Mass Spectrometry and Proteomics Xudong Yao

Similar documents
Mass Spectrometry and Proteomics. Professor Xudong Yao Bioanalytical Chemistry Spring 2007

Lecture 3. Tandem MS & Protein Sequencing

Mass Spectrometry. Mass spectrometer MALDI-TOF ESI/MS/MS. Basic components. Ionization source Mass analyzer Detector

Mass Spectrometry and Proteomics - Lecture 4 - Matthias Trost Newcastle University

Introduction to Proteomics 1.0

NIH Public Access Author Manuscript J Proteome Res. Author manuscript; available in PMC 2014 July 05.

PTM Discovery Method for Automated Identification and Sequencing of Phosphopeptides Using the Q TRAP LC/MS/MS System

Biological Mass Spectrometry. April 30, 2014

2. Ionization Sources 3. Mass Analyzers 4. Tandem Mass Spectrometry

Comparison of mass spectrometers performances

4th Multidimensional Chromatography Workshop Toronto (January, 2013) Herman C. Lam, Ph.D. Calibration & Validation Group

Mass Spectrometry. - Introduction - Ion sources & sample introduction - Mass analyzers - Basics of biomolecule MS - Applications

One Gene, Many Proteins. Applications of Mass Spectrometry to Proteomics. Why Proteomics? Raghothama Chaerkady, Ph.D.

Proteins: Proteomics & Protein-Protein Interactions Part I

Learning Objectives. Overview of topics to be discussed 10/25/2013 HIGH RESOLUTION MASS SPECTROMETRY (HRMS) IN DISCOVERY PROTEOMICS

MALDI-TOF. Introduction. Schematic and Theory of MALDI

REDOX PROTEOMICS. Roman Zubarev.

Supporting Information. Lysine Propionylation to Boost Proteome Sequence. Coverage and Enable a Silent SILAC Strategy for

Ion Source. Mass Analyzer. Detector. intensity. mass/charge

1. Sample Introduction to MS Systems:

Double charge of 33kD peak A1 A2 B1 B2 M2+ M/z. ABRF Proteomics Research Group - Qualitative Proteomics Study Identifier Number 14146

Proteomics of body liquids as a source for potential methods for medical diagnostics Prof. Dr. Evgeny Nikolaev

MASS SPECTROMETRY BASED METABOLOMICS. Pavel Aronov. ABRF2010 Metabolomics Research Group March 21, 2010

Mass Spectrometry Infrastructure

Shotgun Proteomics MS/MS. Protein Mixture. proteolysis. Peptide Mixture. Time. Abundance. Abundance. m/z. Abundance. m/z 2. Abundance.

New Developments in LC-IMS-MS Proteomic Measurements and Informatic Analyses

The Detection of Allergens in Food Products with LC-MS

Mass spectra of peptides and proteins - and LC analysis of proteomes Stephen Barnes, PhD

Universal sample preparation method for proteome analysis

Multiplex Protein Quantitation using itraq Reagents in a Gel-Based Workflow

Improve Protein Analysis with the New, Mass Spectrometry- Compatible ProteasMAX Surfactant

Complexity DNA. Genome RNA. Transcriptome. Protein. Proteome. Metabolites. Metabolome

Advances in Hybrid Mass Spectrometry

The distribution of log 2 ratio (H/L) for quantified peptides. cleavage sites in each bin of log 2 ratio of quantified. peptides

Proteomics/Peptidomics

An Alternative Approach: Top-Down Bioanalysis of Intact Large Molecules Can this be part of the future? Lecture 8, Page 27

Biological Mass spectrometry in Protein Chemistry

Identification of Haemoglobinopathies by LC/MS

Metabolite identification in metabolomics: Metlin Database and interpretation of MSMS spectra

Principles of Shotgun Lipidomics

Quantification with Proteome Discoverer. Bernard Delanghe

New Instruments and Services

The N-terminal loop of IRAK-4 death domain regulates ordered assembly of the Myddosome signalling scaffold

Automating Mass Spectrometry-Based Quantitative Glycomics using Tandem Mass Tag (TMT) Reagents with SimGlycan

Identification of Ginsenosides Using the SCIEX X500R QTOF System

Quantitation of Protein Phosphorylation Using Multiple Reaction Monitoring

Mass Spectrometry based metabolomics

Chapter 3. Protein Structure and Function

Glycosylation analysis of blood plasma proteins

Chapter 3. Structure of Enzymes. Enzyme Engineering

Characterization of Disulfide Linkages in Proteins by 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. Supporting Information

Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS

Phosphorylation of proteins Steve Barnes Feb 19th, 2002 in some cases, proteins are found in a stable, hyperphosphorylated state, e.g.

Nature Methods: doi: /nmeth Supplementary Figure 1

Mass-Spectrometric Analysis of Lipids (Lipidomics)

Structural Elucidation of N-glycans Originating From Ovarian Cancer Cells Using High-Vacuum MALDI Mass Spectrometry

Section 1 Proteins and Proteomics

Agilent Protein In-Gel Tryptic Digestion Kit

Protein and peptide separations,

Metabolomics: quantifying the phenotype

Extended Mass Range Triple Quadrupole for Routine Analysis of High Mass-to-charge Peptide Ions

Topics. Protein Bioinformatics ( ) How a Mass Spectrometers Measure Mass. Lecture 9: Quantitative Proteomics Tuesday, April 27, 2010

Choosing the metabolomics platform

MS/MS to Targeted Proteomics (MRM)

New Mass Spectrometry Tools to Transform Metabolomics and Lipidomics

Structural Characterization of Prion-like Conformational Changes of the Neuronal Isoform of Aplysia CPEB

ABSTRACT. Catherine Fenselau, Professor, Department of Chemistry and Biochemistry

Identification & Confirmation of Structurally Related Degradation Products of Simvastatin

New Instruments and Services

Tissue and Fluid Proteomics Chao-Cheng (Sam) Wang

Proteome analysis Cellular proteomics Plasma proteomics

LC/MS/MS SOLUTIONS FOR LIPIDOMICS. Biomarker and Omics Solutions FOR DISCOVERY AND TARGETED LIPIDOMICS

Applications of HPLC-MALDI-TOF MS/MS Phosphoproteomic Analysis in Oncological Clinical Diagnostics

Suppression of the Malignant Phenotype of Bladder Cancer Cells Investigations of the Proteome in Relation to Phenotype and Gene Expression

Proteins? Protein function. Protein folding. Protein folding diseases. Protein interactions. Macromolecular assemblies. The end product of Genes

MASS SPECTROMETRIC CHARACTERIZATION OF ELASTIN PEPTIDES AND THE EFFECT OF SOLAR RADIATION ON ELASTIN. Dissertation

Symposium on Protein Fractionation

Application Note # LCMS-89 High quantification efficiency in plasma targeted proteomics with a full-capability discovery Q-TOF platform

Fundamentals of Soft Ionization and MS Instrumentation

Supplementary Figures and Notes for Digestion and depletion of abundant

Metabolite identification in metabolomics: Database and interpretation of MSMS spectra

Nature Biotechnology: doi: /nbt Supplementary Figure 1

Methods in Mass Spectrometry. Dr. Noam Tal Laboratory of Mass Spectrometry School of Chemistry, Tel Aviv University

The Comparison of High Resolution MS with Triple Quadrupole MS for the Analysis of Oligonucleotides

Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid

for the Identification of Phosphorylated Peptides

Protein Identification and Phosphorylation Site Determination by de novo sequencing using PepFrag TM MALDI-Sequencing kit

ABSTRACT. Dr. Catherine Fenselau, Department of Chemistry and Biochemistry. Presented in this work is a novel bottom up proteomics approach to

Nature Methods: doi: /nmeth.3177

SUPPORTING INFORMATION. Lysine Carbonylation is a Previously Unrecognized Contributor. to Peroxidase Activation of Cytochrome c by Chloramine-T

Don t miss a thing on your peptide mapping journey How to get full coverage peptide maps using high resolution accurate mass spectrometry

Structural vs. nonstructural proteins

Chapter 10apter 9. Chapter 10. Summary

Strategies for Characterizing Proteins in Proteomics Research

Quantification by Mass Spectrometry

Mass Spectrometry Course Árpád Somogyi Chemistry and Biochemistry MassSpectrometry Facility) University of Debrecen, April 12-23, 2010

FOURIER TRANSFORM MASS SPECTROMETRY

Edgar Naegele. Abstract

Problem-solving Test: The Mechanism of Protein Synthesis

Solving practical problems. Maria Kuhtinskaja

Transcription:

Mass Spectrometry and Proteomics Xudong Yao Dept of Chemistry University of Connecticut Storrs, CT April 19, 2005

Proteomics and -omics Roles of mass spectrometry Comparative proteomics Gel or non-gel Label or non-label Chemical proteomics

Analytical Challenges in Post-genome Research Sample complexity Peak capacity Multi-dimensional separation Collective analysis Not traditional, one-by-one analysis Sensitive, specific and quantitative and the answers is Data treatment, analysis and achieving Hardware Software Researchers of multi-disciplinary training

Protein, Proteome and Systems Biology Replication DNA RNA Protein Transcription Translation Genome Transcriptome Proteome Proteomics Analytical Definition of Proteomics Identity, Quantity and Function of All the Proteins in a Mixture Mass Spectrometry

Objectives of Proteomics Identity Quantity Time Proteome Interaction Geometrical Functional Time-Dependence

Roles of Mass Spectrometry

Mass Spectrometry Ion Source (ESI, MALDI) Mass Analyzer Vacuum Ion Detector Data System Sample Introduction Intensity Mass Spectrum m/z

Mass Analyzer Separate ions by mass/charge Common types Quadrupole mass filter (Q), Time-of-Flight (TOF), Ion Trap (IT), Fourier Transform Ion Cyclotron Resonance (FTICR) Tandem mass spectrometry Spatial, such as Q-q-TOF, TOF-TOF, Q-q-Q Temporal, such as IT, FTICR Spatial and Temporal, such as IT-FTICR, Q-q-FTICR, IT-TOF

Mass Spectrometry for Proteins and Peptides UNKNOWN PEPTIDE Structural elucidation Quantitative analysis Sensitive and automatic mixture analysis Sequencing proteins Identification of posttranslational modifications High-order structures and dynamics of proteins and protein dynamics Mass Spectrometer M +S ++A +++N ++++D +++++C ++++++H +++++++E ++++++++M MSANDCHEM Protein/EST Database Protein Identification

Comparative Proteomics Gel or Non-gel Label or Non-label

Comparative Proteomics Relative Changes in proteins including concentration and composition Proteome 1 Proteome 2 Stable Isotope Coding Constant Ratio Separation Relative Quantitation Abnormal Ratios Sampling/Cell Culture Fractionation/Separation Mass Spectrometry Bioinformatics Identification of Proteins

GEL: 2-Dimensional Electrophoresis (2-DE) A Pandey; M Mann, Nat. Biotechnol. 2000 Difficulties with: extreme pi proteins, low abundance, proteins, hydrophobic proteins Inefficient in-gel digestion of proteins for MS analysis Label extensive

NON-GEL: Shotgun Analysis of Protein Complex Easier separation Easier automation Problematic proteins Small, large, hydrophobic, low abundance Easier sample preparation for MS analysis Computational capacity Quantitative capability Link et al. Nat. Biotechnol. 1999

Label: MS-Based Relative Quantitation Large differences in concentration Direct ESI/MALDI MS Small differences in protein concentration Stable isotope dilution: inherent choice Intensity m/z

Introduction of Stable Isotopes Criteria for isotope internal standards Ideally behaving the same before mass analysis Metabolic labeling during biosynthesis/bioprocess Post-biosynthesis/bioprocess labeling: chemical and enzymatic Functional groups on side chains: -SH, -OPO 3 H 3 Termini: N-terminal, C-terminal Active/Binding sites: Chemical Proteomics H 2 N (A 1 A 2 A 3 A n ) i COOH Coding Module

Isotope-Coded Affinity Tag (ICAT) Unique Chemistry for -SH Affinity Tag Isotope-Coded Linker Gygi et al. Nat Biotechnol. 1999

Tryptic Incorporation of Two 18 O Atoms into Peptide C-Terminus H C O C H N E O + H * 2 O H C C * OH + H 2 N * R R

Adenovirus as Model System Minimal real system DNA + Proteins Known genome/proteome Predictable proteolytic peptides Defined architecture Predictable protein expression Comparative quantitation of Ad2/Ad5 proteins Dynamic range of 600-fold Shenk T. In Fundamental Virology, 1996 Capsid protein modeling membrane/hydrophobic proteins Mutations modeling post-translational modifications

3 Ad2 Virion 1 Ad5 Virion H 2 18 O Lys-C Trypsin H 2 16 O Combined Isotope-Coded Peptides Theoretical MW of Ad Tryptic Peptides MALDI-FTICR MS Most of peptides Ad2:Ad5 = 3:1 Protein Identification and Quantitation

MALDI-FTICR Mass Spectrum of Combined Digests Relative Intensity 1597.78, Protein V TSTEVQTDPWFR 2 18 O 2 18 O 1603.83, Protein VII TTVDDAIDAVVEEAR 1628.96, Protein V VLRPGTTVVFTPGER 2 18 O

Controversies and Challenges in Proteolytic Labeling Reported controversies in tryptic 18 O labeling One 18 O incorporation for K-terminated peptides Low efficient incorporation of two 18 O for short peptides Two 18 O in each new peptides Capabilities of endoproteases for 18 O labeling Two 18 O incorporation by trypsin, Lys-C, and Glu-C only One 18 O incorporation by chymotrypsin Challenges for automated, large-scale application Amount and cost of H 2 18 O

Decoupling Proteolytic 18 O Labeling from Protein Digestion Proteins in solution prior to digestion Peptide labeling in small volume of H 2 18 O Separate optimization of digestion and labeling Automatic, high-throughput, large-scale applications

Dissection of Proteolytic Incorporation of Two 18 O Amide Bond Cleavage ½* O H C C R ½* OH + HO E H C R O C H N O + HO H C C H N. HO E R E H 2 *O H C R ½* O C ½* OH. HO E NH 2 H 2 *O H 2 *O H C * O C * OH + HO E H C H 2 O * O C * OH. HO E R R Carboxyl Oxygen Exchange Yao, Afonso, Fenselau. J. Proteom. Res. 2003, 2, 147.

Molecular Basis for Cleavage and Exchange Cleavage S 5 S 4 S 3 S 1 S 2 S 3 S 2 S 1 P 5 P 4 P 3 P P CONH 2 1 P 1 P 2 P 3 Native Peptide Substrate Exchange S 5 S 4 S 3 S 2 S 1 S 1 S 2 S 3 P 5 P 4 P 3 P 2 P 1 COOH Truncated Peptide Substrate Protease catalyzes exchange TWO 18 O INCORPORATION

16 O-to- 18 O Exchange Studied by MALDI-FTICR MS YGGFMR( 16 O 2 ) YGGFMR( 18 O 2 ) YGGFMR( 16 O 18 O) Relative Intensity m/z Time 0.5 min 730.34 732.34 734.34 12.0 min

Determination of Reaction Initial Rates [ R] = [ R o ] I total ( I o Io, I2, I4, Mo, M2, M 4 )

Kinetics Comparison in R- and K-Peptides YGGFMR YGGFMK K cat (min -1 ) 3500±500 2800±300 K M (µm) 1300±300 4400±700 k cat /K M (µm -1 min -1 ) 2.6±0.9 0.64±0.14

Simultaneous Mass Spectrometric Determination of Kinetics for Trypsin-Catalyzed 16 O-to- 18 O Exchange Exchange Rate R R Complete Exchange for Mixture

Chymotrypsin Catalyzes Two 18 O Incorporation Incremental mass of 4 Da from the theoretical First observation of two 18 O incorporation into chymotryptic peptides

Enzymatic 18 O Labeling Universal two 18 O labeling of proteolytic peptides by protease-catalyzed exchange Both K- and R-terminated peptides Chymotrypsin and pepsin for two 18 O labeling, in addition to trypsin, Lys-C, Glu-C, Both short and long peptides 4 Da mass increase at the C-terminus of proteolytic peptides to be differentiated in mass spectrometry

Mass Spectrometry of Peptide- 16 O 2 / 18 O 2 Pairs H 2 N (A 1 A 2 A 3 A n ) i Separation Module COOH Coding Module 18 O-labeling enabled mass spectrometric quantitation Effect of peak resolution on quantitation Analysis on different mass analyzer configurations More than relative quantitation from differential oxygen labeling

Relative Quantitation Using Paired Isotope Clusters Relative Intensity 75 50 I 0 M 100 0 100 I 4 I 2 Observed isotopic distribution of 1:1 mixture of 18 O and 16 O samples 75 50 Theoretical natural isotopic distribution M 2 25 25 M 4 0 0 Mass/Charge Ratio = I I 4 o + 1 M M 2 o I I 2 o + M M 2 o 2 M M 2 o M M 4 o I I 5 1

Correlation of ESI Quantitation with Peptide UV Quantitation MS Ratio of [ 18 O]/[ 16 O] 10 8 6 4 2 Peptide FVNQHLCGSHLVE slope: 0.94±0.03 r 2 : 0.997 0 0 2 4 6 8 10 UV Ratio of [ 18 O]/[ 16 O] Reynolds, Yao, Fenselau. J. Proteom. Res. 2003, 1, 27.

BSA Peptide Sequence Labeling Consistency Sequence Position Unlabeled (I 0 ) Elution Time (minutes) a Labeled (I 4 ) Elution Time Ratio 1 b I 4 /I 0 (minutes) a ACFAVE 589-594 46.48 46.48 0.95 0.87 KKFWGKYLYE 155-164 52.17 52.09 0.84 0.85 TYVPKAFDE 519-527 52.93 52.93 0.99 0.96 DKDVCKNYQE 335-344 58.43 58.43 0.99 0.97 DKGACLLPKIE 196-206 57.36 57.36 0.88 0.87 KQIKKQTALVE 544-554 67.70 67.70 0.90 0.88 LLYYANKYNGVFQE 177-190 75.32 75.32 0.99 1.07 YAVSVLLRLAKE 364-375 77.56 77.48 0.91 0.91 AKDAFLGSFLYE 345-356 88.78 88.78 0.86 0.81 DYLSLILNRLCVLHE 474-488 109.11 109.03 0.85 0.96 Average 0.92 0.92 Standard Deviation 0.06 0.08 c Reynolds, Yao, Fenselau. J. Proteom. Res. 2003, 1, 27.

Correlation between MS and Western-Blot Quantification of Thioredoxin in Doxorubicin-Treated HeLa Cells Mr SDS-PAGE Analysis of Whole Cell-Extracts: Dox Control Dox Control data01_fraction7inverserepeat #1862 RT: 62.36 AV: 1 SM: 15B NL: 3.42E6 T: + NSI d Z ms [ 665.00-675.00] 668.8 100 95 90 85 80 ESI-IT-MS Analysis of Anion-X Fraction 7: (Labeling: Dox Treated 16 O, Control 18 O) Dox 16 O 2 16 O 2 : 18 O 2 5:1 data01_fraction7inverserepeat #1863 RT: 62.40 AV: 1 NL: 7.07E6 T: + c NSI d Full ms2 669.63@35.00 [ 170.00-1350.00] 100 95 90 85 80 582.8 583.5 760.4 889.3 XC= 4.19 Relative Abundance 75 70 65 60 55 50 45 40 669.2 669.7 Control 18 O 2 Relative Abundance 75 70 65 60 55 50 45 40 576.3 689.3 890.4 35 35 1018.4 11 kda 30 25 20 15 670.2 670.7 671.2 30 25 20 15 461.2 574.4 1165.4 1017.4 690.4 319.2 500.6 630.3 762.2 275.7 744.1 405.2 448.0 559.1 876.3 1001.3 1019.4 Coomassie -Stain Western-Blot (Anti-Thioredoxin Ab) 10 5 0 666 667 668 669 670 671 672 673 674 675 m/z Zoom Scan: Relative Quantification [M+2H] +2 =668.8 [M+2H + 18 O 2 ] +2 =670.7 10 5 0 MS 2 Scan: Identification 200 300 400 500 600 700 800 900 1000 1100 1200 1300 [M+H] + =1337.42 K.TAFQEALDAAGDK.L m/z Thioredoxin Courtesy of Dan Clark of Stratagene

Effect of Peak Resolution on 18 O/ 16 O Ratio (I) 1597.78, Protein V TSTEVQTDPWFR 18O 2 18O 2 1603.83, Protein VII TTVDDAIDAVVEEAR MALDI-FTICR 1628.96, Protein V VLRPGTTVVFTPGER 18O 2 Protein II VII IX VIII Terminal % wt 60 14 3 0.3 0.1 Relative Intensity 2.9±0.3 3.7±0.4 3.0±0.5 3.3±0.5 2.6 ±0.3 Yao, Freas, Ramirez, Demirev, Fenselau. Anal. Chem. 2001, 73, 2836.

Effect of Peak Resolution on 18 O/ 16 O Ratio (II) APC2_Human: 0.91 MALDI-TOF APC3_Human: 0.94 A1AH_Human: 0.94 894.3 898.3 1922.7 1926.8 2112.9 2116.9 m/z m/z m/z APC2_Human: 1.2 2+ 447.70 449.68 ESI-IT APC3_Human: 0.87 2+ 961.83 963.84 A1AH_Human: 1.3 3+ 706.23 705.00 m/z m/z m/z Heller, Mattou, Menzel, Yao. JASMS 2003, 14, 704.

Inverse 18 O-labeling Wang, Ma, Quinn, Fu. Anal. Chem 2001, 73, 3742.

Protein Sequence Ions Generated by Tandem Mass Spectrometry Mass Analyzer 1 Fragmenting the Selection Ion Mass Analyzer 2 x 4 y 4 z 4 x 3 y 3 z 3 x 2 y 2 z 2 x 1 y 1 z 1 H O H O H O H O H H H H H H 2 N C C N C C N C C N C C N C O C OH A 1 A 2 A 3 A 4 A 5 a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 a 4 b 4 c 4

Quantitation Based on MS/MS Spectrum (y-ions) y 4 y 3 y 2 y 1 H O H O H O H O H H H H H H 2 N C C N C C N C C N C C N C O C OH MTVEPGLEPEVR A 1 100 b 1 A 2 b 2 A 3 b 3 A 4 b 4 A 5 Relative Intensity 100 16 O 2 18 O 2 Relative Intensity 80 60 40 0 678 680 682 684 m/z 20 0 350 400 450 500 550 600 650 700 750 m/z Yao, Freas, Ramirez, Demirev, Fenselau. Anal. Chem. 2001, 73, 2836.

Effect of Isolation Window Width on Quantitation Using 16 O/ 18 O y-ion Pairs on IT MS Isolation of I o = 689.93 Isolation of I 4 = 691.93 MH 2 2+ 689.85 691.83 MH 2 2+ 689.87 691.82 MS MS 686 688 690 692 694 m/z 686 688 690 692 694 m/z y 10 + 984.60 988.49 MS/MS y 10 + 984.62 988.60 MS/MS 983 985 987 989 991 m/z 983 985 987 989 991 m/z Heller, Mattou, Menzel, Yao. JASMS 2003, 14, 704.

16 O/ 18 O Paired Peptides Facilitate and Validate Peptide Sequencing IT MS/MS Relative Intensity C-terminal mass 575.3 Da Q D A Y V S N-terminal mass 470.1 Da QqTOF MS/MS 400 500 600 700 800 900 1000 1100 1200 m/z

Three 18 O Incorporation Identification of N-Glycosylation Sites on Proteins Relative Intensity 100 75 50 25 Unlabeled 2 18 O-Labeled Unlabeled 3 18 O-Labeled Relative Intensity 100 75 50 25 MS/MS of m/z 1239 + Peptide SSCCYAD*FTE A D F T E 0 468 470 1239 1242 1245 1248 Mass/Charge 0 600 700 800 900 1000 1100 1200 1300 Mass/Charge Glu-C + N-Glycopeptidase F digest of riboflavin binding protein

Four 18 O Incorporation Mapping S-S Linkages in Protein 100 75 4 16 O- Labeled 4 18 O- Labeled Theoretical Distribution Relative Intensity 50 25 1371 1372 1373 1374 1375 Mass/Charge 0 1370 1372 1374 1376 1378 1380 Mass/Charge

Advantages of Modular Design H 2 N (A 1 A 2 A 3 A n ) i Separation Module COOH Coding Module Isotope Coding Universal Important to small proteins Specific Efficient Minimal Structural Modification Chromatographic co-elution Stable during separation Separation Portable to all separation platforms, including affinity separation

Protein Pools of Digitonin Extract of MCF-7 Cells Cancer Cells Digitonin Extraction Digitonin fraction cytosolic soluble cytoskeletal proteins Supernatant 120,000xg 5,000xg Pellet Properties functional proteins soluble proteins Digitonin Extract C4 Fractionation Modified according to Ramsby, Makowski Method Mol. Biol., 112, 1999.

Rel. Int. Rel. Int. LC-MS of Peptides from MCF-7 Digitonin Fraction Base peak chromatography of total peptide mixture Time (min) 4 0 6 0 8 0 1 0 0 1 2 0 40 TOF MS at 78 min Frequency 30 20 10 0 0.5 1.0 1.5 2.0 2.5 3.0 600 650 700 900 950 1000 Yao, Fenselau. ASMS Annual Conference, 2001 m/z MelR/WT Protein Ratio (MelR/WT) = 1.1 I 0 /I 4 Ratio (MelR/WT) = 1.1 ± 0.3 83% (184/223) peptides in 1.1 ± 0.3

Protein Expression Changes in MCF-7 Cells Upon Acquisition of Melphalan Resistance [Most Proteins in a Ratio (MelR/WT) of 1.1] (K)LLPQLTYLDGYDR(E) PHAPI2b /April protein pi = 4.0 MelR/WT = 2.0 (R)GIVTNWDDMEK(I) 602308605F1 NIH_MGC_88 Homo sapiens cdna clone MelR/WT = 2.6 Relative Intensity 784 786 788 m/z 654 656 658 660 Yao, Fenselau. ASMS Annual Conference, 2001

Quantitation of Cytosolic Proteins after C4 Fraction PROTEIN MASS pi WT/MeIR 40S Ribosomal Protein S28 7.9 kda 10.70 0.50 Ubiquitin 8.6 kda 6.56 0.87 Acyl-COA-Binding Protein 10.0 kda 6.11 2.02 Thioredoxin 12.0 kda 4.82 1.13 Prothymosin Alpha 12.2 kda 3.69 2.48 60S Ribosomal Protein L30 13.0 kda 9.65 0.65 Signal Recognition Particle 14.7 kda 10.05 0.56 Profilin 1 15.2 kda 8.47 1.02 Superoxide Dismutase 16.2 kda 5.70 1.09 Stathmin 17.3 kda 5.77 0.11 Cofilin 1 18.7 kda 8.22 1.21 Phosphatidylethanolamine-binding 21.2 kda 7.43 1.47 60S Ribosomal Protein L14 23.4 kda 10.94 0.40 60S Ribosomal Protein L13 24.3 kda 11.65 1.09 Nuclear Ubiquitous Casein 26.3 kda 5.00 0.52 Hepatoma-Derived Growth Factor 26.9 KDa 4.70 1.82 Brown, Fenselau. J. Proteom. Res. 2003, 3, 455.

Comparative Proteomics Relative Changes in proteins including concentration and composition Proteome 1 Proteome 2 Stable Isotope Coding Constant Ratio Separation Relative Quantitation Abnormal Ratios Sampling/Cell Culture Fractionation/Separation Mass Spectrometry Bioinformatics Identification of Proteins

Analysis of Human Plasma Sample: Example 1 Human Plasma Abundance Protein Depletion Denaturing SEC Large Proteins Fraction X Small Proteins RP Tryptic Digestion 1x Peptide Pool 1 1x Peptide Pool 2 Enzymatic 16 O-Labeling 2x MG 16 O-Peptides Enzymatic 18 O-Labeling 1x MG 18 O-Peptides Combine Differentially-Labeled Peptides SCX MALDI-MS/MS µ-rp-hplc ESI-MS/MS Heller, Mattou, Menzel, Yao. JASMS 2003, 14, 704.

LC-MALDI & LC-ESI MS Analysis of Differentially 18 O/ 16 O-Labeled Peptides Present in Human Plasma LC-MALDI-MS (TOF) 1708.5 1712.5 LC-nanoESI-MS (QTOF) 748.43 570.29 571.63 748.3 752.47 752.3 LC-ESI-MS (IT) 748.42 570.32 571.65 752.42 Rel. Int. m/z Heller, Mattou, Menzel, Yao. JASMS 2003, 14, 704.

Analysis of Human Plasma Sample: Example 2 Qian et. al., Smith MCP 2005, March 7

Assembling Separation Module and Coding Module H 2 N (A 1 A 2 A 3 A n ) i Separation Module COOH Coding Module Protein H 2 18/16 O Glu-C 16/18 O 2 16/18 O 2 16/18 O 2 16/18 O 2 16/18 O 2 O I O NH O O NH O NH S NH FVNQHLCGSHLVE 16 O-16 O 2 O-18 O 2 O CH2 16/18 O 16/18 OH Relative Intensity Biotin Biotin S Mass/Charge

Advantages of Modular Design H 2 N (A 1 A 2 A 3 A n ) i Separation Module COOH Coding Module Isotope Coding Universal Important to small proteins Specific Efficient Minimal Structural Modification Chromatographic co-elution Stable during separation Separation Portable to all separation platforms, including affinity separation

16 O/ 18 O-Labeling and Affinity Enrichment to Quantitate Proteins Liu, Qian, Strittmatter, Camp, Anderson, Thrall, Smith. Anal. Chem. 2004, 76, 5345.

16 O/ 18 O-Labeling and Affinity Enrichment to Quantitate Protein Phosphorylation Bonenfant, Schmelzle, Jacinto, Crespo, Mini, Hall, Jenoe. PNAS 2003, 100, 880.

Introduction to Chemical Proteomics

Profiling Enzyme Activity Cravatt et al.