from the liquid fermentation of Phellinus baumii

Chinese Journal of Applied Entomology 2015, 52(6): DOI: /j.issn 红火蚁不同品级个体的药剂敏感性研究 刘家莉崔儒坤曾鑫年

Alternaria spp. Associated with Potato Foliar Diseases in China

Chemical composition and antioxidant activities of essential oils from different parts of the oregano *#

新型 DES 和 BVS 血栓发生现状及应对策略 钱菊英,MD, FACC,FESC 复旦大学附属中山医院上海市心血管病研究所

Bosworth, /1966. Clemmer, 1966 Driscoll McCorkle & Korn 1954 Ohlin 1956 Wheeler 1961 U U-shaped curve Wheeler

Research Paper 研究报告. 提高光滑球拟酵母乙酰辅酶 A 水平促进 α- 酮戊二酸合成 梁楠 1,2, 王淼 2, 刘立明 1*, 堵国成 1 1* , 陈坚 mmol/(l g DCW) A (2) α-

Iodine excess or not: analysis on the necessity of reducing the iodine content in edible salt based on the national monitoring results

利用 PEN 项目网络教育 Making use of PEN project web-based education 发展聋人高等特殊教育 to develop higher education for the deaf

Journal of Acupuncture and Tuina Science, 2012, v. 10 n. 2, p The original publication is available at

High-pressure balloon dilation for male anterior urethral stricture: single-center experience *

Concurrent pulmonary thrombosis with systemic embolism: a case report *

Li YY, Zhang WT. IL-6: the next key target for rheumatoid arthritis after TNF-α. Chin J Biotech, 2017, 33(1):

中国医院集中空调系统中的一株青霉新记录种

1) 有哪些方法, 为什么需要采用这些方法? 2) 有哪些参数, 这些参数的生理学意义是什么? 3) 功能的研究如何提示机制的改变?

How to Make the Choice?

博士后学位论文. Importin 13: 一个新的角膜上皮前体细胞标志物. Importin 13:a Novel Potential Marker for Corneal Epithelial Progenitor Cells 指导教师 : 刘祖国 专业名称 : 眼科学

Keywords: positive attribution, negative attribution, English learning, gender. Introduction

生物工程学报 Chin J Biotech 2009, July 25; 25(7): journals.im.ac.cn Chinese Journal of Biotechnology ISSN

吉林大学 教师教案 (2010 ~2011 学年第 1 学期 ) 课程名称 : 病理学年级 :2008 级七年制教研室 : 病理学系任课教师 : 王琳 吉林大学教务处制

Metabolism Of Calcium and Phosphorus

Add Your Company Slogan 损伤的修复. Repair of the injury 白求恩医学院病理教研室 Logo

小窝蛋白 -1/ 血红素加氧酶 -1 信号链轴对机械通气所致肺损伤调控效应的研究

Emergence of pathogenicity in the Sporothrix schenckii complex

Phenotypic and Molecular Identification of Sporothrix Isolates from an Epidemic Area of Sporotrichosis in Brazil

老年与中青年急性呼吸窘迫综合征患者的特点及预后相关危险因素分析

Film: Harry Potter Premiere 电影 : 哈里 波特首映式

2015 年 4 月 25 日 GRE 考试 语文部分 真题回忆答案解析 小站教育独家出品 版权所有翻录必究

ESCMID Online Lecture Library. by author

Andrographolide inhibits hepatoma cells growth and affects the expression of cell cycle related proteins

乙型肝炎疫苗初次免疫成年正常应答和高应答者 3 年抗体持久性观察

the micro level, only by hard work can we form the bedrock of good performance in school. 模块 4: 正反论述 第一句 : 引出争议

Determination of 7 kinds of heavy metal elements in oral tobacco products by inductively coupled plasma mass spectrometry

温度对黄粉虫体重增加 食物转化率及 消化酶活性的影响

Preparation of Cu nanoparticles with ascorbic acid by aqueous solution reduction method

Ling Zhao Huazhong Agricultural University Sep. 21, 2015

通过将课程内容大纲和职业素养与现有课程进行对照, 找出差距或需要改进的地方 鼓励卫生科学领域的课程开发人员评价现有的教学内容, 采纳并测试课程内容大纲和职业素养 将疼痛课程和管理疼痛职业素养贯穿于学生健康教育和培训形成阶段的学习机会 活动以及未来的专业发展中

2017 年同等学力申硕考试 英语前辅导 英语备考 8.28 地址 : 北京市海淀区中关村南大街 27 号中扬大厦 2 层学习服务电话 : 课程咨询电话 : 学习网址 : 二维码 : 扫描二维码获取免费增值课程

传染性支气管炎病毒 N 蛋白 CTL 表位与 BF2*15 鸡 MHC I 基序的相互作用

交感思维 : 表现 形成机理及其弱化 1 交感巫术与交感思维. Fitzsimons, 2007) , (Rozin & Nemeroff, 2002), (Rozin, Nemeroff, Wane, & Sherrod, 1989), ,,,, , Rozin

Different forward masking patterns of sustained noise burst and segmental noise burst in the inferior collicular neurons of the mouse

Protective mechanisms of sevoflurane against one-lung ventilation-induced acute lung injury: role of cyclooxygenase-2 and 5-lipoxygenase pathways

Influenza Viruses: from Epidemiology to Host Jump

Acute Glomerular Nephritis. Mao Jianhua, Department of Nephrology, The Children Hospital of Zhejiang University,

Part One-- Helicobacter Pylori. By Shenzhen Zhonghe Headway Bio-Sci & Tech Co., Ltd

Population coding/vector Coding Distributed representing 群体编码 / 向量编码 / 分布式表征

Quantitative analysis of synaptic vesicle release and readily releasable pool size in hippocampal neurons

Purification, crystallographic analysis of rhesus MHC-I Mamu-A*02 complexed with simian immunodeficiency virus nonapeptide

Analysis of fatty acids composition and trans-fatty acids content in chocolate

Genetic Toxicology: Progress on International Test Guidelines and New Methods

Supporting Information. Electrochemiluminescence for Electric-Driven Antibacterial. Therapeutics

Economic analysis of a diabetes-specific nutritional meal replacement for patients with type 2 diabetes

Mycology. BioV 400. Subcutaneous Mycoses. Ecological associations. Geographic distribution World-wide

A Case Report on Primary Ovarian Leiomyo-Sarcoma and Some Related Documents Review

Food Safety Risk Assessment Activities in China

Identification of mouse brain neuropeptides by high throughput mass spectrometry

Fracture behavior and microstructure of as-cast NiTi shape memory alloy

补偿性消费行为 : 概念 类型与心理机制

Association between serum vitamin D and severity of liver fibrosis in chronic hepatitis C patients: a systematic meta-analysis *

Author Academy: Effectively Communicating your Research

human umbilical blood-derived mesenchymal stem cells into nerve-like cells*

Fan Jiang MD PhD Shanghai Children s Medical Center Shanghai Jiao Tong University School of Medicine Ministry of Education Key Lab of Environment and

Mycophenolate mofetil plus prednisone for inducing remission of Henoch-Schönlein purpura nephritis: a retrospective study *

SHANGHAI JIAO TONG UNIVERSITY 学士学位论文 THESIS OF BACHELOR 论文题目 : D-NNA 手性转化中转氨酶的鉴定 学生姓名 : 陈忠炜 学生学号 : 专 业 : 药 学 指导教师 : 郝 彬 学院 ( 系 ): 药学院

南京, 第十二届分子标志与核医学靶向诊断治疗大会, 心血管分子显像的进展 何作祥 国家心血管病中心国家心血管疾病临床医学研究中心心血管疾病国家重点实验室中国医学科学院阜外心血管病医院

Surface of Enveloped Viruses

The key techniques to improve reproductive performance of sows

呼吸系统 Respiratory System. 钟近洁

李宗平覃光炯陈茂胜张俊杰彭灏吴哲宽杨丽萍. Effects of curing methods on conversion rate of nicotine and TSNAs contents of tobacco

Energy Metabolism and. Body Temperature

Transcription:

940 Zhao et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2015 16(11):940-947 Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) ISSN 1673-1581 (Print); ISSN 1862-1783 (Online) www.zju.edu.cn/jzus; www.springerlink.com E-mail: jzus@zju.edu.cn Morphological and physiological comparison of taxa comprising the Sporothrix schenckii complex * Ming-dan ZHAO 1, Xun ZHOU 1,2, Ting-ting LIU 1, Zhi-bang YANG 3 ( 1 Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China) ( 2 Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China) ( 3 The Laboratory of Pathogen Biology and Immunology, Basic Medical Experiment Teaching Center, Chongqing Medical University, Chongqing 400016, China) E-mail: zhouxun123@sina.com Received Mar. 8, 2015; Revision accepted Sept. 14, 2015; Crosschecked Oct. 21, 2015 Abstract: Based on recent molecular data, it has been suggested that Sporothrix globosa is the main causal agent of sporotrichosis in China. The objective of this study was to compare the morphology, growth characteristics, patterns of carbon source usage, and susceptibility to antifungal agents among Sporothrix strains. A total of 15 clinical strains confirmed to be S. globosa, from three different regions of China, and 11 ex-type strains from the CBS-KNAW biodiversity center were obtained. The elongated conidia of S. pallida, S. variecibatus, S. schenckii, and S. schenckii luriei were clearly different from the subglobose and globose conidia of S. globosa strains. S. schenckii is able to assimilate sucrose, raffinose, and ribitol. Susceptibility profiles of these Sporothrix species were evaluated by measuring minimum inhibitory concentrations (MICs). Fluconazole, itraconazole, terbinafine, and amphotericin B showed good activity against most S. globosa clinical isolates from China. Potassium iodide also showed a low MIC against S. pallida, while fluconazole showed a high MIC for S. mexicana, S. humicola, S. globosa, S. schenckii, and S. inflata; these strains might be considered tolerant. The species showed differences in susceptibility to antifungal drugs and should therefore be properly identified during diagnosis prior to designing therapeutic strategies. Key words: Sporothrix globosa, Phenotypic characters, Antifungal susceptibility doi:10.1631/jzus.b1500055 Document code: A CLC number: R375 1 Introduction Corresponding author * Project supported by the National Natural Science Foundation of China (No. 31270062) ORCID: Ming-dan ZHAO, http://orcid.org/0000-0002-7578-4212 Zhejiang University and Springer-Verlag Berlin Heidelberg 2015 Sporotrichosis is a chronic subcutaneous mycosis that can be acquired by contact with contaminated objects or organic material (O'Reilly and Altman, 2006). It also can be acquired through zoonotic transmission (Oliveira et al., 2011; Silva-Vergara et al., 2012). The incidence of sporotrichosis is increasing in China, particularly in the northeastern region of the country (Zhang and Lin, 2008). Sporothrix globosa was identified as the causal agent of sporotrichosis in many of these cases (Tan et al., 2013; Yu et al., 2013; Liu et al., 2014; Zhou et al., 2014). Four species of the Sporothrix complex have been reported as causal agents of sporotrichosis: S. brasiliensis, S. globosa, S. schenckii s. str., and S. schenckii luriei (Rodrigues et al., 2014). S. pallida and S. mexicana are mainly environmental but may also be potentially pathogenic to humans and other mammals. It is not clear if these species have different physiological features that determine their pathogenicity or if they differ in their susceptibility to antifungals. Species in the S. schenckii complex have been shown to differ in their calmodulin (CAL), internal transcribed spacer (ITS), and a fragment of the

Zhao et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2015 16(11):940-947 941 β-tubulin gene sequences (Marimon et al., 2007). Few studies have focused on the morphological and physiological variation among strains that comprise the S. schenckii complex. Recent studies have shown that morphologically similar species in this group could differ in their physiological features (Marimon et al., 2007; Rodrigues et al., 2014). Colony characteristics, growth rates, and carbon assimilation tests have been shown to be useful for distinguishing species of Sporothrix (Marimon et al., 2007; de Meyer et al., 2008). Moreover, the distribution of sessile conidia and their morphological variation have been suggested to be the key features distinguishing species within the Sporothrix complex. In this study, using type strains of different species of Sporothrix, we compared colony and microscopic morphologies, assimilation of carbon sources, and antifungal susceptibilities. The variation in these characteristics among different Sporothrix species, as reported here, provides new insights into their pathogenicity mechanisms and suggests different susceptibilities to antifungals, thereby providing new avenues for clinical therapeutic strategies. 2 Materials and methods 2.1 Strains Fifteen strains of Sporothrix from clinical sources in China were included in the study. Isolates consisted of 15 strains that were morphologically and genetically identified as S. globosa (Liu et al., 2014) and 11 ex-type strains, including S. brunneoviolacea (n=1), S. dimorphospora (n=1), S. globosa (n=1), S. humicola (n=1), S. inflata (n=1), S. lignivora (n=1), S. mexicana (n=1), S. pallida (n=1), S. variecibatus (n=1), S. schenckii (n=1), and S. schenckii luriei (n=1) (Table 1). Isolates were stored at room temperature on slant cultures containing 2% (0.02 g/ml) potato dextrose agar. Cultures were stored at 4 C in distilled water for long-term preservation. 2.2 Morphological characteristics Mycelial discs (2 mm diameter) of each strain were transferred to three replicate plates containing 2% (0.02 g/ml) potato dextrose agar, and the plates were incubated at 25 C. Colony size, shape, and pigment production were recorded after 7, 14, 21, and Table 1 Sources of isolates used in this study and analysis Strain Name Source Country of origin LC2454 S. globosa Clincal strain Beijing, China LC2460 S. globosa Clincal strain Beijing, China LC2466 S. globosa Clincal strain Beijing, China LC2467 S. globosa Clincal strain Beijing, China LC2469 S. globosa Clincal strain Beijing, China LC2432 S. globosa Clincal strain Chongqing, China LC2433 S. globosa Clincal strain Chongqing, China LC2445 S. globosa Clincal strain Chongqing, China LC2447 S. globosa Clincal strain Chongqing, China LC2480 S. globosa Clincal strain Chongqing, China LC2404 S. globosa Clincal strain Jilin, China LC2405 S. globosa Clincal strain Jilin, China LC2411 S. globosa Clincal strain Jilin, China LC2413 S. globosa Clincal strain Jilin, China LC2419 S. globosa Clincal strain Jilin, China CBS 120341 S. mexicana Environmental Mexcio CBS 124561 S. brunneoviolacea Soil Spain CBS 118129 S. humicola Soil South Africa CBS 239.68 S. inflata Wheat-field soil Germany CBS 131.56 S. pallida Stemonitis fusca Japan CBS 121961 S. variecibatus Trichopoda sp. from Protea repens South Africa CBS 119148 S. lignivora Utility poles South Africa CBS 120340 S. globosa Clincal strain Spain CBS 553.74 S. dimorphospora Soil Canada CBS 359.36 S. schenckii Clincal strain Unknown CBS 937.72 S. schenckii luriei Clincal strain South Africa

942 Zhao et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2015 16(11):940-947 28 d of incubation. Colony diameter was measured daily for 7 d and growth rate was calculated as the 7-d average of mean weekly growth (mm/week). Growth rates were subjected to an analysis of variance (P<0.05) with Duncan s multiple range test by using SPSS software (Version 16.0). After 7 d, the shape and size of the appressoria formed across the underside of the cover slip were studied (Marimon et al., 2007). 2.3 Physiological studies Carbon assimilation was tested in liquid medium according to Marimon et al. (2007). Variation in the ability to grow on sucrose, raffinose, and maltose was tested in all strains. The tests were conducted in 96-well microplates, containing either no carbon source (negative control) or glucose (positive control). The inocula were adjusted to a final concentration of from 2 10 5 to 2 10 6 colony-forming unit (CFU)/ml. Microplates were read (530 nm) after 5 d of incubation at 25 C, as previously described (Marimon et al., 2007). 2.4 Antifungal susceptibility testing The following antifungals were tested for their activity against Sporothrix strains: fluconazole (FLC), itraconazole (ITC), terbinafine (TRB), amphotericin B (AMB), and potassium iodide (KI). Antifungal susceptibility tests were performed on the isolates using the methods recommended by the Clinical Laboratory and Standards Institute standard document M38-A2 (Kohler et al., 2004; Trilles et al., 2005; Marimon et al., 2008; Oliveira et al., 2011). Ninetysix-well microplates containing 0.01 ml of RPMI- 1640 nutrient broth in each well were incubated at 25 C. Nutrient broth RPMI-1640 was amended with antifungal drug concentrations to final concentrations that spanned 0.50 to 500.00 μg/ml (KI), 0.125 to 64.00 μg/ml (FLC), and 0.03 to 16.00 μg/ml (ITC, TRB, and AMB). The concentration of cells used to inoculate assays was adjusted to a final concentration that ranged from 1 10 4 to 5 10 4 CFU/ml. Candida parapsilosis (ATCC 22019) was included as a control for each antifungal test (Marimon et al., 2008). Growth was monitored spectrophotometrically at 530 nm during the growth period and growth in the presence of antifungals was compared with growth in the absence of antifungals to establish minimum inhibitory concentrations (MICs) (Espinel-Ingroff et al., 2002). The MICs for AMB, ITC, and KI were defined as the lowest concentration showing 100% growth inhibition. MICs for TRB were defined as the lowest concentrations that showed 80% inhibition of growth, and for FLC as the lowest concentration that produced 50% growth inhibition (Trilles et al., 2005; Marimon et al., 2008; Oliveira et al., 2011; Rodrigues et al., 2014). The tests were carried out three times and an MIC based on these replicates was calculated. Carbon assimilation was tested in liquid medium according to Marimon et al. (2007). Variation in the ability to grow on sucrose, raffinose, and maltose was tested in all strains. The tests were conducted in 96-well microplates, containing either no carbon source (negative control) or glucose (positive control). The inocula were adjusted to a final concentration of from 2 10 5 to 2 10 6 CFU/ml. Microplates were read (530 nm) after 5 d of incubation at 25 C, as previously described (Marimon et al., 2007). 3 Results 3.1 Morphological characteristics 3.1.1 Colony characters Images of Sporothrix isolate colonies are depicted in Fig. 1. All strains grew well on potato dextrose agar at 25 C. Colonies of clinical isolates from China produced cream-colored, smooth or verrucous, moist colonies with occasional aerial mycelia. Over time, these colonies matured into black leathery colonies with a wrinkled and folded surface. Colonies of S. schenckii, S. schenckii luriei, S. pallida, and S. humicola produced white aerial mycelium, with white colonies in the center. These colonies remained white to cream-colored over time. 3.1.2 Conidial morphology The morphology of conidia in S. schenckii isolates differed from that of the S. globosa isolates examined. The conidia of S. globosa isolates were septate hyphae with terminal clavate obovoid structures. The conidia of S. schenckii isolates were ovate, hyaline, and thin-walled conidia in sympodial conidiophores, with oval to oblong phialides. The type strain of S. inflata produced globose, sessile, brown conidia. The type strains of S. mexicana, S. variecibatus, S. lignivora, and S. pallida produced oval conidia and hyphae with terminal obovoid conidia. The type strain of S. brunneoviolacea showed hyaline, globose to smooth and thin-walled guttulate conidia.

Zhao et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2015 16(11):940-947 943 (a) (b) (c) (d) (e) (f) (g) (h) The conidia of ex-type S. humicola were solitary, straight, and hyaline. The type strain of S. dimorphosporas showed subglobose to obovoid sessile conidia in a conidiogenous terminal structure. The type strain of S. schenckii luriei produced septate, oblong, and hyaline conidia that were slightly irregular to irregular in shape (Fig. 2). 3.1.3 Growth rate Duncan s multiple range test showed no significant differences in the growth rates among 15 S. globosa clinical strains from China (P=0.45). However, there was a statistical difference in growth rates among the different species that comprise the complex. Moreover, statistical analysis revealed a faster growth rate of strains isolated from the natural environment compared with those obtained from clinical specimens (P<0.05). The maximum growth rate of S. globosa strains was (12.33±5.29) mm/week and the minimum growth rate was (8.41±3.02) mm/ week; these were not significantly different (P>0.05). (i) (a) (b) (c) (d) (e) (j) (k) (l) (m) (f) (g) (h) (i) (j) (k) (n) 7 d 14 d 21 d 28 d Fig. 1 Colony morphology of isolates grown on potato dextrose agar at 25 C following incubation for 7, 14, 21, and 28 d (a) S. globosa (Beijing, China); (b) S. globosa (Jilin, China); (c) S. globosa (Chongqing, China); (d) S. mexicana (CBS 120341); (e) S. brunneoviolacea (CBS 124561); (f) S. humicola (CBS 118129); (g) S. inflata (CBS 239.68); (h) S. pallida (CBS 131.56); (i) S. variecibatus (CBS 121961); (j) S. lignivora (CBS 119148); (k) S. globosa (CBS 120340); (l) S. dimorphospora (CBS 553.74); (m) S. schenckii (CBS 359.36); (n) S. schenckii luriei (CBS 937.72) Fig. 2 Morphology of the conidia of the species in Sporothrix schenckii sensu lato when grown on potato dextrose agar at 25 C for 7 d (a) S. mexicana (CBS 120341); (b) S. brunneoviolacea (CBS 124561); (c) S. humicola (CBS 118129); (d) S. inflata (CBS 239.68); (e) S. pallida (CBS 131.56); (f) S. variecibatus (CBS 121961); (g) S. lignivora (CBS 119148); (h) S. globosa (CBS 120340); (i) S. dimorphospora (CBS 553.74); (j) S. schenckii (CBS 359.36); (k) S. schenckii luriei (CBS 937.72)

944 Zhao et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2015 16(11):940-947 Fungus isolate Table 2 Summary of morphological data obtained from Sporothrix isolates Diameter (mm) 7 d 14 d 21 d 28 d Growth rate (mm/week) LC2454 10.15±4.83 21.33±1.36 26.83±1.72 38.33±3.20 8.41±3.02 LC2460 10.65±4.84 20.50±1.51 32.00±3.03 39.83±3.31 9.17±4.05 LC2466 11.66±1.21 21.16±1.47 30.33±1.36 40.66±2.94 9.05±1.84 LC2467 11.66±1.03 21.00±1.54 33.16±2.02 42.66±3.66 10.44±3.68 LC2469 12.16±1.16 21.16±1.72 32.66±2.33 44.33±3.93 10.72±2.63 LC2432 9.98±4.48 21.16±2.31 31.83±2.99 46.10±1.16 11.83±4.34 LC2433 8.16±6.26 22.63±2.16 34.33±3.20 44.33±1.50 11.11±3.06 LC2445 8.28±5.76 22.66±3.93 35.50±2.07 43.00±3.57 11.38±4.52 LC2447 9.98±4.57 21.50±1.37 30.33±2.58 44.66±2.16 11.11±3.37 LC2480 9.63±4.35 21.50±2.73 31.66±2.92 44.50±2.25 11.22±4.09 LC2404 9.96±4.63 20.16±1.16 31.00±3.09 39.50±3.01 9.55±2.70 LC2405 10.15±4.74 20.50±1.08 31.50±2.66 39.33±2.42 9.50±4.24 LC2411 9.80±4.86 20.33±2.33 31.33±3.38 47.66±1.36 12.33±5.29 LC2415 9.96±4.55 20.00±2.28 31.50±2.25 46.00±3.46 11.05±2.97 LC2419 9.46±6.67 21.00±0.89 32.16±2.31 47.83±3.18 11.88±4.01 S. mexicana 25.70±2.98 46.00±2.13 63.63±2.13 85.50±0.83 19.93±2.15 S. brunneoviolacea 16.83±2.50 33.16±1.72 52.66±2.25 64.50±0.57 15.85±3.65 S. humicola 27.25±4.52 47.25±3.19 59.66±2.73 71.33±1.21 14.74±4.38 S. inflata 13.75±1.28 24.66±2.50 39.00±1.78 45.66±3.72 10.63±6.77 S. pallida 28.62±3.50 51.00±4.14 62.33±2.58 71.50±1.51 14.29±6.46 S. variecibatus 29.33±5.20 48.22±5.08 65.16±1.16 74.50±0.54 15.05±5.16 S. lignivora 29.66±1.62 58.50±6.41 76.83±7.47 77.50±0.54 18.03±10.3 S. globosa 17.01±4.69 24.50±1.97 33.83±1.47 46.33±1.50 9.77±2.86 S. dimorphospora 15.50±2.07 30.66±1.86 42.66±3.01 55.00±1.09 13.20±2.05 S. schenckii 17.20±3.35 27.35±2.25 34.16±1.83 43.00±1.78 8.68±1.56 S. schenckii luriei 14.25±3.84 24.83±5.07 35.33±1.03 55.66±1.63 13.78±5.73 S. mexicana type strains grew the fastest with a rate of (19.93±2.15) mm/week. S. schenckii and S. globosa type strains had growth rates of (8.68±1.56) mm/week and (9.77±2.86) mm/week, respectively. The colony diameters for different isolates at the same temperature are summarized in Table 2. 3.2 Physiological studies The type strain of S. lignivora (CBS 119148) was unable to assimilate sucrose, unlike all of the other strains. All isolates were able to assimilate dextrose and ribitol with the exception of S. dimorphospora, S. inflata, S. lignivora, and S. mexicana. With respect to carbon source utilization, the clinical isolates from China were similar to the type strain of S. globosa (Table 3). Table 3 Carbon assimilation associated with Sporothrix isolates used in this study Strain Sucrose Raffinose Ribitol S. globosa (n=15) + + S. mexicana + + S. brunneoviolacea + + + S. humicola + + S. inflata + S. pallida + + S. variecibatus + + S. lignivora S. globosa + + S. dimorphospora + S. schenckii + + + S. schenckii luriei + + + Number of tests showing positive (+)/negative ( ) as carbon source (+: able to grow sufficiently; : unable to grow sufficiently)

Zhao et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2015 16(11):940-947 945 3.3 Antifungal susceptibility test Table 4 summarizes the MIC ranges for the Sporothrix isolates. Fifteen clinical isolates of S. globosa were subjected to antifungal susceptibility testing. These isolates showed a low MIC to KI (MIC range, 31.25 250.00 μg/ml), FLC (MIC range, 0.50 4.00 μg/ml), ITC (MIC range, 0.25 1.00 μg/ml), TRB (MIC range, 0.06 1.00 μg/ml), and AMB (MIC range, 0.13 0.50 μg/ml) (Table 4). ITC, TRB, and AMB had the lowest MICs against S. schenckii with values of 2.00, 1.00, and 1.00 μg/ml, respectively, while FLC showed no activity (MIC>64.00 μg/ml). We detected moderate activity for ITC and TRB against the S. globosa type strain, with MICs of 1.00 μg/ml, while KI and FLC showed a low activity indicating that they are not effective against this strain. FLC was not effective against S. mexicana, S. humicola, S. inflata, or S. schenckii luriei (MIC>64.00 μg/ml). KI was the most effective antifungal agent against S. pallida (MIC=7.80 μg/ml). The MICs of FLU showed moderate activity against clinical isolates of S. globose from China compared with S. schenckii, S. globosa, and S. schenckii luriei. TRB was the most active drug for all the strains tested. AMB was slightly less effective against S. schenckii luriei and S. globosa compared with S. globosa clinical isolates from China. For ITC, a strain with an MIC of >4.00 μg/ml was considered tolerant, while a strain with an MIC in the range of 1.00 2.00 μg/ml was considered susceptible. Our data showed that ITC was effective against S. globosa clinical isolates from China, but was ineffective for S. schenckii, S. globosa, and S. schenckii luriei. 4 Discussion Different strains comprising the S. schenckii complex exhibited variation in colony characteristics. The type strain of S. globosa showed terminal clavate obovoid conidia. However, we were unable to observe any dark colony characters, and we presume that the isolate had degenerated, thereby losing its ability to produce these dark mycelia (Marimon et al., 2007). Moreover, pathogenic Sporothrix species differed in growth rates and physiological characteristics when compared with environmental isolates, suggesting that these strains have adapted specific, albeit yet to be defined, traits that enable their pathogenicity. ITC, when administered at a dose of 200 mg orally daily for 3 6 months, is the first antifungal treatment for cutaneous and lymphocutaneous sporotrichosis recommended by the Clinical Practice Table 4 Minimum inhibitory concentration (MIC) of Sporothrix isolates Strain Name MIC (μg/ml) KI FLC ITC TRB AMB LC2454, LC2460, LC2466, S. globosa 31.25 62.50 0.50 2.00 0.50 1.00 0.06 1.00 0.13 0.50 LC2467, LC2469 LC2404, LC2405, LC2411, S. globosa 62.50 125.00 2.00 4.00 0.50 1.00 0.25 1.00 0.13 0.50 LC2413, LC2419 LC2432, LC2433, LC2445, S. globosa 62.50 250.00 1.00 4.00 0.25 1.00 0.13 1.00 0.25 0.50 LC2447, LC2480 CBS 120341 S. mexicana 62.50 >64.00 4.00 0.25 8.00 CBS 124561 S. brunneoviolacea 62.50 4.00 1.00 2.00 1.00 CBS 118129 S. humicola 31.25 >64.00 0.06 2.00 8.00 CBS 239.68 S. inflata 31.25 >64.00 1.00 0.06 0.25 CBS 131.56 S. pallida 7.80 4.00 0.13 0.25 >16.00 CBS 121961 S. variecibatus 31.25 4.00 1.00 0.06 1.00 CBS 119148 S. lignivora 62.50 1.00 >16.00 1.00 8.00 CBS 120340 S. globosa >500.00 >64.00 1.00 1.00 4.00 CBS 553.74 S. dimorphospora 25.65 1.00 4.00 1.00 4.00 CBS 359.36 S. schenckii 250.00 >64.00 2.00 1.00 1.00 CBS 937.72 S. schenckii luriei 31.25 >64.00 1.00 1.00 4.00 KI: potassium iodide; FLC: fluconazole; ITC: itraconazole; TRB: terbinafine; AMB: amphotericin B

946 Zhao et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2015 16(11):940-947 Guidelines for the Management of Sporotrichosis (de Lima Barros et al., 2004; Silva-Vergara et al., 2012; Rodrigues et al., 2014). In this study, ITC showed good activity against all species, except for S. lignivora, consistent with the results of Kohler et al. (2004). Moreover, TRB exhibited high activity against all the strains tested, as demonstrated by other authors (Marimon et al., 2008). In this study, we found that S. globosa isolates from China were more susceptible to antifungals than the type strain of S. globosa. The study included strains isolated from the three different regions of China. Even in this limited sample we found variation in morphological characteristics and susceptibilities to antifungal agents. Therefore, our findings reinforce the importance of identifying S. schenckii sensu stricto and of evaluating its antifungal susceptibilities to determine the optimum therapeutic option for each case of sporotrichosis. Thus, it is imperative that species causing infection be identified during diagnosis and that treatment be prescribed accordingly. The results of this study provide fundamental data to assist in the selection of antifungal agents with enhanced activities against selected strains. Acknowledgements Dr. Lei CAI from the State Key Laboratory of Mycology, Chinese Academy of Sciences (Beijing, China) is acknowledged for providing lab space and facilities to carry out this work, and for providing valuable comments on this manuscript. The authors thank the Dermatology Department of the First Hospital of Jilin University, the Beijing University First Hospital, and the Southwest Hospital of the Third Military Medical University for supplying the clinical strains used in this study. The authors thank the CBS-KNAW biodiversity center for supplying the ex-type strains used in this study. Compliance with ethics guidelines Ming-dan ZHAO, Xun ZHOU, Ting-ting LIU, and Zhibang YANG declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors. References de Lima Barros, M.B., de Oliveira Schubach, A., do Valle, A.C.F., et al., 2004. Cat-transmitted sporotrichosis epidemic in Rio de Janeiro, Brazil: description of a series of cases. Clin. Infect. Dis., 38(4):529-535. [doi:10.1086/ 381200] de Meyer, E.M., de Beer, Z.W., Summerbell, R.C., et al., 2008. Taxonomy and phylogeny of new wood- and soil- inhabiting Sporothrix species in the Ophiostoma stenoceras-sporothrix schenckii complex. Mycologia, 100(4):647-661. [doi:10.3852/07-157r] Espinel-Ingroff, A., Chaturvedi, V., Fothergill, A., et al., 2002. Optimal testing conditions for determining MICs and minimum fungicidal concentrations of new and established antifungal agents for uncommon molds: NCCLS collaborative study. J. Clin. Microbiol., 40(10):3776-3781. [doi:10.1128/jcm.40.10.3776-3781.2002] Kohler, L.M., Monteiro, P.C., Hahn, R.C., et al., 2004. In vitro susceptibilities of isolates of Sporothrix schenckii to itraconazole and terbinafine. J. Clin. Microbiol., 42(9): 4319-4320. [doi:10.1128/jcm.42.9.4319-4320.2004] Liu, T.T., Zhang, K., Zhou, X., 2014. Molecular identification of Sporothrix clinical isolates in China. J. Zhejiang Univ.- Sci. B (Biomed. & Biotechnol.), 15(1):100-108. [doi:10. 1631/jzus.B1300136] Marimon, R., Cano, J., Gené, J., et al., 2007. Sporothrix brasiliensis, S. globosa, and S. mexicana, three new Sporothrix species of clinical interest. J. Clin. Microbiol., 45(10):3198-3206. [doi:10.1128/jcm.00808-07] Marimon, R., Serena, C., Gené, J., et al., 2008. In vitro antifungal susceptibilities of five species of Sporothrix. Antimicrob. Agents Chemother., 52(2):732-734. [doi:10. 1128/AAC.01012-07] Oliveira, D.C., Lopes, P.G., Spader, T.B., et al., 2011. Antifungal susceptibilities of Sporothrix albicans, S. brasiliensis, and S. luriei of the S. schenckii complex identified in Brazil. J. Clin. Microbiol., 49(8):3047-3049. [doi:10. 1128/JCM.00255-11] O'Reilly, L.C., Altman, S.A., 2006. Macrorestriction analysis of clinical and environmental isolates of Sporothrix schenckii. J. Clin. Microbiol., 44(7):2547-2552. [doi:10. 1128/JCM.00078-06] Rodrigues, A.M., de Hoog, G.S., de Cássia Pires, D., et al., 2014. Genetic diversity and antifungal susceptibility profiles in causative agents of sporotrichosis. BMC Infect. Dis., 14(1):219. [doi:10.1186/1471-2334-14-219] Silva-Vergara, M.L., de Camargo, Z.P., Silva, P.F., et al., 2012. Disseminated Sporothrix brasiliensis infection with endocardial and ocular involvement in an HIV-infected patient. Am. J. Trop. Med. Hyg., 86(3):477-480. [doi:10. 4269/ajtmh.2012.11-0441] Tan, J.W., Liu, W., Wan, Z., et al., 2013. Reclassification of 33 clinical strains of Sporothrix from northern China based on phenotypic and molecular characters. Mycosystema, 32(2):161-167 (in Chinese). Trilles, L., Fernández-Torres, B., dos Santos Lazéra, M., et al., 2005. In vitro antifungal susceptibilities of Sporothrix schenckii in two growth phases. Antimicrob. Agents Chemother., 49(9):3952-3954. [doi:10.1128/aac.49.9. 3952-3954.2005] Yu, X., Wan, Z., Zhang, Z., et al., 2013. Phenotypic and molecular identification of Sporothrix isolates of clinical origin in Northeast China. Mycopathologia, 176(1-2): 67-74. [doi:10.1007/s11046-013-9668-6]

Zhao et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2015 16(11):940-947 947 Zhang, J.D., Lin, J.P., 2008. Clinical analysis of 316 cases of cutaneous sporotrichosis. Chin. J. Mycol., 3(4):207-210 (in Chinese). Zhou, X., Rodrigues, A.M., Feng, P., et al., 2014. Global ITS diversity in the Sporothrix schenckii complex. Fungal Divers., 66(1):153-165. [doi:10.1007/s13225-013-0220-2] 中文概要 题目 目 : 申克孢子丝菌复合体在形态学和生理生化的研究的 : 研究申克孢子丝菌复合体在形态学 糖同化和抗真菌药物敏感性的差异, 探讨不同种类孢子丝菌的形态 生理生化及抗真菌药物敏感的特性 创新点 : 首次对我国球形孢子丝菌与其它孢子丝菌模式菌株在形态学 生理生化和抗真菌药敏方面进行比较, 从而找出我国孢子丝菌与模式菌株的差异和相同点 方法 : 实验选用 15 株从我国三个不同地区分离的球形孢子丝菌和 11 株购买的孢子丝菌模式菌株 ( 表 1), 将这 26 株孢子丝菌菌株分别接种到 2% 的马铃薯葡萄糖琼脂平板培养基上, 通过在不同时间段观察菌落生长特征, 测量菌落直径, 镜下观察菌丝 孢子形态, 测定最小抑制浓度 (MIC) 并进行评价 结论 : 实验显示 : 根据顶端分生孢子的形态 ( 图 2) 不同时期菌种的菌落直径 ( 图 1) 糖同化实验 ( 表 2 和表 3) 可进行简单鉴定我国球形孢子丝菌与孢子丝菌复合体 ; 特比萘芬有较好的体外抑菌活性, 而碘化钾 氟康唑 伊曲康唑 两性霉素 B 对不同的菌株的抗菌敏感性不同 ( 表 4) 综上所述, 我国孢子丝菌临床菌株与孢子丝菌复合体在表型 生理生化及体外抗真菌药物敏感性上均有不同程度的差异 关键词 : 球形孢子丝菌 ; 表型特点 ; 抗真菌药物敏感性