High trans fatty acid intake reduces the relative ω-3 fatty acid content in the erythrocyte membrane.

Similar documents
Facts on Fats. Ronald P. Mensink

NIH Public Access Author Manuscript Am Heart J. Author manuscript; available in PMC 2010 November 1.

The health benefits of shellfish: What should we be promoting? Professor Bruce Griffin Nutrition Division Faculty of Health & Medical Sciences

Fatty acids and cardiovascular health: current evidence and next steps

Dietary intake of long-chain n 3 polyunsaturated fatty acids and the risk of primary cardiac arrest 1 3

FAT. Dr. Shamsul Azahari Zainal Badari Department of Resource Management and Consumer Studies Faculty of Human Ecology

Name of Policy: Measurement of Long-Chain Omega-3 Fatty Acids in Red Blood Cell Membranes as a Cardiac Risk Factor

Fats & Fatty Acids. Answer part 2: 810 Cal 9 Cal/g = 90 g of fat (see above: each gram of fat provies 9 Cal)

INTEGRATIVE MEDICINE BLOOD - EDTA Result Range Units

Correlation of omega-3 levels in serum phospholipid from 2053 human blood samples with key fatty acid ratios

Shedding new light on heart health: Examining recent data on fatty acids

Dietary Reference Values: a Tool for Public Health

Fatty acid composition of commercially available Iranian edible oils

Replacement Of Partially Hydrogenated Soybean Oil By Palm Oil In Margarine Without Unfavorable Effects On Serum Lipoproteins

Fats and Other Lipids

Dietary Fatty Acids and the Risk of Hypertension in Middle-Aged and Older Women

Future directions for nutritional and therapeutic research in omega-3 3 lipids

Omega-3 requirements - length matters!

Introduction to the Study of Lipids

Use natural fish oil with 2g daily dose? Yes Use other omega-3? Replicate test? Date of birth

LIPIDS OF PHYSIOLOGICAL SIGNIFICANCE

Eicosapentaenoic Acid and Docosahexaenoic Acid: Are They Different?

The HS-Omega-3 Index Methodological Considerations

Pattern of lipid biomarkers and risk of cardiovascular disease

Fish oil and cardiovascular science supporting global regulatory efforts

n 3 FATTY ACIDS AND SUDDEN DEATH BLOOD LEVELS OF LONG-CHAIN n 3 FATTY ACIDS AND THE RISK OF SUDDEN DEATH

Association between the levels of polyunsaturated fatty acids and blood lipids in healthy individuals

CHAPTER 28 LIPIDS SOLUTIONS TO REVIEW QUESTIONS

Nutritional Content of Game Meat

Omega-3 Fatty Acids. Alison L. Bailey MD, FACC Erlanger Heart and Lung Institute/University of Tennessee COM

Differentiating omega-3 fatty acids from SPMs (specialized pro-resolving lipid mediators)

Overview of the food science behind fatty acid technology

14 DAGGERS OF ARTERIAL DISEASE

CHAPTER 28 LIPIDS SOLUTIONS TO REVIEW QUESTIONS

Omega-3 Index Complete We are pleased to bring you a new test for fatty acids that requires no blood draw, at a great price.

Definition: Water insoluble No common structure (though generally large R groups)

PALM OLEIN BLENDING FOR TEMPERATE MARKET L/O/G/O

Heart Health and Fats

Composition and Structure of Oil and Fats and its Relationship to Health and Nutrition

Factors to Consider in the Study of Biomolecules

Are you eating a balanced diet?

Alpha-Linolenic acid is hypothesized to reduce the risk of

Healthy Fats & Fatty Acids Current Dietary Recommendations and Popular Opinions

NEWS & VIEWS. Hole in the diet-heart hypothesis?

Nutrition and Health Benefits of Rice Bran Oil. Dr. B. Sesikeran, MD, FAMS Former Director National Institute of Nutrition (ICMR) Hyderabad

ANSC/NUTR) 618 LIPIDS & LIPID METABOLISM Dietary fat and Cardiovascular Disease

Nutrition & Wellness for Life 2012 Chapter 6: Fats: A Concentrated Energy Source

Cardiovascular risk potential of dietary saturated fats: an update and some implications

Saturated fat- how long can you go/how low should you go?

Lipids Definition. Definition: Water insoluble No common structure (though generally large R groups)

Fatty acids and allergy a fishy story?

UNIVERSITY OF CAMBRIDGE. Fatty acids and heart disease. Kay-Tee Khaw

Going Coconut over Saturated Fat? Why So Much Confusion? Part 1 Interpreting Conflicting Research

Biosynthesis of Triacylglycerides (TG) in liver. Mobilization of stored fat and oxidation of fatty acids

Chem 5 PAL Worksheet Lipids Smith text Chapter 15

Cholesterol and Cholesterol Oxides on Coronary Heart Diseases

Healthier Oils: Stability & Performance. Chakra Wijesundera CSIRO Food and Nutritional Sciences Werribee, Vic 3030

Nutrition, Food, and Fitness. Chapter 6 Fats: A Concentrated Energy Source

The ERA JUMP Study: Reevaluating the Omega- 3 Index

Rapid Analysis of 37 FAMEs with the Agilent 8860 Gas Chromatograph

Fats: the good, the bad and the ugly. And don't forget cholesterol..

Modifying effects of dietary polyunsaturated fatty acid (PUFA) on levels of cholesterol and their implications for heart health

FATTY ACIDS COMPOSITION OF FISH, LINSEED AND RAPESEED OILS

Dietary fat supplies essential body tissue needs, both as an energy fuel and a structural material.

Types of Dietary Fat and Risk of Coronary Heart Disease: A Critical Review

NIH Public Access Author Manuscript Am Heart J. Author manuscript; available in PMC 2009 November 1.

Omega 3 s and Cardiovascular Disease: High vs. Low Dose? Terry A. Jacobson M.D., F.N.L.A. Emory University Atlanta, GA

Victor Tambunan. Department of Nutrition Faculty of Medicine Universitas Indonesia

Re: Food-frequency questionnaire for assessing long-chain ω-3 fatty-acid intake

The Analysis on Fat Characteristics of Walnut Varieties in Different Production Areas of Shanxi Province

Microreview. A.-F. Miller, 2008, pg

Erythrocyte Fatty Acid

Marshall Tulloch-Reid, MD, MPhil, DSc, FACE Epidemiology Research Unit Tropical Medicine Research Institute The University of the West Indies, Mona,

The Cost Effectiveness of Omacor post-myocardial infarction in the Irish Healthcare Setting

Lipids do not like water! (aka: hydrophobic) Generally insoluble

Depression, omega 3 fatty acid therapy 13

LIPIDOMIC PROFILE MEMBRANE Assessment of the lipidomic profile of the erthyrocyte membrane

Prediction of polyunsaturated fatty acid content in the bovine muscle

Role of Dietary Fats and Cardiovascular Risk

Arteriosclerosis & Atherosclerosis

reticulo-endothelial cells in rat lymph nodes has been further investigated

Dietary Cholesterol in Cold Water Prawns: Implications for Cardiovascular Disease Risk

Chest pain affects 20% to 40% of the general population during their lifetime.

Optimize Your Omega-3 Status Personalized Blood Test Reveals a Novel Cardiac Risk Factor

QUESTION 1 Fats and oils vary in their degree of solubility in aqueous solutions. Give a reason for this observation.

Systematic review of the evidence for relationships between saturated, cis monounsaturated, cis

Can foods change your health? Good fats and bad fats: what is the evidence? Kay-Tee Khaw. Main categories of fats

Feeding Feedlot Steers Fish Oil Differentially Enhances the Fatty Acid Composition of Muscle Tissue 1

OBJECTIVE. Lipids are largely hydrocarbon derivatives and thus represent

Dyerberg Discovery. Greenland Eskimos have low rates of heart disease while their diet is high in saturated fat and cholesterol. That s strange. Why?

Supplementary Information

Lipid & Fat: Overview

Essential Fatty Acids Essential for Good Health SIE

Nutritional Risk Factors for Peripheral Vascular Disease: Does Diet Play a Role?

Dietary α-linolenic acid-rich flaxseed oil prevents against alcoholic hepatic steatosis

Fats and Lipids (Ans570)

TEST REPORT Balance 4Life


Lipids. Polar bears have a large reserve of lipids.

Fatty acids, cardiovascular disease and diabetes

Transcription:

Biomedical Research 2017; 28 (17): 7693-7697 ISSN 0970-938X www.biomedres.info High trans fatty acid intake reduces the relative ω-3 fatty acid content in the erythrocyte membrane. Qiang Peng 1, Yin Li 1, Wu Yang 2, Ling Wang 1, Ping Li 1, Hai Su 1* 1 Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China 2 Department of Emergency, Jian Central Hospital, Jian, Jiangxi, PR China Abstract In this study, the effects of high Trans Fatty Acid (TFA) intake on fatty acid contents in erythrocyte membranes were examined. Thirty-two rabbits were randomly divided into 4 groups: a control group fed a common diet, a high TFA group fed a normal diet supplemented with 5.0 g/kg/d TFA, a High-Fat (HF) group fed a high cholesterol diet, and a TFA+HF group. Saturated FAs, unsaturated FAs and TFA contents of erythrocyte membranes were determined at 0, 4, 8 and 12 weeks. We found that the TFA and saturated FA contents in erythrocyte membranes were significantly higher in the TFA group than in the control group, but ω-3 FAs were lower after 12 weeks. The ω-3/ TFA and ω-3/c18:0 ratios were also significantly lower in the TFA group than the control group. The ratios were similar in the HF group and the TFA group. In the TFA+HF group, the abnormalities in the FA ratios in the erythrocyte membrane were more obvious. High TFA intake could decrease polyunsaturated fatty acids in the erythrocyte membrane, especially ω-3 fatty acids, and decrease the ratios of ω-3 to TFA and saturated fatty acids. The effects of high cholesterol intake were equivalent to the effects of high TFA intake. Synergistic effects were clearly observed after combined TFA and high cholesterol intake. Keywords: Trans fatty acids (TFA), Erythrocyte membrane, Constitution ratios of fatty acids, Rabbit. Accepted on August 21, 2017 Introduction Fatty Acids (FAs) are necessary components of the cell membrane and have a variety of biological activities. Normal lipid content in the cell membrane is important for maintaining normal cell morphology and function. Changes in the ratios of saturated FAs to unsaturated FAs in the cell membrane are closely associated with some diseases [1-3]. For a long time, research on the relationship between lipids and atherosclerosis focused on saturated FAs. Recently, the deleterious effects of Trans Fatty Acids (TFA) and the benefits of ω-fa on the cardiovascular system have attracted much attention [4]. Epidemiological studies have demonstrated that TFA intake is positively correlated with ischemic heart disease and sudden cardiac death [5]. It is currently accepted that TFA is a strong atherogenic factor [6-8]. Some studies had found that the relative FA contents in the erythrocyte membrane were abnormal in cardiovascular patients [4,9]. In patients with acute coronary syndrome, TFA was increased meanwhile ω-3 and ω-6 FA was reduced in the erythrocyte membrane [10]. This result suggested that the FA changes in the erythrocyte membrane may promote atherosclerosis and induce cardiac events. But whether these changes were related to fatty acid intake was not clear now. The aim of this study was to investigate whether high TFA intake induced changes of ω-3fa content in the erythrocyte membrane, and whether its effect was similar in high cholesterol intake. Materials and Methods Animals and dietary interventions Thirty-two male New Zealand rabbits (6 weeks old, 2 kg, provided by the Experimental Animal Center of Nanchang University) were randomly assigned to four groups: control group (C) fed a normal diet, high cholesterol group (HF) fed a high cholesterol diet (2% cholesterol, 7.5% egg yolk powder and 8% lard added to the normal diet), TFA group (TFA) fed a normal diet plus 5.0 g/kg/d TFA from margarine, and high fat +TFA group (HF+TFA) fed a high cholesterol+tfa diet. Water was provided ad libitum. The guidelines for the ethical care and treatment of animals from the Ministry of Science and Technology of China PR were strictly followed. This study was conducted in accordance with the declaration of Helsinki. This study was conducted with approval from the Ethics Committee of the Second Affiliated Hospital of Nanchang University (No. 201402142036). Biomed Res 2017 Volume 28 Issue 17 7693

Peng/Li/Yang/Wang/Li/Su Erythrocyte membrane collection and FA analysis Fasting blood samples were collected before (0) and at 4, 8, and 12 weeks after dietary intervention. The separated red blood cells were treated by hypotonic haemolysis, and the extracted erythrocyte membranes were stored in liquid nitrogen freezers at -130 C for the fatty acid analysis. The fatty acids in the erythrocyte membranes were analyzed by gas chromatography (6890N Gas Chromatograph; Agilent, Santa Clara, CA, USA). The laboratory procedure was performed according to published methods [11]. The seven FAs included two saturated FAs, i.e., stearic acid (C18:0) and palmitic acid (C16:0), one mono-unsaturated FA, i.e., oleic acid (C18:1), three polyunsaturated FAs, i.e., linoleic acid (C18:2), arachidonic acid (C20:4), and eicosapentaenoic acid (C20:5), and the total ω-3 FA. Two TFAs were included, trans oleic acid (t-c18:1) and trans palmitoleic acid (t-c16:1). The ratios of various FAs to the total FA content are presented. The ratios ω-3/tfa and ω-3/c18:0 were also calculated to reflect the relative changes in the major FAs, especially ω-3. Statistical analysis A statistical analysis was performed using the SPSS13.0 software package. All data are expressed as means ± standard deviation (SD). ANOVA was used to compare FA and TFA levels in erythrocyte membranes among groups. A value of P<0.05 was considered statistically significant. Results Relative FA contents At baseline, similar relative contents of the six FAs and ω-3 were found among the four groups. At week 12, the relative ω-3 FA content was significantly lower in the TFA group than in the control group. Figure 1. The changes of ω-3 in erythrocyte membrane. a: Means compared to control group (P<0.05); b: Means compared to HF group (P<0.05). The percentage of FAs that were ω-3 FA was similarly significantly lower in the TFA group than in the HF group at week 12, but the decrease occurred later than in the HF group. Furthermore, the percentage of FAs that were ω-3 was the lowest in the TFA+HF group (Figure 1). The relative C18:0 content increased and C20:4 and C20:5 decreased in the three interventional groups. However, the C16:0, C18:1 and C18:2 contents in the three interventional groups did not change significantly during the 12-week period (Table 1). The percentages of TFA At week 4, the percentages of TFAs that were T-C16:1 and T- C18:1 and the total TFA content were significantly higher in the three intervention groups than in the control group. Table 1. The percentages of CFA in erythrocyte membrane (%). Group Week ω-3 acids Saturated FA Unsaturated FA C16:0 C18:0 C18:1 C18:2 C20:4 C20:5 Control 0 3.4 ± 0.4 26.3 ± 2.5 15.6 ± 1.8 13.2 ± 1.7 29.2 ± 3.7 6.4 ± 0.7 3.5 ± 0.2 4 3.3 ± 0.3 25.1 ± 2.2 14.5 ± 1.7 13.0 ± 1.2 28.5 ± 3.0 6.3 ± 0.9 3.4 ± 0.2 8 3.2 ± 0.4 26.5 ± 2.7 15.3 ± 1.4 12.7 ± 1.6 28.4 ± 3.1 5.4 ± 0.6 3.3 ± 0.2 12 3.2 ± 0.5 27.2 ± 2.7 14.9 ± 1.8 12.6 ± 1.4 29.7 ± 3.3 6.3 ± 0.9 3.4 ± 0.3 TFA 0 3.2 ± 0.3 26.1 ± 2.7 14.1 ± 2.1 12.9 ± 1.8 28.4 ± 3.5 6.4 ± 0.9 3.4 ± 0.3 4 3.0 ± 0.3 26.6 ± 2.2 16.1 ± 2.2 13.2 ± 1.4 28.5 ± 3.1 3.5 ± 0.7 a 2.7 ± 0.2 8 3.0 ± 0.3 25.4 ± 2.4 19.7 ± 1.9 a 13.1 ± 1.4 29.7 ± 2.7 3.5 ± 0.6 a 1.5 ± 0.2 a 12 2.3 ± 0.3 a 26.5 ± 2.9 19.4 ± 2.0 a 13.7 ± 1.6 29.4 ± 2.5 3.6 ± 0.7 a 1.4 ± 0.2 a HF 0 3.3 ± 0.3 26.9 ± 2.5 14.3 ± 1.8 12.7 ± 1.6 28.7 ± 2.4 6.3 ± 0.5 3.5 ± 0.3 4 2.1 ± 0.3 a 26.9 ± 2.7 17.6 ± 2.7 a 13.0 ± 1.5 29.3 ± 2.5 4.9 ± 0.6 a 3.1 ± 0.2 7694 Biomed Res 2017 Volume 28 Issue 17

High trans fatty acid intake reduces the relative w-3 fatty acid content in the erythrocyte membrane 8 2.2 ± 0.2 a 26.6 ± 3.0 20.6 ± 2.1 a 14.2 ± 1.7 29.1 ± 2.3 3.3 ± 0.5 a 1.6 ± 0.2 a 12 2.0 ± 0.2 a 25.9 ± 3.0 21.1 ± 2.1 a 13.5 ± 1.4 29.2 ± 3.3 3.3 ± 0.7 a 1.2 ± 0.2 a TFA+HF 0 3.2 ± 0.3 26.9 ± 3.0 14.2 ± 1.3 12.8 ± 1.6 28.1 ± 2.6 6.3 ± 0.4 3.5 ± 0.2 4 2.1 ± 0.3 a 27.3 ± 2.4 22.1 ± 3.2 ab 12.4 ± 1.7 28.0 ± 3.1 3.3 ± 0.6 a 2.0 ± 0.2 a 8 2.0 ± 0.2 a 25.2 ± 2.5 24.7 ± 3.1 ab 13.9 ± 1.7 29.4 ± 2.7 3.2 ± 0.6 a 1.1 ± 0.1 ab 12 1.7 ± 0.2 ab 27.5 ± 3.1 24.6 ± 2.8 ab 13.8 ± 1.5 29.6 ± 3.2 2.6 ± 0.5 ab 0.9 ± 0.1 ab C16:0 Palmitic acid; C18:0 Stearic acid; C18:1 Oleic acid; C18:2 Linoleic acid; C20:4 Arachidonic acid; C20:5 Eicosapentaenoic acid. Compared to control group, a means P<0.05. Compared to HF group, b means P<0.05. Figure 2. The ratio changes of TFA in erythrocyte membrane. a Means compared to control group (P<0.05); b Means compared to HF group (P<0.05). The ω-3/σ-tfa and ω-3/c18:0 ratios Compared to the control group, the TFA group not only had a significantly lower ω-3/σ-tfa ratio, but also a lower ω-3/ C18:0 ratio at the 3 time points. The ω-3/σ-tfa curves of the TFA and HF groups were similar. In the TFA+HF group, the abnormalities in the 2 ratios were the most obvious between the three intervention groups and the control group (Figure 3). Table 2. The percentages of TFA in erythrocyte membrane (%). Group Week T-C16:1 T-C18:1 Total TFA Control 0 0.033 ± 0.002 0.051 ± 0.004 0.084 ± 0.012 4 0.031 ± 0.003 0.057 ± 0.006 0.086 ± 0.009 8 0.030 ± 0.004 0.054 ± 0.005 0.095 ± 0.017 12 0.027 ± 0.002 0.049 ± 0.006 0.079 ± 0.013 TFA 0 0.026 ± 0.004 0.052 ± 0.005 0.082 ± 0.015 4 0.084 ± 0.019 a 0.189 ± 0.039 ab 0.243 ± 0.045 a 8 0.090 ± 0.017 ab 0.197 ± 0.037 ab 0.297 ± 0.051 ab 12 0.117 ± 0.020 ab 0.208 ± 0.039 ab 0.319 ± 0.048 ab HF 0 0.029 ± 0.003 0.048 ± 0.007 0.080 ± 0.016 4 0.071 ± 0.017 a 0.098 ± 0.031 a 0.177 ± 0.040 a 8 0.067 ± 0.012 a 0.102 ± 0.029 a 0.174 ± 0.039 a 12 0.069 ± 0.016 a 0.137 ± 0.033 a 0.198 ± 0.042 a TFA+HF 0 0.030 ± 0.002 0.052 ± 0.004 0.088 ± 0.018 4 0.142 ± 0.015 ab 0.217 ± 0.041 ab 0.372 ± 0.047 ab 8 0.150 ± 0.022 ab 0.269 ± 0.049 ab 0.419 ± 0.049 ab 12 0.172 ± 0.019 ab 0.384 ± 0.057 ab 0.531 ± 0.059 ab T-C16:1 Trans palmitoleic acid; T-C18:1 Trans oleic acid; Compared to control group, a means P<0.05. Compared to HF group, b means P<0.05. The total TFA content increased as the intervention time increased in the TFA and TFA+HF groups (Table 2). At week 12, the total TFA in the HF, TFA and TFA+HF group are increased compared with the control group (Figure 2). Figure 3. The ratio changes of FA in erythrocyte membrane. a Means compared to control group (P<0.05); b Means compared to HF group (P<0.05). Discussion Normal lipid content is important for maintaining the normal functions of cells. We know that mature erythrocytes have no nuclei. So erythrocyte membrane was used in some researches to evaluate FA contents in the cell membrane. They have confirmed that abnormal FA contents in erythrocyte membranes, especially abnormalities in TFA and ω-fa, are related to many health problems [3,4,12]. Additionally, ω-3 FA has cardiovascular protective effects; low ω-3 FA intake increases the incidence of arrhythmia and coronary heart disease [3,9]. Some studies have demonstrated that the amount of ω-6/ω-3 in the erythrocyte membrane is negatively correlated with coronary heart disease [13,14]. At present, TFA is a focus of health care. It is widely accepted that high TFA intake increases the risk of coronary death, fatal arrhythmia, and other cardiovascular diseases. Some studies have demonstrated that patients with a higher t-c18:1 content in the erythrocyte membrane have a higher risk of sudden cardiac death [12,15]. Additionally, TFA-induced damage to the cardiovascular system is stronger than damage induced by saturated Fats [15]. The real reasons of FA exchange between the diet and the cell membrane were unknown. Some studies have demonstrated Biomed Res 2017 Volume 28 Issue 17 7695

Peng/Li/Yang/Wang/Li/Su that the FA content of the erythrocyte membrane can reflect the FA content of the cell membranes of other tissues, such as endothelial and myocardial cells [5,15]. Our results showed that high TFA intake not only increases the TFA content in the erythrocyte membrane, but also increases percentage of FAs that are saturated FAs (C18:0). Additionally, a high TFA intake significantly decreased the percentage of FAs that are ω-3 FAs and other unsaturated FAs, especially C20:5. The magnitude of the decrease in unsaturated FAs was similar to that observed after high cholesterol intake. These changes induced significant abnormalities in the relative contents of several FAs in the erythrocyte membrane, such as decreases in the ω-3/c18:0 and C18:1/C18:0 ratios. Abnormal FA ratios may reflect content and functional abnormalities of the cell membrane. These results also indicated that the abnormal FA contents in the erythrocyte membrane induced by high TFA intake were similar to those induced by high cholesterol intake, particularly the decreases in ω-3 FA and poly-unsaturated FAs. It is still unclear why a high TFA intake decreases polyunsaturated FAs, especially ω-3 FA, in the erythrocyte membrane. The spatial structure of TFA may be a factor. TFA has a linear spatial structure similar to that of saturated FAs, while the ω-3 FA molecule is bent. A larger repulsive force may exist between TFA and ω-3 FA molecules with different spatial structures and this repulsive force may remove ω-3 FA from the cell membrane, and decrease the ω-3 FA content, but not saturated FA. Another potential mechanism is that TFA may lead to dyslipidaemia by affecting the liver X receptor, cholesterol ester transfer protein, and sterol regulatory element binding protein-1. However, the specific mechanisms are still unknown and worth investigating in future studies. Our results also indicated that the TFA content increased slightly in the high cholesterol intake group. This may be explained by the lard and egg yolk in the TFA (7.66 and 7.97 mg/g, respectively). In the group with both high TFA and cholesterol intake, the TFA content and the relative contents in the erythrocyte membrane were the highest. Conclusion High TFA intake not only induces increases in TFA and saturated fatty acids, but also decreases polyunsaturated fatty acids, especially ω-3 fatty acids, in the erythrocyte membrane. Since FA abnormalities induced by high TFA intake were similar to those induced by high cholesterol intake, TFA may be an atherogenic factor, similar to cholesterol. Funding This study was supported by a grant from the Education Research Plan of Jiangxi Provincial Department (GJJ13043). Acknowledgment I would like to express my gratitude to all those who have helped me in this work. Especially, I would like to thank Huang Bo and Li Zheng, who kindly gave me a hand during the writing of this paper. Conflicts of Interest All of the authors declare that they have no conflicts of interest regarding this paper. References 1. Block RC, Harris WS, Reid KJ, Spertus JA. Omega-6 and trans fatty acids in blood cell membranes: a risk factor for acute coronary syndromes. Am Heart J 2008; 156: 1117-1123. 2. Amin AA, Menon RA, Reid KJ, Harris WS, Spertus JA. Acute coronary syndrome patients with depression have low blood cell membrane omega-3 fatty acid levels. Psychosom Med 2008; 70: 856-862. 3. Block RC, Harris WS, Reid KJ, Sands SA, Spertus JA. EPA and DHA in blood cell membranes from acute coronary syndrome patients and controls. Atherosclerosis 2008; 197: 821-828. 4. Lemaitre RN, King IB, Raghunathan TE, Pearce RM, Weinmann S, Knopp RH, Copass MK, Cobb LA, Siscovick DS. Cell membrane trans-fatty acids and the risk of primary cardiac arrest. Circulation 2002; 105: 697-701. 5. Su H, Yu JH. Trans-fatty acids and cardiovascular diseases. Zhonghua Xin Xue Guan Bing Za Zhi 2007; 35: 586-588. 6. Mozaffarian D, Aro A, Willett WC. Health effects of transfatty acids: experimental and observational evidence. E J Clin Nutr 2009; 63: 5-21. 7. Kleber ME, Delgado GE, Lorkowski S, März W, von Schacky C. Trans-fatty acids and mortality in patients referred for coronary angiography: the Ludwigshafen Risk and Cardiovascular Health Study. Eur Heart J 2016; 37: 1072-1078. 8. Iqbal MP. Trans fatty acids-a risk factor for cardiovascular disease. Pak J Med Sci 2014; 30: 194-197. 9. Nishizaki Y, Shimada K, Daida H. The balance of omega-3 polyunsaturated fatty acids for-reducing residual risks in patients with coronary artery disease. Acta Cardiol 2017; 72: 240-248. 10. Ferreri C, Panagiotaki M, Chatgilialoglu C. Trans fatty acids in membranes: the free radical path. Mol Biotechnol 2007; 37: 19-25. 11. Baylin A, Kabagambe EK, Ascherio A, Spiegelman D, Campos H. High, 18:2 trans-fatty acids in adipose tissue are associated with increased risk of nonfatal acute myocardial infarction in Costa Rican adults. J Nutr 2003; 133: 1186-1191. 12. Woodside JV, McKinley MC, Young IS. Saturated and trans fatty acids and coronary heart disease. Curr Atheroscler Rep 2008; 10: 460-466. 13. Stanley JC, Elsom RL, Calder PC, Griffin BA, Harris WS, Jebb SA, Lovegrove JA, Moore CS, Riemersma RA, Sanders TA. UK Food Standards Agency Workshop 7696 Biomed Res 2017 Volume 28 Issue 17

High trans fatty acid intake reduces the relative w-3 fatty acid content in the erythrocyte membrane Report: the effects of the dietary n-6:n-3 fatty acid ratio on cardiovascular health. Br J Nutr 2007; 98: 1305-1310. 14. Harris WS. The omega-6/omega-3 ratio and cardiovascular disease risk: uses and abuses. Curr Atheroscler Rep 2006; 8: 453-459. 15. Anderson SG, Sanders TA, Cruickshank JK. Plasma fatty acid composition as a predictor of arterial stiffness and mortality. Hypertension 2009; 53: 839-845. * Correspondence to Hai Su Department of Cardiology The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi PR China Biomed Res 2017 Volume 28 Issue 17 7697