Mouse Meda-4 : chromosome 5G bp. EST (547bp) _at. 5 -Meda4 inner race (~1.8Kb)

Similar documents
Fig. S1. Dose-response effects of acute administration of the β3 adrenoceptor agonists CL316243, BRL37344, ICI215,001, ZD7114, ZD2079 and CGP12177 at

Supplementary Table 1. Primer Sequences Used for Quantitative Real-Time PCR

Supplemental Table 1 Primer sequences (mouse) used for real-time qrt-pcr studies

Supplementary Figure 1.

OVERVIEW M ET AB OL IS M OF FR EE FA TT Y AC ID S

BIOL212 Biochemistry of Disease. Metabolic Disorders - Obesity

Fatty acid breakdown

Supporting Information Table of content

control kda ATGL ATGLi HSL 82 GAPDH * ** *** WT/cTg WT/cTg ATGLi AKO/cTg AKO/cTg ATGLi WT/cTg WT/cTg ATGLi AKO/cTg AKO/cTg ATGLi iwat gwat ibat

Metabolism of cardiac muscle. Dr. Mamoun Ahram Cardiovascular system, 2013

Table S1 Differentially expressed genes showing > 2 fold changes and p <0.01 for 0.01 mm NS-398, 0.1mM ibuprofen and COX-2 RNAi.

Fatty Acid and Triacylglycerol Metabolism 1

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM. Triacylglycerol and Fatty Acid Metabolism

Roles of Lipids. principal form of stored energy major constituents of cell membranes vitamins messengers intra and extracellular

Lipid metabolism. Degradation and biosynthesis of fatty acids Ketone bodies

Implications of mitochondrial skeletal muscle metabolism on diabetes and obesity before and after weight loss

Annotation of Chimp Chunk 2-10 Jerome M Molleston 5/4/2009

Lecture: 26 OXIDATION OF FATTY ACIDS

MBB317. Dr D MANGNALL OBESITY. Lecture 2

Fatty Acid and Triacylglycerol Metabolism 1

Lehninger 5 th ed. Chapter 17

Dietary α-linolenic acid-rich flaxseed oil prevents against alcoholic hepatic steatosis

Metabolism of acylglycerols and sphingolipids. Martina Srbová

LIPID METABOLISM

BCM 221 LECTURES OJEMEKELE O.

Biochemistry: A Short Course

SUPPLEMENTARY DATA. Supplementary Table 1. Primers used in qpcr

Diosgenin, antagonism of LXRs 36 DNA microarray, sesame seed lignan regulation of liver fatty acid metabolism gene expression 12 18, 22, 23

Supplementary Figure S1

Fatty Acid Degradation. Catabolism Overview. TAG and FA 11/11/2015. Chapter 27, Stryer Short Course. Lipids as a fuel source diet Beta oxidation

Part III => METABOLISM and ENERGY. 3.4 Lipid Catabolism 3.4a Fatty Acid Degradation 3.4b Ketone Bodies

Figure 1. Effects of FGF21 on adipose tissue. (A) Representative histological. findings of epididymal adipose tissue (B) mrna expression of

Cornstarch

Supplementary Fig. 1 eif6 +/- mice show a reduction in white adipose tissue, blood lipids and normal glycogen synthesis. The cohort of the original

23.1 Lipid Metabolism in Animals. Chapter 23. Micelles Lipid Metabolism in. Animals. Overview of Digestion Lipid Metabolism in

Summary of fatty acid synthesis

Biotage Microwave Symposium

ANSC/NUTR 618 Lipids & Lipid Metabolism

SUPPLEMENTARY INFORMATION

Hmgcoar AGCTTGCCCGAATTGTATGTG TCTGTTGTAACCATGTGACTTC. Cyp7α GGGATTGCTGTGGTAGTGAGC GGTATGGAATCAACCCGTTGTC

number Done by Corrected by Doctor Faisal Al-Khatibe

Supplemental Data. Article. Serotonin Regulates C. elegans Fat and Feeding. through Independent Molecular Mechanisms

Biosynthesis of Triacylglycerides (TG) in liver. Mobilization of stored fat and oxidation of fatty acids

Supplementary Figure 1. Mitochondrial function in skeletal muscle and plasma parameters of STZ mice A D-F

Supporting Information

2-more complex molecules (fatty acyl esters) as triacylglycerols.

Table S9A: List of taurine regulated genes in Bp K96243 Chr 1 (up regulated >=2 fold) Cluster no GENE ID Start Stop Strand Function

number Done by Corrected by Doctor

Fig. S1. Validation of ChIP-seq binding sites by single gene ChIP-PCR Fig. S2. Transactivation potential of PPAR

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lectures Based on Profs. Kevin Gardner & Reza Khayat

Oxidation of Long Chain Fatty Acids

Fatty acid synthesis. Dr. Nalini Ganesan M.Sc., Ph.D Associate Professor Department of Biochemistry SRMC & RI (DU) Porur, Chennai - 116

General Laboratory methods Plasma analysis: Gene Expression Analysis: Immunoblot analysis: Immunohistochemistry:

Synthesis of Fatty Acids and Triacylglycerol

Exercise, sex, menstrual cycle phase, and 17 -estradiol influence metabolism-related genes in human skeletal muscle

number Done by Corrected by Doctor Faisal Al- Khateeb

MILK BIOSYNTHESIS PART 3: FAT

HIV VPR alters fat metabolism. Dorothy E Lewis PhD/Ashok Balasubramanyam MD

BIOL2171 ANU TCA CYCLE

Project Summary. Characterization of intramuscular adipogenesis in cattle

Synthesis of Fatty Acids and Triacylglycerol

Lecture 29: Membrane Transport and metabolism

Tala Saleh. Razi Kittaneh ... Nayef Karadsheh

Dietary Lipid Utilization by Haddock (Melanogrammus aeglefinus)

FAD FADH2. glycerol-3- phosphate. dehydrogenase. This DHAP is metabolically no different from that produced in glycolysis.

Lecture 36. Key Concepts. Overview of lipid metabolism. Reactions of fatty acid oxidation. Energy yield from fatty acid oxidation

Dietary Lipid Metabolism

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM. Fatty Acid Elongation and Desaturation

Molecular Cell Biology - Problem Drill 19: Cell Signaling Pathways and Gene Expression

Fatty acid oxidation. doc. Ing. Zenóbia Chavková, CSc.

Steven Michael Dragos. A Thesis. presented to. The University of Guelph. In partial fulfillment of requirements. for the degree of.

Final Review Sessions. 3/16 (FRI) 126 Wellman (4-6 6 pm) 3/19 (MON) 1309 Surge 3 (4-6 6 pm) Office Hours

MiR-103 Controls Milk Fat Accumulation in Goat (Capra hircus) Mammary Gland during Lactation

3-Thia Fatty Acids A New Generation of Functional Lipids?

Biochemistry: A Short Course

EXPRESSION OF FATTY ACID OXIDATION-RELATED GENES IN Acsl4 L -/- PRIMARY HEPATOCYTES. Dennis Lin

Synthesis and degradation of fatty acids Martina Srbová

Fatty acids synthesis

INTERACTION DRUG BODY

BIOSYNTHESIS OF FATTY ACIDS. doc. Ing. Zenóbia Chavková, CSc.

BCH 4054 Spring 2001 Chapter 24 Lecture Notes

Biology 638 Biochemistry II Exam-3. (Note that you are not allowed to use any calculator)

G-Protein Signaling. Introduction to intracellular signaling. Dr. SARRAY Sameh, Ph.D

Synthesis and elongation of fatty acids

In The Name Of God. In The Name Of. EMRI Modeling Group

GPR120 *** * * Liver BAT iwat ewat mwat Ileum Colon. UCP1 mrna ***

Regulation of P450. b. competitive-inhibitor but not substrate. c. non-competitive inhibition. 2. Covalent binding to heme or protein

Lipids and Classification:

Metabolism (degradation) of triacylglycerols and fatty acids

Rho GTPase activating protein 8 /// PRR5- ARHGAP8 fusion

GENERAL FEATURES OF FATTY ACIDS BIOSYNTHESIS

f(x) = x R² = RPKM (M8.MXB) f(x) = x E-014 R² = 1 RPKM (M31.

Lipodystrophy: Metabolic and Clinical Aspects. Resource Room Slide Series

Lipid Metabolism. Catabolism Overview

SUPPLEMENTARY INFORMATION

Chapter 10. Introduction to Nutrition and Metabolism, 3 rd edition David A Bender Taylor & Francis Ltd, London 2002

SUPPLEMENTARY INFORMATION

Mamofillin New aesthetic perspective

Biosynthesis of Fatty Acids

Transcription:

Supplemental.Figure1 A: Mouse Meda-4 : chromosome 5G3 19898bp I II III III IV V a b c d 5 RACE outer primer 5 RACE inner primer 5 RACE Adaptor ORF:912bp Meda4 cdna 2846bp Meda4 specific 5 outer primer Meda4 specific 5 inner primer EST (547bp) 1452244_at Meda4 specific 3 inner primer Meda4 specific 3 inner primer 3 RACE adaptor 3 RACE inner primer 3 RACE outer primer 5 -Meda4 inner race (~1.8Kb) 3 -Meda4 inner race (~1.1Kb) B: C: human MEDA-4 humanmeda-4 ORF (909bp)

Supplemental Fig1: Meda-4 cloning in mouse and human adipose tissue. (A) Meda-4 full length cdna was cloned from mouse adipose tissue by 5 RACE and 3 RACE with gene specific primers derived from Affymetrix probe ID 1452244_at 5 RACE and 3 RACE PCR product was sequenced and Meda-4 full length cdna was assembled. Mouse MEDA-4 gene, spanning 19.9KB (indicated with solid arrow above the diagram), mapped to chromosome 5G3. It contains five exons (I--V) and four introns (a-d). The dashed arrows below the diagram indicate the size of Meda-4 cdna - 2846bp. The box indicates the size of coding region ORF-912bp. (B) Human MEDA-4 is located on chromosome 13 at 13q12. (C) Human MEDA-4 ORF was also cloned from human adipose tissue by PCR using primers including the predicted start and stop codons.

Supplemental Figure2 A: B: Species Gene Protein mrna Mouse 63330406115Rik NP081495.1 NM0245193 Rat RGD1304396 XP341030.3 XM341029.3 Human C13orf33 NP116238.2 NM032849.3 Chimpanzee LOC434629 XP001142100.1 XM001142100.1 Cow MGC155285 NP001044129.1 NM001083660.1 Supplemental Figure 2: species conservation of MEDA-4. (A) Sequence conservation of MEDA-4 protein across several mammalian species. The sequence of mouse and human MEDA- 4 proteins are as deduced from our current cloning work on adipose tissue. Human MEDA-4 shares 99%, 91%, 91%, and 90% identity with chimpanzee, rat, mouse and cow proteins. (B) The accession numbers are shown.

Supplemental Table 1: List of primers For RACE For Subclone 5 race inner primer-f a 5 race outer primer-f Meda4-3'race inner primer G.S.-F Meda4-3'race outer primer G.S-F. Human MEDA-4 ORF-F(BglII) Mouse Meda-4 ORF-F (BglII) shrna-meda4- F(BglII) shrna- CONTROL-F (BglII) cgcggatccgaacactgcgtttgctgg ctttgatg gctgatggcgatgaatgaacactg gcctggtgcctgtaattcta cagggaaactaagccattacca taatagatgtggtgtgaggaccgacg ac atattcagatctatggccactgcagcgt gcga gatccccagaagacagatagagcaa gttcaagagacttgctctatctgtcttctt tttta gatccccttgcttgtaccgtgcgtgctt caagagagcacgcacggtacaagca attttta 5'race inner primer Meda-4--G.S.R b 5'race outer primer Meda-4--G.S.R 3 race inner primer-r 3 race outer primer-r Human- MEDA-4 ORF-R(AgeI) Mouse Meda-4 ORF-R(SalI) shrna-meda4- R(HindIII) shrna- CONTROL-R (HindIII) gtgcaatgatgcaggtttgtt tgccttcttatgagtataggtgcaa cgcggatccgaattaatacgactca ctatagg gcgagcacagaattaatacgact agctaccggtgataaattggttggg tgtct tagcgtcgacgataagttggctgga tgtctct agcttaaaaaagaagacagataga gcaagtctcttgaacttgctctatctg tcttctggg agcttaaaaattgcttgtaccgtgc gtgctctcttgaagcacgcacggta caagcaaggg For PCR and Q- PCR Pparγ2 -F ctcctgttgacccagagcat Ppar γ2-r aatgcgagtggtcttccatc Pref-1-F tccatgaaagagctcaacaaga Pref-1-R tctcggggaagatgatattgac Mouse Meda-4-F gtgccaatcaaccagtgaca Moue Meda-4-R gccctgatgtccagtgtacc (in Probe) (in Probe) Human MEDA- aggacgtacgcgtttcttgt Human MEDA-4-R gaattactgagcccgaacca 4-F c/ebp-α-f agcaacgagtaccgggtacg c/ebp-α-r tgtttggctttatctcggctc Pparγ -F ctcctgttgacccagagcat Pparγ-R aatgcgagtggtcttccatc c/ebp-δ-f ctatacctcagaccccgaca c/ebp-δ-r atagcttctctcgcagtcca Human GAPDH- gagtccactggcgtcttca Human GAPDH-R ggggtgctaagcagttggt F Mouse Gapdh-F gatgacatcaagaaggtggtga Mouse Gapdh-R tgctgtagccgtattcattgtc Mouse βactin-f ccagatcatgtttgagaccttc Mouse βactin-f aggatcttcatgaggtagtctg Adiponectin-F ggaacttgtgcaggttggat Adiponectin-R gcttctccaggctctccttt Plin1-F agacctacaacagcaccaaaga Plin1-R gatcttttctggagggtattga Acox1-F tgacttccatcaagtggtggc Acox1-R atgtaacccgtagcactcccct Lpl -F agctggtgggaaatgatgtg Lpl -R actgggggcttctgcatact Glut-4-F tcggctctgacgatggggaa Glut-4-R gccacggagagagcccagag Tnfα-F caaaccaccaagtggaggag Tnfα-R gtgggtgaggagcacgtagt Hsl-F cctactgctgggctgtcaa Hsl-R ccatctggcaccctcact ap2-f catgaaagaagtgggagtgggc ap2- R gaccggatggtgaccaaatc FAS-F cacagatgatgacaggagatgg FAS-R tcggagtgaggctgggttgat

Supplemental Table 2A: Ontology cluster of FORKO MAT gene dysregulation Ontology cluster Number of transcript P value Cell cycle process 58 2.3E -11 Cell differentiation 34 5.3E -10 Cell activation 62 6.5E -10 Apoptosis 61 4.9E -7 Cell proliferation 39 4.5E -7 Cytokine production 24 2.4E -6 Lipid binding 38 4.9E -5 Inflammatory response 26 7.7E -4 Lipid metabolism process 12 3.1E -4 Fat cell differentiation 10 6.3E -3

Supplemental Table 2B: Dysregulation of Adipogenesis Genes in FORKO MAT Gene list Fold change P value 3-hydroxy-3-methylglutaryl-Coenzyme A 3.086985 0.005464 synthase 1 Abhydrolase domain containing 5 3.209491 0.010168 Acetyl-Coenzyme A acyltransferase 1A 3.100248 0.001414 Acetyl-Coenzyme A acyltransferase 1B 4.836552 0.005634 Acyl-CoA synthetase long-chain family member 3.454505 0.001435 1 Acyl-Coenzyme A dehydrogenase family, 3.081431 0.00335 member 11 Acyl-Coenzyme A oxidase 1, palmitoyl 3.248424 0.00148 Aldehyde dehydrogenase family 1, subfamily A 3.440059 0.002964 Carnitine acetyltransferase 3.169883 0.001805 CCAAT/enhancer binding protein, alpha 3.459188 0.000211 CD36 3.328432 0.003809 Enoyl-Coenzyme A, hydratase/3-hydroxyacyl 3.399244 0.00318 coenzyme A dehydrogenase Early B cell factor 1 3.486552 0.005293 Adipocyte fatty acid binding protein 2 (Fatty 4.094623 0.008545 acid binding protein 4, adipocyte) Fatty acid desaturase 3 4.560338 0.001625 Growth hormone receptor 3.141441 0.00996 Lipase, hormone sensitive 3.313511 0.000681 Lipin 1 3.135428 0.003193 Paraoxonase 1 3.502444 0.016321 Patatin-like phospholipase domain containing 2 3.190696 0.013514 Peroxisomal biogenesis factor 11 alpha 3.016506 0.00208 Peroxisomal biogenesis factor 13 4.154902 0.006383 Peroxisome proliferative activated receptor, 3.008482 0.00961 gamma, coactivator 1 alpha Peroxisome proliferator activated receptor alpha 3.46239 0.026299 Peroxisome proliferator activated receptor 3.355203 0.006681 gamma Phospholipase A1 member A 3.218353 0.010646 Solute carrier family 24 (fatty acid transporter), 3.99516 0.006503 member 1 Diacylglycerol kinase zeta 0.274438 0.00104 Diacylglycerol kinase alpla 0.130713 0.000188 Ceramide kinase 0.307034 0.001002

Supplemental Table 2: Microarray analysis identified genes dysregulated >3 fold, P<0.05, as compared with WT littermates. A: Using DAVID Gene Functional Classification Tool (http://david.abcc.ncifcrf.gov) to cluster genes into functional groups. B: lists of known adipogenesis and lipid metabolism related genes dysregulated>3 fold, P<0.05 in FORKO.

Supplemental Table 3: Predicted MEDA-4 protein domains Domain N-glycosylation camp and cgmp dependent protein kinase phosphorylation Protein kinase C phosphorylation Position 189: NLSF; 212: NSTV; 223: NLTS 231:KKET;248:RRSS;255:RKFS 123: TKK; 163:SYR; 214:TVK; 234:TIK; 253:SDR; 260:TSR; 274:SPR Casein kinase II phosphorylation 18: SSGE; 123: TKKD; 227: TNPE; 251: SFSD, 264: SIDD; 278: SVTE; 291: SLLE Tyrosine kinase phosphorylation 92: KRYVELTNY N-myristoylation 209 GLSNST Prosite Motif search (prosite.expasy.org) predicted 6 different protein domains of potential post-translational modifications.