Springer Handbook of Auditory Research

Similar documents
Springer Handbook of Auditory Research

SPRINGER HANDBOOK OF AUDITORY RESEARCH. Series Editors: Richard R. Fay and Arthur N. Popper

Springer Handbook of Auditory Research

Springer Handbook of Auditory Research. Series Editors: Richard R. Fay and Arthur N. Popper

SPRINGER HANDBOOK OF AUDITORY RESEARCH

William A. Yost and George Gourevitch Editors. Directional Hearing. With 133 Figures. Springer-Verlag New York Berlin Heidelberg London Paris Tokyo

Springer. Springer Handbook of Auditory Research. Series Editors: Richard R. Fay and Arthur N. Popper

Chronic Pain. For other titles published in this series, go to

Frozen Section Library Series Editor Philip T. Cagle, MD Houston, Texas, USA

Maurie Markman, MD, Series Editor

SpringerBriefs in Child Development

Cancer Treatment and Research

Vasilis Vasiliou. Q. Max Guo. Alcohol and Cancer

ECG INTERPRETATION: FROM PATHOPHYSIOLOGY TO CLINICAL APPLICATION

Frozen Section Library: Lung

Neurobiological Bases of Abnormal Aggression and Violent Behaviour

Communication in Cognitive Behavioral Therapy

Death Threats and Violence

Cross-Sectional Anatomy for Computed Tomography

Dating Neurological Injury

Jeffrey P. Weiss Jerry G. Blaivas Philip E.V. Van Kerrebroeck Alan J. Wein. Editors. Nocturia. Causes, Consequences and Clinical Approaches

The Pharmacology of Alcohol and Drugs of Abuse and Addiction

Epidemiology, Pathogenesis, and Prevention of Head and Neck Cancer

Handbook of Pediatric Eye and Systemic Disease

Progressive Multiple Sclerosis

The Olfactory System

Morphological Aspects of Inner Ear Disease

Cerebral Blood Flow, Metabolism, and Head Trauma

Frozen Section Library: Pleura

Atlas of Lymph Node Anatomy

Differential Diagnosis of Movement Disorders in Clinical Practice

Alexander N. Sencha Elena V. Evseeva Mikhail S. Mogutov Yury N. Patrunov. Breast Ultrasound

CORTICAL DEFICITS IN SCHIZOPHRENIA From Genes to Function

Evidence-Based Forensic Dentistry

Percutaneous Laser Disc Decompression

Springer Handbook of Auditory Research

Springer Handbook of Auditory Research

Musculoskeletal Health in Women

SPRINGER BRIEFS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY. Gerhard Bauer Joseph S. Anderson. Gene Therapy for HIV From Inception to a Possible Cure

Progress in Social Psychiatry in Japan

Statistical Tools for Measuring Agreement

Color Atlas of High Resolution Manometry

Management of Headache and Headache Medications

Essentials in Cytopathology Series

Series in Psychopathology. Series Editor Lauren B. Alloy

Developing and Evaluating Educational Programs for Students with Autism

Radiation Therapy for Skin Cancer

Congenital Hip Disease in Adults

POCKET HANDBOOK OF GI PHARMACOTHERAPEUTICS

Dyspepsia in Clinical Practice

AIDS Testing Methodology and Management Issues

J Jeffress model, 3, 66ff

Identifying, Assessing, and Treating Conduct Disorder at School

AMERICAN JOINT COMMITTEE ON CANCER AJCC CANCER STAGING

Erin Lawson Mark S. Wallace Editors. Fibromyalgia. Clinical Guidelines and Treatments

HODGKIN S AND NON-HODGKIN S LYMPHOMA

Central Nervous System Diseases and Inflammation

Ultrasound Mammography

Deep Brain Stimulation for Neurological Disorders

Breast Cancer Risk Reduction and Early Detection

Local Flaps in Facial Reconstruction

Human Motivation and Interpersonal Relationships

Analysis of Waiting-Time Data in Health Services Research

Atlas of Dermatology in Internal Medicine

Phenomenology and Psychological Science

SUPPORTIVE CARE IN CANCER THERAPY

BookID <BID>_ChapID <CID>_Proof# 1-16/09/2009 Glioblastoma

Respiratory Medicine Series Editor: Sharon I.S. Rounds. Marc A. Judson Editor. Pulmonary Sarcoidosis A Guide for the Practicing Clinician

Therapeutic rtms in Neurology

SpringerBriefs in Cancer Research

The Polyol Paradigm and Complications of Diabetes

Autism and the Brain

Radiology Illustrated

Hepatitis C Virus Disease

Functional Neuroscience

Bleeding During Pregnancy

CLINICAL GASTROENTEROLOGY

Recent Research in Psychology

BCS 221: Auditory Perception BCS 521 & PSY 221

John Papadopoulos David R. Schwartz Consulting Editor. Pocket Guide to Critical Care Pharmacotherapy Second Edition

Springer Handbook of Auditory Research. Series Editors: Richard R. Fay and Arthur N. Popper

Imaging of Urinary Tract Diverticula

Reconstructive Oral and Maxillofacial Surgery

Mitochondria as Targets for Phytochemicals in Cancer Prevention and Therapy

Tadaaki Kirita Ken Omura Editors. Oral Cancer. Diagnosis and Therapy

White Coat Hypertension

Wound Management in Urgent Care

CD137 Pathway: Immunology and Diseases

Lipids, Lipophilic Components and Essential Oils from Plant Sources

THE DOMINANT FOCUS Electrophysiologicallnvestigations

Mark W.J. Strachan Brian M. Frier. Insulin Therapy. A Pocket Guide

Abnormal Female Puberty

M ETHODS IN MOLECULAR BIOLOGY

Urinary Tract Infection

Beating Drug Tests and Defending Positive Results

Glycemic Control in the Hospitalized Patient

PATHOLOGY OF MALIGNANT MELANOMA

Medical Radiology. Diagnostic Imaging

Low and Lower Fertility

Surgical Techniques for Kidney Cancer

Transcription:

Springer Handbook of Auditory Research Series Editors: Richard R. Fay and Arthur N. Popper For other titles published in this series, go to www.springer.com/series/2506

Ray Meddis Enrique A. Lopez-Poveda Richard R. Fay Arthur N. Popper Editors Computational Models of the Auditory System

Editors Ray Meddis University of Essex Colchester CO4 3SQ UK rmeddis@essex.ac.uk Richard R. Fay Loyola University of Chicago Chicago IL 60626 USA rfay@luc.edu Enrique A. Lopez-Poveda Neuroscience Institute of Castilla y León University of Salamanca 37007 Salamanca, Spain ealopezpoveda@usal.es Arthur N. Popper University of Maryland College Park, MD 20742 USA apopper@umd.edu ISBN 978-1-4419-1370-8 e-isbn 978-1-4419-5934-8 DOI 10.1007/978-1-4419-5934-8 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010921204 Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)

Series Preface The Springer Handbook of Auditory Research presents a series of comprehensive and synthetic reviews of the fundamental topics in modern auditory research. The volumes are aimed at all individuals with interests in hearing research including advanced graduate students, post-doctoral researchers, and clinical investigators. The volumes are intended to introduce new investigators to important aspects of hearing science and to help established investigators to better understand the fundamental theories and data in fields of hearing that they may not normally follow closely. Each volume presents a particular topic comprehensively, and each serves as a synthetic overview and guide to the literature. As such, the chapters present neither exhaustive data reviews nor original research that has not yet appeared in peerreviewed journals. The volumes focus on topics that have developed a solid data and conceptual foundation rather than on those for which a literature is only beginning to develop. New research areas will be covered on a timely basis in the series as they begin to mature. Each volume in the series consists of a few substantial chapters on a particular topic. In some cases, the topics will be ones of traditional interest for which there is a substantial body of data and theory, such as auditory neuroanatomy (Vol. 1) and neurophysiology (Vol. 2). Other volumes in the series deal with topics that have begun to mature more recently, such as development, plasticity, and computational models of neural processing. In many cases, the series editors are joined by a co-editor having special expertise in the topic of the volume. Richard R. Fay, Chicago, IL Arthur N. Popper, College Park, MD v

Volume Preface Models have always been a special feature of hearing research. The particular models described in this book are special because they seek to bridge the gap between physiology and psychophysics and ask how the psychology of hearing can be understood in terms of what we already know about the anatomy and physiology of the auditory system. However, although we now have a great deal of detailed information about the outer, middle, and inner ear as well as an abundance of new facts concerning individual components of the auditory brainstem and cortex, models of individual anatomically defined components cannot, in themselves, explain hearing. Instead, it is necessary to model the system as a whole if we are to understand how man and animals extract useful information from the auditory environment. A general theory of hearing that integrates all relevant physiological and psychophysical knowledge is not yet available but it is the goal to which all of the authors of this volume are contributing. The volume starts with the auditory periphery by Meddis and Lopez-Poveda (Chapter 2) which is fundamental to the whole modeling exercise. The next level in the auditory system is the cochlear nucleus. In Chapter 3, Voigt and Zheng attempt to simulate accurately the responses of individual cell types and show how the connectivity among the different cell types determines the auditory processing that occurs in each subdivision. Output from the cochlear nucleus has two main targets, the superior olivary complex and the inferior colliculus. The superior olivary complex is considered first in Chapter 4 by Jennings and Colburn because its output also passes through the inferior colliculus, which is discussed in Chapter 6 by Davis, Hancock, and Delgutte, who draws explicit links between the modeling work and psychophysics. Much less is known about the thalamus and cortex, and Chapter 5 by Eggermont sets out what has been achieved so far in understanding these brain regions and what the possibilities are for the future. Four more chapters conclude this volume by looking at the potential of modeling to contribute to the solution of practical problems. Chapter 7 by Heinz addresses the issue of how hearing impairment can be understood in modeling terms. In Chapter 8, Brown considers hearing in connection with automatic speech recognition and reviews the problem from a biological perspective, including recent progress that has been made. In Chapter 9, Wilson, Lopez-Poveda, and Schatzer look more vii

viii Volume Preface closely at cochlear implants and consider whether models can help to improve the coding strategies that are used. Finally, in Chapter 10, van Schaik, Hamilton, and Jin address these issues and show how models can be incorporated into very large scale integrated devices known more popularly as silicon chips. As is the case with volumes in the Springer Handbook of Auditory Research, previous volumes have chapters relevant to the material in newer volumes. This is clearly the case in this volume. Most notably, the advances in the field can be easily seen when comparing the wealth of new and updated information since the publication of Vol. 6, Auditory Computation. As pointed out in this Preface, and throughout this volume, the models discussed rest upon a thorough understanding of the anatomy and physiology of the auditory periphery and the central nervous system. Auditory anatomy was the topic of first volume in the series (The Mammalian Auditory Pathway: Neuroanatomy) and physiology in the second (The Mammalian Auditory Pathway: Physiology). These topics were brought up to date and integrated in the more recent Vol. 15 (Integrative Functions in the Mammalian Auditory Pathway). There are also chapters in several other volumes that are germane to the topic in this one, including chapters in Cochlear Implants (Vol. 20), The Cochlea (Vol. 8), and Vertebrate Hair Cells (Vol. 27). Ray Meddis, Colchester, UK Enrique A. Lopez-Poveda, Salamanca, Spain Richard R. Fay, Chicago, IL Arthur N. Popper, College Park, MD

Contents 1 Overview... 1 Ray Meddis and Enrique A. Lopez-Poveda 2 Auditory Periphery: From Pinna to Auditory Nerve... 7 Ray Meddis and Enrique A. Lopez-Poveda 3 The Cochlear Nucleus: The New Frontier... 39 Herbert F. Voigt and Xiaohan Zheng 4 Models of the Superior Olivary Complex... 65 T.R. Jennings and H.S. Colburn 5 The Auditory Cortex: The Final Frontier... 97 Jos J. Eggermont 6 Computational Models of Inferior Colliculus Neurons... 129 Kevin A. Davis, Kenneth E. Hancock, and Bertrand Delgutte 7 Computational Modeling of Sensorineural Hearing Loss... 177 Michael G. Heinz 8 Physiological Models of Auditory Scene Analysis... 203 Guy J. Brown 9 Use of Auditory Models in Developing Coding Strategies for Cochlear Implants... 237 Blake S. Wilson, Enrique A. Lopez-Poveda, and Reinhold Schatzer 10 Silicon Models of the Auditory Pathway... 261 André van Schaik, Tara Julia Hamilton, and Craig Jin Index... 277 ix

Contributors Guy J. Brown Speech and Hearing Research Group, Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK, g.brown@dcs.shef.ac.uk H. Steven Colburn Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA, colburn@bu.edu Kevin A. Davis Departments of Biomedical Engineering and Neurobiology and Anatomy, University of Rochester, Rochester, NY 14642, USA, kevin_davis@urmc.rochester.edu Bertrand Delgutte Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA, Bertrand_Delgutte@meei.harvard.edu Jos J. Eggermont Department of Psychology, University of Calgary, Calgary, AB, Canada T2N 1N4, eggermon@ucalgary.ca Tara Julia Hamilton School of Electrical Engineering and Telecommunications, The University of New South Wales, NSW 2052, Sydney, Australia, tara@itee.uq.edu.au Kenneth E. Hancock Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA, Ken_Hancock@meei.harvard.edu Michael G. Heinz Department of Speech, Language, and Hearing Sciences & Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA, mheinz@purdue.edu xi

xii Contributors Todd R. Jennings Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA, toddj@bu.edu Craig Jin School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW 2006, Australia, craig@ee.usyd.edu.au Enrique A. Lopez-Poveda Instituto de Neurociencias de Castilla y León, University of Salamanca, 37007 Salamanca, Spain, ealopezpoveda@usal.es Ray Meddis Hearing Research Laboratory, Department of Psychology, University of Essex, Colchester CO4 3SQ, UK, rmeddis@essex.ac.uk Reinhold Schatzer C. Doppler Laboratory for Active Implantable Systems, Institute of Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria, reinhold.schatzer@uibk.ac.at André van Schaik School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW 2006, Australia, andre@ee.usyd.edu.au Herbert F. Voigt Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA, hfv@enga.bu.edu Blake S. Wilson Duke Hearing Center, Duke University Medical Center, Durham, NC 27710, USA; Division of Otolaryngology, Head and Neck Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA; MED-EL Medical Electronics GmbH, 6020 Innsbruck, Austria, blake.wilson@duke.edu Xiaohan Zheng Biomedical Engineering Department, Boston University, Boston, MA 02215, USA, xhzheng@bu.edu