H3F3A K27M Mutation in Pediatric CNS Tumors. A Marker for Diffuse High-Grade Astrocytomas

Similar documents
Neuropathology Evening Session: Case 3

Enterprise Interest None

Clinical significance of genetic analysis in glioblastoma treatment

Gliomas in the 2016 WHO Classification of CNS Tumors

Anaplastic Pilocytic Astrocytoma: The fusion of good and bad

CNS pathology Third year medical students. Dr Heyam Awad 2018 Lecture 12: CNS tumours 2/3

Genomic analysis of childhood High grade glial (HGG) brain tumors

Site Specific Coding Rules MALIGNANT CENTRAL NERVOUS SYSTEM TUMORS

Disclaimers. Molecular pathology of brain tumors. Some aspects only. Some details are inevitably personal opinions

The 2016 WHO classification of central nervous system tumors: what neurologists need to know

Morphological features and genetic alterations

Classification of Diffuse Gliomas: Progress, Pearls and Pitfalls. Rob Macaulay Neuropathologist, MCC October 21, 2017

HHS Public Access Author manuscript Nat Genet. Author manuscript; available in PMC 2012 September 01.

SYSTEMIC MANAGEMENT OF PEDIATRIC PRIMARY BRAIN TUMORS

Long survival in a child with a mutated K27M-H3.3 pilocytic astrocytoma

What yield in the last decade about Molecular Diagnostics in Neuro

Histopathological Study and Categorisation of Brain Tumors

The New WHO Classification and the Role of Integrated Molecular Profiling in the Diagnosis of Malignant Gliomas

Childhood Brain and Spinal Cord Tumors Treatment Overview (PDQ )

Corporate Medical Policy

General: Brain tumors are lesions that have mass effect distorting the normal tissue and often result in increased intracranial pressure.

Case 1. Maysa Al-Hussaini MD FRCPath

Protocol Abstract and Schema

Applications of molecular neuro-oncology - a review of diffuse glioma integrated diagnosis and emerging molecular entities

Genomic Methods in Cancer Epigenetic Dysregulation

Karl Kashofer, Phd Institut für Pathologie Medizinische Universität Graz

Cynthia Hawkins. Division of Pathology, Labatt Brain Tumour Research Centre, The Hospital for Sick Children, University of Toronto, Canada

Pr D.Figarella-Branger Service d Anatomie Pathologique et de Neuropathologie, La Timone, Marseille UMR 911 Inserm, Université d Aix-Marseille

SALSA MLPA probemix P175-A3 Tumour Gain Lot A3-0714: As compared to the previous version A2 (lot A2-0411), nine probes have a small change in length.

Integrating molecular markers into the World Health Organization classification of CNS tumors: a survey of the neuro-oncology community

A Pyrosequencing-Based Assay for the Rapid Detection of IDH1 Mutations in Clinical Samples

2017 Diagnostic Slide Session Case 3

Pediatric Brain Tumors: Updates in Treatment and Care

STUDY OFPAEDIATRIC CNS TUMORS IN TERTIARY CARE CENTER

Supra- and infratentorial brain tumors from childhood to maternity

WHO 2016 CNS Tumor Classification Update. DISCLOSURES (Arie Perry, MD) PATTERN RECOGNITION. Arie Perry, M.D. Director, Neuropathology

I have no conflicts of interest in relation to this presentation. Vogel FS & Burger PC 3/28/2016

Case Report Atypical Presentation of Atypical Teratoid Rhabdoid Tumor in a Child

Supplemental Information. Molecular, Pathological, Radiological, and Immune. Profiling of Non-brainstem Pediatric High-Grade

Personalized Healthcare Update

Key Words: Brain tumor, BRAF, Glioneuronal, MAPK, Pilocytic astrocytoma.

Astroblastoma: Radiologic-Pathologic Correlation and Distinction from Ependymoma

IDH1 R132H/ATRX Immunohistochemical validation

Tumors of the Nervous System

Pediatric CNS Tumors. Disclosures. Acknowledgements. Introduction. Introduction. Posterior Fossa Tumors. Whitney Finke, MD

A clinical perspective on neuropathology and molecular genetics in brain tumors

CNS TUMORS. D r. Ali Eltayb ( U. of Omdurman. I ). M. Path (U. of Alexandria)

Histopathological Spectrum of Central Nervous System Tumors: A Single Centre Study of 100 Cases

MOLECULAR DIAGNOSTICS OF GLIOMAS

Molecular diagnostics of gliomas: state of the art

Nature Genetics: doi: /ng.2995

Tumors of the Central Nervous System

Childhood Brain and Spinal Cord Tumors Treatment Overview (PDQ )

In 1988 Dumas-Duport et al. first used

Case 2. Dr. Sathima Natarajan M.D. Kaiser Permanente Medical Center Sunset

Shared Care & Survival CTYA SSCRG (Childhood Cancer Research Group)

The new WHO 2016 classification of brain tumors what neurosurgeons need to know

Embryonal tumor with multilayered rosettes, C19MC-altered: Report of an extremely rare malignant pediatric central nervous system neoplasm

AmoyDx TM BRAF V600E Mutation Detection Kit

WHO 2016 CNS TUMOR CLASSIFICATION UPDATE. Arie Perry, M.D. Director, Neuropathology

Understanding general brain tumor pathology, Part I: The basics. Craig Horbinski, M.D., Ph.D. Department of Pathology University of Kentucky

Histones modifications and variants

Announcing cimpact-now: the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy

HHS Public Access Author manuscript J Neurosurg Pediatr. Author manuscript; available in PMC 2016 October 01.

Examining large groups of cancer patients to identify ways of predicting which therapies cancers might respond to.

Središnja medicinska knjižnica

Detection of IDH1 mutation in human gliomas: comparison of immunohistochemistry and sequencing

Case Presentation: USCAP Jason T. Huse, MD, PhD Assistant Member Department of Pathology Memorial Sloan Kettering Cancer Center

The difficulty of classifying pediatric high-grade gliomas

Approximately 5% of pediatric brain tumors arise

Corporate Medical Policy

Personalised cancer care Information for Medical Specialists. A new way to unlock treatment options for your patients

NGS in tissue and liquid biopsy

Relationship of P53 Protein With Histopathology Degree of Intracranial Astrocytoma at Haji Adam Malik Hospital Medan

Peter Canoll MD. PhD.

R1601 Essential Immunohistochemical and Molecular Markers for General CNS Glial Tumors

Advances in Brain Tumor Research: Leveraging BIG data for BIG discoveries

Glioblastoma. In this fact sheet: What is a glioblastoma?

21/03/2017. Disclosure. Practice Changing Articles in Neuro Oncology for 2016/17. Gliomas. Objectives. Gliomas. No conflicts to declare

Brain tumors are, as a group, the most common

Original Article Glioblastoma with primitive neuronal component: report of a case and review of literature

SALSA MLPA probemix P315-B1 EGFR

AMERICAN ASSOCIATION OF NEUROPATHOLOGISTS COMPANION SOCIETY MEETING at the 106 th ANNUAL MEETING OF THE USCAP San Antonio, March 4, 2017

PROCARBAZINE, lomustine, and vincristine (PCV) is

Tumours of the Central Nervous System (CNS) Molecular Information Reporting Guide

PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES

MRC-Holland MLPA. Description version 05; 03 April 2019

Phase II Pediatric Study With Dabrafenib in Combination With Trametinib in Patients With HGG and LGG

WHY BIOPSY? Diagnosis and Research

QIAGEN Complete Solutions for Liquid Biopsy Molecular Testing

Evaluation of the Squash Smear Technique in the Rapid Diagnosis of Central Nervous System Tumors: A Cytomorphological Study

Precision medicine: How to exploit the growing knowledge on the evolving genomes of cells to improve cancer prevention and therapy.

Improved Survival after Gross Total Resection of Malignant Gliomas in Pediatric Patients from the HIT-GBM Studies

Pathologic Analysis of CNS Surgical Specimens

Case #3. USCAP Neuropathology Evening Seminar/Companion Meeting

BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma

MALIGNANT GLIOMAS: TREATMENT AND CHALLENGES

Predictive Biomarkers in GBM

Fragile X Syndrome. Genetics, Epigenetics & the Role of Unprogrammed Events in the expression of a Phenotype

WHO 2016 CNS What have we learnt for the future?

Transcription:

Anatomic Pathology / H3.3 Mutations in Pediatric Diffuse High-Grade Astrocytomas H3F3A K27M Mutation in Pediatric CNS Tumors A Marker for Diffuse High-Grade Astrocytomas Gerrit H. Gielen, MD, 1 Marco Gessi, MD, 1 Jennifer Hammes, 1 Christof M. Kramm, MD, 2 Andreas Waha, PhD, 1 and Torsten Pietsch, MD 1 Key Words: Histone H3.3 mutations; Pediatric diffuse high-grade astrocytomas; Pyrosequencing DOI: 1.139/AJCPABOHBC33FVMO Abstract Brain tumors are one of the most common childhood malignancies. Diffuse high-grade gliomas represent approximately 1% of pediatric brain tumors. Exon sequencing has identified a mutation in K27M of the histone H3.3 gene (H3F3A K27M and G34R/V) in about 2% of pediatric glioblastomas, but it remains to be seen whether these mutations can be considered specific for pediatric diffuse high-grade astrocytomas or also occur in other pediatric brain tumors. We performed a pyrosequencing-based analysis for the identification of H3F3A codon 27 and codon 34 mutations in 338 pediatric brain tumors. The K27M mutation occurred in 35 of 129 glioblastomas (27.1%) and in 5 of 28 (17.9%) anaplastic astrocytomas. None of the other tumor entities showed H3F3A K27M mutation. Because H3F3A K27M mutations occur exclusively in pediatric diffuse high-grade astrocytomas, analysis of codon 27 mutational status could be useful in the differential diagnosis of these neoplasms. Tumors of the central nervous system (CNS) are one of the most common childhood malignancies and a leading cause of cancer-related morbidity and mortality. 1 Although diffuse high-grade gliomas (HGGs) are the most common CNS tumors in adults, they represent only approximately 1% of all pediatric CNS tumors. The overall prognosis of glioblastomas (GBMs) in children seems slightly better than in adults, with a higher percentage of long-term survivors; nevertheless, prognosis remains poor in general despite aggressive treatment with surgery, chemotherapy, and radiotherapy. 2 In contrast to adult diffuse high-grade astrocytomas, in which key genetic alterations (such as IDH1/2 mutation and EGFR amplification) have been identified, molecular alterations in pediatric cases have not been fully elucidated. Although alterations of the p53/mdm2/p14 pathway are detectable at a similar frequency compared with adults, pediatric GBMs show frequent gains of chromosome 1q and only rarely gains of chromosome 7 and 1q losses. 3 The most frequent focal amplifications also differ, with PDGFRA and EGFR predominating in childhood and adult populations, respectively. 3 Histones are basic nuclear proteins responsible for the nucleosome structure within eukaryotic cells. Among the 5 classes of histones, some are expressed only during the S phase, whereas others are replication independent and referred to as replacement histones, which are expressed in quiescent or terminally differentiated cells. H3.3 is a replacement histone subclass that is encoded by 2 distinct genes, H3.3A (H3F3A) and H3.3B. 4-6 Presently, pediatric cases of GBM are being investigated by genomic sequencing, leading to interesting new findings. Exon sequencing has identified a K27M driver mutation in H3F3A in 2% of pediatric cases of GBM but not in adult glioblastomas. 7-9 Diffuse intrinsic pontine Am J Clin Pathol 213;139:345-349 345 345 DOI: 1.139/AJCPABOHBC33FVMO 345

Gielen et al / H3.3 Mutations in Pediatric Diffuse High-Grade Astrocytomas gliomas (World Health Organization [WHO] grades II-IV) have also been shown to carry H3F3A K27M mutations. 1 Finally, mutations at codon 34 of H3F3A (either G34R or G34V) have been reported in pediatric GBMs. 7 Although the glycine at codon 34 (G34) is not subjected to posttranslational modifications, it is in close proximity to a lysine at position 36 (K36), whose methylation status is involved in transcriptional elongation. 6,7 The H3F3A K27M mutation is more frequent than G34V/R mutations in pediatric diffuse high-grade astrocytomas 7-9 and could therefore be used as a potential diagnostic marker for the identification of these tumors analogous to the use of IDH1/2 mutations in the diagnosis of the adult diffuse gliomas. However, it is still unclear whether these mutations, particularly the K27M mutation, can be considered as specific for pediatric diffuse high-grade astrocytomas or also occur in other pediatric brain tumors. To answer this question, we performed a pyrosequencing-based analysis for H3F3A K27M mutation in 338 pediatric brain tumors. Materials and Methods Patients Fresh-frozen or formalin-fixed paraffin-embedded (FFPE) tissue specimens from 338 pediatric brain tumors were analyzed. The series includes 129 GBMs (WHO grade IV), 28 anaplastic astrocytomas (AAs; WHO grade III), 6 anaplastic oligoastrocytomas (WHO grade III), 6 anaplastic (pilocytic) astrocytomas (APAs; WHO grade III), 15 pilocytic astrocytomas (PAs; WHO grade I), 5 pilomyxoid astrocytomas (WHO grade II), 12 desmoplastic infantile gangliogliomas/astrocytomas (DIGs/DIAs; WHO grade I), 2 oligodendrogliomas (WHO grade II), 4 oligoastrocytomas (WHO grade II), 6 diffuse astrocytomas (WHO grade II), 9 anaplastic ependymomas (WHO grade III), 8 ependymomas (WHO grade II), 19 medulloblastomas (MBs; WHO grade IV), 14 atypical teratoid/rhabdoid tumors (ATRTs; WHO grade IV), 26 primitive neuroectodermal tumors (PNETs) of the CNS (WHO grade IV), 12 ependymoblastomas (EPBLs; WHO grade IV), 1 gangliogliomas (GGs; WHO grade I), and 1 choroid plexus carcinomas (CPCs; WHO grade III). All tumors were diagnosed according to the WHO classification of tumors of the CNS 11 using standard histologic and immunohistochemical methods. No stereotactic biopsy specimen material was included in this study. Pyrosequencing Analysis Fragments chosen for DNA extraction were checked histologically (either frozen or permanent section) to ensure that they consisted of at least 8% tumor cells. Extraction of DNA from frozen tissue was carried out using proteinase K digestion followed by phenol/chloroform extraction described elsewhere. 12 DNA from FFPE tumor tissues was extracted using the QIAamp DNA Mini Tissue Kit (Qiagen GmbH, Düsseldorf, Germany) according to the manufacturer s instructions. We screened the hotspot codons 27 and 34 of the H3F3A gene for mutations using a pyrosequencing assay. For this purpose, single-stranded DNA templates were immobilized on streptavidin-coated Sepharose highperformance beads (GE Healthcare, Uppsala, Sweden) using the PSQ Vacuum Prep Tool and Vacuum Prep Worktable (Biotage, Uppsala, Sweden) according to the manufacturer s instructions and then incubated at 8 C for 2 minutes and allowed to anneal to a.4-mmol/l sequencing primer at room temperature. Pyrosequencing was performed using PyroGold Reagents (Biotage) on the Pyromark Q24 instrument (Biotage) according to the manufacturer s instructions. Controls in which the sequencing primer or template were omitted were used to detect background signal. Pyrogram outputs were analyzed by the PyroMark Q24 software (Biotage) using the allele quantification software to determine the percentage of mutant vs wild-type alleles according to percentage relative peak height. In this study, a 24 base pair fragment of exon 2 of H3.3 containing the coding region was amplified in a polymerase chain reaction (PCR) using 25 ng genomic DNA as the template and the following primer set for H3.3: forward, 5'-TGTTTGTAGTTGCATATGGG-3', and reverse, 5'-biotin-TACAAGAGAGACTTTTGTCC-3'. PCR amplicons of H3.3 containing both mutation hotspots (codons 27 and 34) were analyzed on 2% agarose gels and subjected to pyrosequencing reactions using the pyrosequencing primer H3.3 (-Py-5'-CAAAAGCCGCTCGCA-3') with the following nucleotide dispensation order: GAT GAGTGCGCTCTACTCGAGCGTGTGA. As a negative control, DNA derived from normal brain tissue was used. Results Our series of 163 diffuse pediatric HGGs included 77 male and 86 female patients. The mean age at surgery was 9.48 years (age range, newborn to 18 years). Among these 163 HGGs, we found 4 cases harboring an H3F3A K27M mutation (24.5%). GBM showed a K27M mutation in 35 cases (27.1%; 15 males, 2 females) (specificity, 87.5%; sensitivity, 27.1%), whereas 5 of 28 (17.9%; 3 males, 2 females) AAs presented the same mutation. With regard to the classification of a tumor to the group of diffuse malignant astrocytic tumors (ie, GBM and AA), the sensitivity was 25.5%, but the specificity was %. Among the 6 anaplastic oligoastrocytomas, no H3F3A mutation could be detected. The G34R mutation (not shown) was observed in 346 Am J Clin Pathol 213;139:345-349 346 DOI: 1.139/AJCPABOHBC33FVMO

Anatomic Pathology / Original Article only 7 of 129 of the pediatric GBMs (5.4%), as well as in 1 case of anaplastic oligoastrocytoma, but not in AA. Our study included 3 cell lines from patients with pediatric GBM (SF 188, CHLA-2, and UKB-pGBM1). They contained exclusively wild-type alleles. All other tumor entities investigated in this study showed no evidence of an H3F3A K27M mutation. The results are summarized in Table 1. Exemplary pyrograms are shown Figure 1. Table 1 Central Nervous System Tumors and Cell Lines Investigated for H3F3A K27M Mutation Status Tumor Entity No. of Cases K27M Mutations % Glial tumors Diffuse Glioblastoma multiforme, WHO grade IV 129 35 27.1 Anaplastic astrocytomas, WHO grade III 28 5 17.9 Anaplastic oligoastrocytomas, WHO grade III 6 Diffuse astrocytomas, WHO grade II 6 Oligodendrogliomas, WHO grade II 2 Oligoastrocytomas, WHO grade II 4 Nondiffuse Pilocytic astrocytomas, WHO grade I 15 Pilomyxoid astrocytomas, WHO grade II 5 Anaplastic (pilocytic) astrocytomas, WHO grade III 6 Gangliogliomas, WHO grade I 1 Desmoplastic infantile gangliogliomas/astrocytomas, WHO grade I 12 Ependymal tumors 17 Ependymomas, WHO grade II 8 Anaplastic ependymomas, WHO grade III 9 Embryonal tumors Medulloblastomas, WHO grade IV 19 Atypical teratoid/rhabdoid tumors, WHO grade IV 14 Ependymoblastomas, WHO grade IV 12 CNS-PNET, WHO grade IV 26 Choroid plexus tumors Choroid plexus carcinomas, WHO grade III 1 GBM cell lines derived from pediatric patients SF188, CHLA-2, UKB-pGBM1 3 CNS-PNET, primitive neuroectodermal tumor of the central nervous system; GBM, glioblastoma; WHO, World Health Organization. A 125 75 25 A: 98% T: 2% K27 WT B 2 1 A: 55% T: 45% K27M AAG ATG Lys Met C 1 A: 26% T: 74% K27M AAG ATG Lys Met Figure 1 H3F3A K27 mutational status in pediatric cases of diffuse high-grade astrocytomas and control tissue analyzed by pyrosequencing. Representative pyrograms showing K27M (AAG ATG) mutation in 1 pediatric case of a glioblastoma multiforme (World Health Organization [WHO] grade IV) and 1 pediatric case of anaplastic astrocytoma (WHO grade III) (B and C, respectively) leading to an amino acid exchange from lysine (Lys) 27 to methionine (Met). Control tissue (A) showed wild-type (WT) sequence for position 27. Relative peak height is shown on the y-axis. Am J Clin Pathol 213;139:345-349 347 347 DOI: 1.139/AJCPABOHBC33FVMO 347

Gielen et al / H3.3 Mutations in Pediatric Diffuse High-Grade Astrocytomas Discussion Histones are eukaryotic nuclear proteins that play an important role in the regulation of DNA replication, transcription, and storage by changing the nucleosome structure depending on their posttranslational modifications. Among the 5 classes of histones, H3.3 is a replacement histone subclass that is encoded by 2 different genes, H3.3A (H3F3A) and H3.3B. 5 H3.3 is incorporated into chromatin independently of the cell replication cycle. 5 Both H3F3A mutations found in GBMs are located in a region undergoing posttranslational modifications. 7,9 In particular, the amino acid exchange from lysine to methionine at position 27 (K27M) prevents posttranslational methylation, associated with polycomb-mediated gene repression 6 and K27 acetylation, present at active promoters and enhancers. 6 Because of its significant frequency in pediatric diffuse high-grade astrocytomas, the H3F3A K27M mutation could be potentially used as a molecular diagnostic marker for these tumors. Molecular markers are emerging as an important tool in routine diagnostic neuropathology, notably in pediatric tumors such as ATRT (INI-1 mutation) and in PA (KIAA1549-BRAF fusions and BRAF V6E mutation). For high-grade gliomas, IDH-1 mutations represent the best-known diagnostic markers, 13,14 but because of the low IDH-1 mutation rate in pediatric glial tumors, 15 they unfortunately have only a limited utility in this age group. In contrast to IDH-1 mutations, mutations in H3F3A have been frequently observed in pediatric astrocytomas (pediatric GBMs and pediatric diffuse intrinsic pontine gliomas). 7-1 In GBM, we found an overall mutation rate of 27.1%, which is in line with the frequency described in other studies. 7,9 With regard to the classification of a tumor to the group of diffuse malignant astrocytic tumors (ie, GBM and AA), the sensitivity was 25.5%, but the specificity was %. Because this group of tumors is treated according to the same protocols in pediatric oncology, the secure assignment to this group is important. Although H3F3A K27M mutations occur only in one fourth of these tumors, we did not find this mutation in any other pediatric brain tumor, including low-grade gliomas and nondiffuse high-grade tumors. Because the H3F3A K27M mutation is significantly more frequent than the G34R/V mutation (ratio of 6:1 in our series) in pediatric diffuse highgrade astrocytomas, the former is suitable as a molecular marker for this tumor group. In addition, G34R/V mutations seem to be less specific in pediatric tumors because they also occur in CNS-PNET. 16 Although previous studies have shown the absence of H3F3A mutations in adult HGGs and in extracerebral pediatric solid tumors (such as rhabdomyosarcoma, osteosarcoma, and neuroblastoma), 9 only a limited number of the more common pediatric CNS tumors, such as PAs, MBs, and ependymomas, have been analyzed for the presence of H3F3A mutations. 7,9 We did not find any mutations in low-grade gliomas (DIG, DIA, PA, GG), embryonal tumors (MB, ATRT, CNS-PNET, EPBL), (anaplastic) ependymomas, or CPCs. Our analysis thus confirms that H3F3A K27M mutations are restricted to pediatric diffuse high-grade astrocytomas. From a diagnostic point of view, the absence of H3F3A K27M mutations in PAs, APAs, and CNS-PNETs is noteworthy. Histologically, APAs are defined by the presence of hypercellularity, moderate to severe cytologic atypia, and brisk mitotic activity with or without necrosis. Nevertheless, they have a better prognosis than diffuse astrocytomas and GBM. At the molecular level, APAs do not show the typical molecular features of GBM (ie, PDGFRA or EGFR) amplifications but frequently present PI3K/AKT pathway alterations. 17 Based on practical experience, the distinction between GBM and APA, as well as in some cases between high-grade astrocytoma and PA, may be difficult in small tumor biopsy specimens. Because these entities also share similar neuroradiological features, reliable molecular markers useful in this differential diagnosis are particularly welcome. The combined analysis of the presence of KIAA1549-BRAF fusion and H3F3A K27M mutation in pediatric cases of ambiguous histology should be helpful in distinguishing PA and APA from GBM. However, KIAA1549-BRAF fusions also have been found in single adult GBM, 18 but they have been not shown in pediatric cases of GBM. By routine histopathologic diagnostics, CNS-PNETs are also difficult to distinguish from diffuse high-grade gliomas and often represent an exclusion diagnosis based on the identification of a noncerebellar embryonal neoplasm with MB-like histology, frequently associated with expression of neuronal markers. 19 However, a definitive distinction between a CNS-PNET and a GBM remains sometimes impossible: in such cases, the final diagnosis depends on the expertise of the pathologist or relies on additional institution-defined criteria, which may vary from laboratory to laboratory. 2 Unfortunately, definitive molecular markers for CNS-PNET, in contrast to other embryonal tumors (such as INI-1 alterations in ATRTs or chromosome 19q13.14 amplification in EPBLs), are not available. In this view, the presence of an H3F3A K27M mutation in a histologically undifferentiated tumor reliably excludes the diagnosis of a CNS-PNET. In conclusion, H3F3A K27M mutation occurs exclusively in diffuse high-grade pediatric astrocytomas, and therefore analysis of H3F3A codon 27 could provide significant help in the differential diagnosis of these neoplasms. From the 1 Institute of Neuropathology, University of Bonn Medical Center, Bonn, Germany, and 2 University Children s Hospital, Martin-Luther-University Medical Center, Halle, Germany. 348 Am J Clin Pathol 213;139:345-349 348 DOI: 1.139/AJCPABOHBC33FVMO

Anatomic Pathology / Original Article Address reprint requests to Dr Gielen: Inst of Neuropathology, University of Bonn Medical Center, Sigmund-Freud-Strasse 25, D-5315 Bonn, Germany; e-mail: Gerrit.Gielen@ukb.uni-bonn.de. Acknowledgments: We thank S. Albrecht, MD, Department of Pathology, McGill University Health Centre, Montreal, Canada, for careful reading and editing of the manuscript. References 1. Packer RJ. Brain tumors in children. Arch Neurol. 1999;56:421-425. 2. Broniscer A, Gajjar A. Supratentorial high-grade astrocytoma and diffuse brainstem glioma: two challenges for the pediatric oncologist. Oncologist. 24;9:197-26. 3. Paugh BS, Qu C, Jones C, et al. Molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol. 21;28:361-368. 4. Talbert PB, Henikoff S. Histone variants ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol. 21;11:264-275. 5. Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol. 29;1:697-78. 6. Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet. 211;12:7-18. 7. Schwartzentruber J, Korshunov A, Liu XY, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 212;482:226-231. 8. Rheinbay E, Louis DN, Bernstein BE, et al. A tell-tail sign of chromatin: histone mutations drive pediatric glioblastoma. Cancer Cell. 212;21:329-331. 9. Wu G, Broniscer A, McEachron TA, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 212;44:251-253. 1. Khuong-Quang DA, Buczkowicz P, Rakopoulos P, et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 212;124:439-447. 11. Louis DN, Ohgaki H, Wiestler OD, et al. WHO Classification of Tumours of the Central Nervous System. Lyon, France: IARC; 27. 12. Setty P, Hammes J, Rothämel T, et al. A pyrosequencingbased assay for the rapid detection of IDH1 mutations in clinical samples. J Mol Diagn. 21;12:7-756. 13. Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 28;321:187-1812. 14. Watanabe T, Nobusawa S, Kleihues P, et al. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol. 29;174:1149-1153. 15. Pollack IF, Hamilton RL, Sobol RW, et al; Children s Oncology Group. IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children s Oncology Group. Childs Nerv Syst. 211;27:87-94. 16. Gessi M, Gielen GH, Hammes J, et al. H3.3 G34R mutations in pediatric primitive neuroectodermal tumors of central nervous system (CNS-PNET) and pediatric glioblastomas: possible diagnostic and therapeutic implications? J Neurooncol. January 26, 213 [Epub ahead of print]. 17. Rodriguez EF, Scheithauer BW, Giannini C, et al. PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathol. 211;121:47-42. 18. Badiali M, Gleize V, Paris S, et al. KIAA1549-BRAF fusions and IDH mutations can coexist in diffuse gliomas of adults. Brain Pathol. 212;22:841-847. 19. McLendon RE, Judkins AR, Eberhart CG, et al. Central nervous system primitive neuroectodermal tumours. In: Louis DN, Ohgaki H, Wiestler OD, et al, eds. WHO Classification of Tumours of the Central Nervous System. Lyon, France: IARC; 27:141-146. 2. Burger PC. Supratentorial primitive neuroectodermal tumor (spnet). Brain Pathol. 26;16:86. Am J Clin Pathol 213;139:345-349 349 349 DOI: 1.139/AJCPABOHBC33FVMO 349