Radiological Imaging of Drug-Induced Pulmonary Lesions

Similar documents
Radiologic findings of drug-induced lung disease

Differential diagnosis

Acute and Chronic Lung Disease

Usual Interstitial pneumonia and Nonspecific Interstitial Pneumonia. Nitra and the Gangs.

The crazy-paving pattern: A radiological-pathological correlated and illustrated overview

HRCT in Diffuse Interstitial Lung Disease Steps in High Resolution CT Diagnosis. Where are the lymphatics? Anatomic distribution

INTERSTITIAL LUNG DISEASE. Radhika Reddy MD Pulmonary/Critical Care Long Beach VA Medical Center January 5, 2018

Systemic lupus erythematosus (SLE): Pleuropulmonary Manifestations

Case 1: Question. 1.1 What is the main pattern of this HRCT? 1. Intralobular line 2. Groundglass opacity 3. Perilymphatic nodule

Liebow and Carrington's original classification of IIP

Bronkhorst colloquium Interstitiële longziekten. Katrien Grünberg, klinisch patholoog

Outline Definition of Terms: Lexicon. Traction Bronchiectasis

Cryptogenic Organizing Pneumonia Diagnosis Approach Based on a Clinical-Radiologic-Pathologic Consensus

NONE OVERVIEW FINANCIAL DISCLOSURES UPDATE ON IDIOPATHIC PULMONARY FIBROSIS/IPF (UIP) FOR PATHOLOGISTS. IPF = Idiopathic UIP Radiologic UIP Path UIP

Imaging Small Airways Diseases: Not Just Air trapping. Eric J. Stern MD University of Washington

Case 1 : Question. 1.1 What is the intralobular distribution? 1. Centrilobular 2. Perilymphatic 3. Random

11/10/2014. Multi-disciplinary Approach to Diffuse Lung Disease: The Imager s Perspective. Radiology

Financial disclosure COMMON DIAGNOSES IN HRCT. High Res Chest HRCT. HRCT Pre test. I have no financial relationships to disclose. Anatomy Nomenclature

Lung Allograft Dysfunction

INTERSTITIAL LUNG DISEASE Dr. Zulqarnain Ashraf

Idiopathic interstitial pneumonias (IIPs) are a group of

DRUG INDUCED LUNG DISEASES

5/9/2015. Multi-disciplinary Approach to Diffuse Lung Disease: The Imager s Perspective. No, I am not a pulmonologist! Radiology

The Egyptian Journal of Hospital Medicine (July 2017) Vol.68 (2), Page

SESSION IV: MECHANISMS OF HUMAN DISEASE: LABORATORY SESSIONS PULMONARY PATHOLOGY I. December 5, 2012

Thoracic lung involvement in rheumatoid arthritis: Findings on HRCT

Radiation Pneumonitis Joseph Junewick, MD FACR

CTD-related Lung Disease

HYPERSENSITIVITY PNEUMONITIS

ARDS - a must know. Page 1 of 14

ARTICLE IN PRESS. Ahuva Grubstein a, Daniele Bendayan b, Ithak Schactman c, Maya Cohen a, David Shitrit b, Mordechai R. Kramer b,

Imaging Cancer Treatment Complications in the Chest

Case 4 History. 58 yo man presented with prox IP joint swelling 2 months later pain and swelling in multiple joints Chest radiograph: bi-basilar

Replacement of air with fluid, inflammatory. cells or cellular debris. Parenchymal, Interstitial (Restrictive) and Vascular Diseases.

Radiologists toolbox to differentiate alveolar versus interstitial lung diseases

Pulmonary Complications of Antineoplastic Agents : Era of Targeted Therapy

An Image Repository for Chest CT

Elderly Man with Dyspnoea

Pulmonary fibrosis on the lateral chest radiograph: Kerley D lines revisited

Daria Manos RSNA 2016 RC tment-sites/radiology/contact/faculty/dariamanos.html

CLEARING THE AIR ON DIFFUSE PARENCHYMAL (INTERSTITIAL) LUNG DISEASE (ILD)

T he diagnostic evaluation of a patient with

I don t need you. Disclosure Statement. Pathology Approach to ILD 11/5/2016. Kirk D. Jones, MD UCSF Dept of Pathology

Nitrofurantoin-Induced Lung Toxicity

Radiologic-pathologic correlation of pulmonary diseases

Manish Powari Regional Training Day 10/12/2014

Radiologic Approach to Smoking Related Interstitial Lung Disease

Non-neoplastic Lung Disease II

IPF: Epidemiologia e stato dell arte

DOWNLOAD PDF DRUG-INDUCED LUNG DISEASES AND RADIATION PNEUMONITIS

Key words: CT scanners; interstitial lung diseases; polymyositis-dermatomyositis; x-ray

Pulmonary Manifestations of Systemic Lupus Erythematosus 1

Interesting Cases. Pulmonary

CHAPTER II DRUG INDUCED PULMONARY DISEASES. BY J. jayasutha lecturer department of pharmacy practice Srm college of pharmacy SRM UNIVERSITY

Hypersensitivity Pneumonitis: Spectrum of High-Resolution CT and Pathologic Findings

Combined Unclassifiable Interstitial Pneumonia and Emphysema: A Report of Two Cases

PULMONARY TUBERCULOSIS RADIOLOGY

Eosinophils and effusion: a clinical conundrum

Imaging Spectrum of Allergic Lung Disease: Hypersensitivity Reactions on the Lung Parenchyma

2009 H1N1 Influenza Infection: Spectrum Of Chest CT Findings, With Radiologic- Pathologic Correlation

International consensus statement on idiopathic pulmonary fibrosis

Parenchymal, Interstitial i (Restrictive) i and Vascular Diseases

Chest imaging II. Interstitial lung diseases

Interstitial Lung Disease in Infants and Children

CASE OF THE MONTH. Lung Disease in Rheumatoid Arthritis

September 2014 Imaging Case of the Month. Michael B. Gotway, MD. Department of Radiology Mayo Clinic Arizona Scottsdale, AZ

Pathologic Assessment of Interstitial Lung Disease

8/14/2017. Objective: correlate radiographic findings of common lung diseases to actual lung pathologic features

10/17/2016. Nuts and Bolts of Thoracic Radiology. Objectives. Techniques

Atopic Pulmonary Disease: Findings on Thoracic Imaging

Pulmonary veno-occlusive disease

Progress in Idiopathic Pulmonary Fibrosis

How to identify interstitial pneumonias.

Thoracic sarcoidosis: Pictoral review of typical and atypical findings

Progression pattern of restrictive allograft syndrome after lung transplantation

Challenges in the Diagnosis of Interstitial Lung Disease

A Review of Interstitial Lung Diseases. Paul J. Wolters, MD Associate Professor Department of Medicine University of California San Francisco

Cryptogenic Organising Pneumonia As The Initial Presenting Manifestation of SLE

Interstitial Lung Diseases(ILD) By : Dr. Shaher M. Samrah Done by : Ibrahim M. sun

Spectrum of Cystic Lung Disease and its Mimics. Kathleen Jacobs MD and Elizabeth Weihe MD UC San Diego Medical Center, Department of Radiology

Medical Policy An independent licensee of the Blue Cross Blue Shield Association

I have no relevant conflicts of interest to disclose

Mayo Clin Proc, May 2003, Vol 78 BCNU-Associated Pulmonary Fibrosis 631 Figure 1. Chest radiograph of BCNU-treated patient, showing small right apical

Dr.kassim.m.sultan F.R.C.P

Interpretation of Chest Radiographs Paul Christensen, MD 10/21/09. Diagnostic Evaluation. Medical Evaluation & CXR Interpretation.

ISPUB.COM. How Drugs Affect The Lungs. S Kumar, S Mehra BACKGROUND AGE RACE LIMITED KNOWLEDGE SEX RISK FACTORS FREQUENCY

Cryptogenic Organizing Pneumonia: Serial High-Resolution CT Findings in 22 Patients

Epidemiology and classification of smoking related interstitial lung diseases

New lung lesion in a 55 year-old male treated with chemoradiation for non-small cell lung carcinoma

IPF - Inquadramento clinico

Imaging: how to recognise idiopathic pulmonary fibrosis

4/17/2010 C ini n ca c l a Ev E a v l a ua u t a ion o n of o ILD U dat a e t e i n I LDs

Lung CT: Part 2, The Interstitial Pneumonias Clinical, Histologic, and CT Manifestations

Role of High Resolution Computed Tomography in Evaluation of Pulmonary Diseases

June 2013 Pulmonary Case of the Month: Diagnosis Makes a Difference. Lewis J. Wesselius, MD 1 Henry D. Tazelaar, MD 2

A Review of Interstitial Lung Diseases

The radiological differential diagnosis of the UIP pattern

ACUTE PULMNARY INFECTIONS: UNDERSTANDING THE CHEST RADIOGRAPH. Leonard E. Swischuk, M.D. University of Texas Medical Branch

New respiratory symptoms and lung imaging findings in a woman with polymyositis

Transcription:

Review Article imedpub Journals www.imedpub.com Journal of Clinical Radiology and Case Reports Radiological Imaging of Drug-Induced Pulmonary Lesions D souza M *, Rajiah P, Khan A and Irion K Department of Radiology, Pennine Acute Trust Hospitals, England * Corresponding author: Melosa D'souza, Department of Radiology, Pennine Acute Trust Hospitals, England, Tel: 07557091580; E-mail: melosadsouza@doctors.org.uk Rec date: January 31, ; Acc date: February 10, ; Pub date: February 18, Copyright: D souza M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Citation: D souza M, Rajiah P, Khan A, Irion K () Radiological Imaging of Drug-Induced Pulmonary Lesions. J Clin Radiol Case Rep Vol.2 No. 1:02. Abstract Patterns of Drug Induced Lung Damage There are many radiological manifestations of lung injury secondary to medication. Many of these pathologies have overlapping patterns on imaging, so classification can be a challenge. The most common presentations on high resolution CT are described in this pictorial essay. Also depicted are the common causative agents and their associated patterns of lung injury. Keywords: Drug-induced; Lung lesions; Pulmonary lesions; Thorax; High resolution CT; Chest; Iatrogenic Introduction Many pharmacological agents have the potential to cause lung damage. This damage can either be acute or chronic. More than 100 cytotoxic and non-cytotoxic agents have been reported to cause pulmonary toxicity, and as more pharmaceuticals are developed, the number of causative agents is increasing. Other causes of lung injury must be ruled out before diagnosing drug-induced pulmonary toxicity, however, it should be considered in patients with new onset or progressive, respiratory complaints that correlate with the introduction of a new medication and improve on cessation of the drug. There are different histopathological processes associated with different drugs and these relate to differing radiological manifestations. The patterns more commonly identified include diffuse alveolar damage (DAD), non-specific interstitial pneumonia (NSIP), hypersensitivity pneumonitis, eosinophilic pneumonia, bronchiolitis obliterans organizing pneumonia (BOOP), non-cardiogenic pulmonary oedema, pulmonary haemorrhage, acute respiratory distress syndrome (ARDS) and pulmonary veno-occlusive disease. This paper aims to characterize the different imaging patterns of pulmonary lesions by their underlying pathological processes. The paper also demonstrates lung injuries associated with common pharmaceuticals [1]. Diffuse Alveolar Damage (DAD) This is a common manifestation of drug-induced lung injury. In the first week, there is an acute exudative-phase injury resulting in alveolar and interstitial oedema and hyaline membranes. After the first week, there is a reparative phase, characterized by proliferation of type II pneumocytes and interstitial fibrosis. Table 1 Patterns of pulmonary lesions and their causative agents. Lung Pathology Diffuse alveolar damage Non-specific pneumonia Hypersensitivity pneumonitis Eosinophilic pneumonia interstitial Bronchiolitis obliterans organizing pneumonia Non-cardiogenic edema Pulmonary haemorrhage Veno-occlusive disease Pulmonary Causative Drugs Bleomycin, Busulfan, Cyclophosphamide, Carmustine, Mitomycin, Melphalan, Gold salts Amiodarone, Methotrexate, Chlorambucil, Carmustine, Leflunomide Methotrexate, Sulfasalazine, Nitrofurantoin, Procarbazie, Gold salts NSAIDs, Nitrofurantoin, Para amino salicylic acid, Penicillamine, Sulfasalazine, ACE inhibitors Amiodarone, Bleomycin, Cyclophosphamide, Gold salts, Methotrexate, Nitrofurantoin, Pencillamine, Sulfasalazine Acetylsalicylic acid, Amphotericin, Cyclophosphamide, Cyclosporin, Dexamethasone, Morphine, Methotrexate, Hydrochlorothiazide, Sulfasalazine Anticoagulants, Amphotericin B, Cyclophosphamide, Cytarabine, Pencillamine Bleomycin, Busulfan, Carmustine, Lomustine Those affected usually present with non-specific features of fever, cough and dyspnoea. Further lung function testing may Copyright imedpub This article is available from: http://www.imedpub.com/journal-clinical-radiology-case-reports/ 1

reveal decreased carbon monoxide diffusing capacity. Chest radiographs demonstrate diffuse bilateral alveolar opacities in middle and lower zones. High resolution computed tomography (HRCT) shows diffuse or scattered areas of ground glass opacity, known as honeycomb lung. The resulting fibrosis can improve, stay stable, or worsen. Fibrosis lasting for as little as 1 week has the potential to progress to honeycomb lung. Diffuse alveolar damage is commonly caused by cytotoxic chemotherapy agents such as: bleomycin, cyclophosphamide, carmustine, and mitomycin. Other iatrogenic causes may be found in Table 1. Non-specific Interstitial Pneumonia (NSIP) Non-specific interstitial pneumonia, also known as chronic interstitial pneumonia, results from scattered interstitial inflammation, mild interstitial fibrosis, and hyperplasia of type II pneumocytes. Differential diagnoses include usual interstitial pneumonia and desquamative interstitial pneumonia; however, the interstitial inflammation is more homogenous and cellular than usual interstitial pneumonia. Affected patients present similarly to those with DAD. Symptoms are typically those of fever, malaise, cough and dyspnoea. Carbon monoxide diffusion capacity is again reduced. Chest radiograph demonstrates diffuse, heterogeneous opacities. HRCT shows ground glass opacity in the early stages, with basal fibrosis (honeycombing and traction bronchiectasis) in the later stages. The commonest drug causes are amiodarone and carmustine. Methotrexate, chlorambucil and leflunomide have also been implicated. Hypersensitivity pneumonitis Hypersensitivity reactions are mediated by the active immune system. The immune damage may be caused by drugspecific antibiotics, or drug-specific T cells. Deposition of antibody-drug complexes further perpetuates the reaction. Lymphocytes and plasma cell infiltrates lead to alveolar inflammation and subsequent damage to the lung parenchyma. Presenting symptoms are generalized malaise, cough and dyspnoea. Chest radiograph may show alveolar infiltrates. HRCT is characterized by ground glass opacities, ill-defined centrilobular nodules, and extensive consolidation. Chronically, fibrosis, honeycombing and centrilobular nodules are seen. Non-caseating granulomas with giant cells may also be noted. Nitrofurantoin and immunosuppressive drugs such as methotrexate, sulfasalazine and gold salts are known causes of hypersensitivity reactions. Eosinophilic pneumonia High circulating immunoglobulin type E (IgE) and eosinophilia cause infiltration of alveoli with eosinophils, lymphocytes and plasma cells, leading to thickening of alveolar septae. Affected individuals demonstrate symptoms of dyspnoea, dry cough and fever. Blood tests show eosinophilia and high levels of IgE. Chest radiograph shows homogenous opacities typically in the peripheries and upper lobe, with a reverse pulmonary oedema pattern (bilateral peripheral airspace disease with sparing of the central lung parenchyma). HRCT shows peripheral pulmonary opacities. Common drug causes are NSAIDs, para-amino salicylic acid, ACE inhibitors, nitrofurantoin, penicillamine and sulfasalazine. Cessation of the offending agent and treatment with steroids are the mainstay of management. Bronchiolitis Obliterans Organizing Pneumonia (BOOP) BOOP, also known as cryptogenic organizing pneumonia, is an inflammation of the bronchioles and surrounding tissue. It is characterized by proliferation of immature fibroblasts, called Masson bodies, causing polypoid plugs within respiratory bronchioles, alveolar ducts and alveolar spaces. Symptoms are dyspnoea, dry cough and fever. Crackles may be heard on auscultation. Chest radiograph shows bilateral peripheral opacities in upper and lower lobes. These findings are similar to an extensive pneumonia. HRCT shows nodular consolidation, bronchial dilations, centrilobar nodules and branching linear opacities, known as tree-in-bud. Common causative drugs are amiodarone, bleomycin, cyclophosphamide, gold salts, methotrexate, nitrofurantoin, penicillamine and sulfasalazine. Resolution of symptoms occurs on discontinuation of the drug and steroid therapy. Non-cardiogenic pulmonary oedema Symptoms include acute dyspnoea, cough and haemoptysis. Pathogenesis is likely to be endothelial injury and increased capillary permeability. Chest radiograph shows bilateral alveolar opacities and septal lines. The heart size is normal, as a pose to cardiomegaly seen in cardiogenic pulmonary oedema. HRCT shows alveolar opacification, interstitial lines, sub-pleural lines and effusions. Drugs known to cause noncardiogenic pulmonary oedema are listed in Table 1. Pulmonary haemorrhage This is an uncommon pulmonary complication. Patients often present with acute respiratory distress and, occasionally, haemoptysis. Chest radiograph shows bilaterally opacities occasionally with focal consolidation. HRCT demonstrates bilateral scattered or diffuse ground glass opacification [2,3]. Anticoagulants are common used drugs that can cause pulmonary haemorrhage. Other drugs are listed in Table 1. Acute Respiratory Distress Syndrome (ARDS) ARDS is characterized by diffuse injury to alveolar cells, leading to surfactant dysfunction, abnormal coagulation and activation of the innate immune response. This leads to non- 2 This article is available from: http://www.imedpub.com/journal-clinical-radiology-case-reports/

cardiogenic pulmonary oedema and impaired gas exchange in the alveoli [4]. Patients present with worsening dyspnoea, tachypnoea and hypoxaemia. Chest radiograph shows diffuse bilateral opacities. HRCT shows dense consolidation in dependent areas, in the early stages. Later, a coarse reticular pattern is noted secondary with type II pneumocyte proliferation and fibrosis. Ground glass opacifications is seen in the nondependent part of the lungs. Pulmonary veno-occlusive disease This is a rare form of pulmonary hypertension, characterized by progressive intimal fibrosis and occlusion of pulmonary veins, leading to high pulmonary arterial pressures. HRCT may show main pulmonary artery enlargement, ground-glass opacities in a centrilobar distribution, and mediastinal lymphadenopathy. However, lung biopsy may be required to make a definitive diagnosis [5]. The usual drugs responsible are cytotoxic agents such as bleomycin, mitomycin and carmustine. Figure 1b HRCT of the patient in Figure 1a, after cessation of amiodarone. The lung changes seen previously have now resolved. Captopril: Captopril is an angiotensin converting enzyme inhibitor used to treat hypertension. Eosinophilia is a common side effect of captopril therapy, which rarely manifests as an eosinophilic pneumonia (Figure 2). There is symptom resolution upon discontinuation of the drug. Common Drugs Causing Lung Injury Cardiovascular drugs Amiodarone: Lung disease usually develops within months of initiating therapy in susceptible individuals. There is usually no correlation between dose or duration of treatment and development of pathology. Those most at risk are the elderly and patients administered a daily dose of greater than 400 milligrams. The pathology most often seen with Amiodarone is NSIP, pleural effusions and BOOP (Figure 1a). Usually patients respond well to cessation of amiodarone therapy (Figure 1b), although some may progress to death. Figure 2 HRCT shows focal areas of consolidation due to eosinophilic pneumonia in someone receiving captopril therapy. Antibiotics Figure 1a HRCT of a patient treated with amiodarone for a supraventricular tachycardia. The image shows bilateral, diffuse, scattered ground glass opacities with septal thickening and fibrosis. Nitrofurantoin Nitrofurantoin is an uncommon cause of drug-induced lung disease. An acute reaction mimics hypersensitivity pneumonitis, and occurs within 2 weeks with an eosinophilia, fever, dyspnoea and cough. Imaging shows bilateral, diffuse, basal heterogeneous opacities. Chronic toxicity occurs months to years after therapy. The most common presentation is nonspecific interstitial pneumonitis (Figure 3a), although it can rarely present as BOOP. Nitrofurantoin induced lung disease has a good prognosis and responds to cessation (Figure 3b). These features are consistent with a diagnosis of nonspecific interstitial pneumonitis. Copyright imedpub 3

Anti-Inflammatory Drugs Methotrexate Methotrexate is commonly used to treat rheumatological conditions. 5-10% of those treated develop some lung disease. This occurs within months of therapy, with no relation to dose or duration of treatment. NSIP and hypersensitivity pneumonitis (Figure 5) are most commonly seen with methotrexate treatment, and these usually improve on stopping the drug. Figure 3a HRCT of a patient showing diffuse interstitial disease with ground glass opacity, septal thickening and sub-pleural lines. This is a presentation of non-specific interstitial pneumonitis with nitrofurantoin. Figure 5 HRCT of a patient taking methotrexate for treatment of rheumatoid arthritis. The image on the left shows coarse reticulation, nodules and fissural thickening in the upper lobe. On the right, there is diffuse interstitial disease with ground glass opacities, septal thickening and areas of decreased lung density with multifocal bronchiolitis. These findings are consistent with hypersensitivity pneumonitis. Figure 3b HRCT of the patient in Figure 3a, after cessation of nitrofurantoin. The ground glass opacity has cleared however some disease has persisted. Septal thickening and sub-pleural lines are still present. Amphotericin B Amphotericin is typically used to treat fungal infections (Figure 4). Gold salts Gold salts are also used to treat rheumatological conditions. 1% of these patients go on to develop lung disease within 2-6 months of initiating therapy. DAD, NSIP and BOOP are the usual pathologies found with gold salts (Figure 6) and cessation has a good response. Figure 6 Bilateral interstitial fibrosis, interlobular septal thickening and honeycombing are seen in a patient treated with gold salts for rheumatoid arthritis. Figure 4 This is a chest radiograph of a 28-year old patient treated with Amphotericin B for a systemic fungal infection. There is bilateral central consolidation suggestive of pulmonary haemorrhage. Sulfasalazine Sulfasalazine is used to treat inflammatory bowel disease and inflammatory arthritis, although its use has decreased in preference for the 5-aminosalicylic acid derivatives which have 4 This article is available from: http://www.imedpub.com/journal-clinical-radiology-case-reports/

a more acceptable side effect profile. The lung lesions caused by this drug can be variable (Figures 7a-7c). that have failed to respond to conventional therapy. Penicillamine has been reported to cause BOOP (Figure 8). Figure 7a A and B are chest radiographs of a patient taking sulfasalazine for rheumatoid arthritis. A was taken on 15 th August 2005, and B was taken on 22 nd August 2005, just 7 days after. There are diffuse heterogeneous opacities seen in both chest radiographs, with worsening of these changes in B. Figure 8 bilateral diffuse alveolar opacities and interstitial thickening is seen in a patient on Penicillamine. There are also bilateral pleural effusions. Cyclosporine Cyclosporine is an immunosuppressive agent used as posttransplant prophylaxis against graft rejection. It can also be used to treat rheumatological conditions. Non-cardiogenic pulmonary oedema is a complication of cyclosporine treatment (Figure 9). Figure 7b HRCT showing ground glass opacity, septal thickening and focal air trapping. Figure 9 Bilateral perihilar alveolar oedema and moderate pleural effusions secondary to cyclosporine induced noncardiogenic pulmonary oedema. Figure 7c HRCT showing ground glass opacity, septal thickening, sub-pleural lines and traction bronchiectasis. Chemotherapeutic Agents Bleomycin Bleomycin is one of the most commonly implemented drug. The risk of developing lung disease is increased with a cumulative dose of >450 units. Additionally, being elderly, or having a history of oxygen therapy or irradiation are risk factors. Reinstitution of bleomycin treatment within 6 months of cessation also increases risk. Bleomycin can cause lots of lung pathologies but the most commonly seen is diffuse alveolar damage, then non-specific Penicillamine interstitial pneumonia and BOOP (Figure 10). Bleomycin related lung damage is associated with a poor prognosis, with Penicillamine is primarily used as a chelating agent in the respiratory failure in 3 months [6]. treatment of Wilson s disease. It can also be used as a disease modifying agent in patients with severe rheumatoid arthritis Copyright imedpub 5

Figure 10 38-year old man treated with Bleomycin for testicular cancer, who developed dyspnoea, dry cough and weight loss. The chest radiograph on the left shows extensive areas of fibrosis, predominantly in the middle and lower zones. On the right is the HRCT, showing scattered areas of ground glass opacity, sub-pleural reticular opacities and areas of honeycombing suggestive of severe pulmonary fibrosis. Figure 12 45-year old man on cyclophosphamide. The chest radiograph on the left shows bilateral hazy ground glass opacities and fine reticular shadows, worse in the right lung. The HRCT on the right shows bilateral, heterogeneous ground glass opacity and thickened interlobular septae. There is distortion of the architecture and traction bronchiectasis in the right lung, suggestive of pulmonary fibrosis. These features are consistent with diffuse alveolar damage secondary to cyclophosphamide therapy. Carmustine 20-30% of patients treated with carmustine develop druginduced lung disease. There is a clear relationship between cumulative dose and lung injury; if the cumulative dose is greater than 1.5 gm/m 2, more than 50% of the lung is affected. A history of radiation increases the risk of developing lung disease. The pathologies most associated with carmustine are DAD and NSIP (Figure 11). Figure 11 HRCT shows carmustine induced NSIP. There is interstitial fibrosis, septal thickening, honeycombing and traction bronchiectasis. Cyclophosphamide Unlike carmustine, there is no relationship between the dose of cyclophosphamide and the severity of lung injury. The onset of symptoms can be variable with some developing symptoms 2 weeks after treatment, some 13 years after. DAD is the most common lung pathology seen, however HSIP or BOOP can also occur (Figure 12). The prognosis is usually improved with discontinuation of cyclophosphamide. Conclusion Drug induced damage should be suspected in patients presenting with new or progressive respiratory symptoms, and receiving medications known to cause pulmonary toxicity, particularly chemotherapeutic agents. The clinical and radiological findings in drug-induced lung disease can be nonspecific and may imitate non-drug related disease processes, such as infection. It can be difficult to determine the aetiology of lung lesions without histological confirmation of the underlying pathological process. Thorough drug histories are essential to identify iatrogenic causes for the lung injury, as different medications are associated with different patterns of radiological lesions. As more pharmaceuticals are developed, the list of causative agents will undoubtedly increase. Identifying the pulmonary reaction and underlying cause can improve the management of iatrogenic lung disease. References 1. Ellis SJ, Cleverley JR, Müller NL (2000) Drug-induced lung disease: high-resolution CT findings. American Journal of Roentgenology 175: 1019-1024. 2. Rossi SE, Erasmus JJ, McAdams HP, Sporn TA, Goodman PC (2000) Pulmonary drug toxicity: radiologic and pathologic manifestations. Radiographics 20: 1245-1259. 3. Camus PH, Foucher P, Bonniaud PH, Ask K (2001) Drug-induced infiltrative lung disease. European Respiratory Journal 18: 93-100. 4. Desai SR, Wells AU, Rubens MB, Evans TW, Hansell DM (1999) Acute respiratory distress syndrome: CT abnormalities at longterm follow-up. Radiology 210: 29-35. 5. Frazier AA, Franks TJ, Mohammed TLH, Ozbudak IH, Galvin JR (2007) Pulmonary veno-occlusive disease and pulmonary capillary hemangiomatosis. Radiographics 27: 867-882. 6 This article is available from: http://www.imedpub.com/journal-clinical-radiology-case-reports/

6. Schwaiblmair M, Behr W, Haeckel T, Märkl B, Foerg W, et al. (2012) Drug induced interstitial lung disease. The Open Respiratory Medicine Journal 6: 63. Copyright imedpub 7