L esercizio fisico e le patologie cardiorespiratorie: dalla valutazione funzionale alla prescrizione. M. Guazzi

Similar documents
The role of CPX testing in the rehabilitation of cardiac patients.

11/12/2018. Prof. Steven S. Saliterman. Options. Prof. Paul Iaizzo s Physiology Lab, PHSL 3701

Basics of Cardiopulmonary Exercise Test Interpretation. Robert Kempainen, MD Hennepin County Medical Center

Exercise PHT in valvular heart disease. Julien Magne CHU Limoges, France

HFPEF Echo with Strain vs. MRI T1 Mapping

Ivana Nedeljkovic, M Ostojic, V Giga, V Stojanov, J Stepanovic, A Djordjevic Dikic, B Beleslin, M Nikolic, M Petrovic, D Popovic

CPX and Prognosis in Cardiovascular Disease

Peripheral Contributions to HFpEF

Diastolic Heart Failure Uri Elkayam, MD

Μαρία Μπόνου Διευθύντρια ΕΣΥ, ΓΝΑ Λαϊκό

Dr.Fayez EL Shaer Consultant cardiologist Assistant professor of cardiology KKUH

Diagnosis is it really Heart Failure?

Atrial dysfunction and chronotropic incompetence

Clinical implication of exercise pulmonary hypertension: when should we measure it?

What is established? Risk of Benefit complica comp tion

Exercise Stress Testing: Cardiovascular or Respiratory Limitation?

The right ventricle in chronic heart failure

The REDUCE LAP Heart Failure Trial. David M Kaye MD, PhD on behalf of the REDUCE LAP HF Investigators

DECLARATION OF CONFLICT OF INTEREST

Guide to the interpretation of Cardiopulmonary Exercise Testing

CTED and the Value of Exercise Testing

Καθετηριασμός δεξιάς κοιλίας. Σ. Χατζημιλτιάδης Καθηγητής Καρδιολογίας ΑΠΘ

Annual Congress of the European Society of Cardiology Munich, August

The Role of Cardiac Rehabilitation. The Role of Cardiac Rehabilitation. in Heart Failure. in Heart Failure. History of Cardiac Rehab.

FUNDAMENTALS OF HEMODYNAMICS, VASOACTIVE DRUGS AND IABP IN THE FAILING HEART

PHYSICAL AND SEXUAL ACTIVITIES

Right Heart Catheterization. Franz R. Eberli MD Chief of Cardiology Stadtspital Triemli, Zurich

todays practice of cardiopulmonary medicine

Brief View of Calculation and Measurement of Cardiac Hemodynamics

Testing Clinical Implications

Evolutionary origins of the right ventricle. S Magder Department of Critical Care, McGill University Health Centre

Atrial dyssynchrony syndrome: An overlooked cause of heart failure with normal ejection fraction

Cardiac Rehabilitation Program for LVAD Patients. Dr Katherine Fan Consultant Cardiologist Grantham Hospital, Hong Kong SAR

Cardiopulmonary Exercise Testing Cases

Dyspnea is a common exercise-induced

Imaging in Heart Failure: A Multimodality Approach. Thomas Ryan, MD

Josh Stanton and Michael Epton Respiratory Physiology Laboratory, Canterbury Respiratory Research Group Christchurch Hospital

HFpEF. April 26, 2018

HFpEF: Pathophysiology & Treatment

CHRONIC HEART FAILURE : WHAT ELSE COULD WE OFFER TO OUR PATIENTS? Cardiac Rehabilitation Society of Thailand

Value of echocardiography in chronic dyspnea

Approach to CPET. CPET Cases. Case 1 4/4/2018. Impaired? Cardiac factors? Ventilatory factors?

The Who, How and When of Advanced Heart Failure Therapies. Disclosures. What is Advanced Heart Failure?

Transcatheter InterAtrial Shunt Device for the Treatment of Heart Failure: Results From the REDUCE LAP-HF I Randomized Controlled Trial

THE DIASTOLIC STRESS TEST: A NEW CLINICAL TOOL? THE CONCEPT OF DIASTOLIC RESERVE

Heart failure is one of the most important

Ejection across stenotic aortic valve requires a systolic pressure gradient between the LV and aorta. This places a pressure load on the LV.

Cardiopulmonary Stress Testing: Beyond Transplant Evaluation

LV geometric and functional changes in VHD: How to assess? Mi-Seung Shin M.D., Ph.D. Gachon University Gil Hospital

Cardiac Rehabilitation for Heart Failure Patients. Jia Shen MD, MPH Assistant Professor of Medicine UC San Diego Health System

QUIZ 1. Tuesday, March 2, 2004

Hemodynamics of Exercise

Benefits of Combined Aerobic/Resistance/Inspiratory Muscle Training in Patients with Chronic Heart Failure. The Ideal Exercise Program for CHF?

Heart Failure with Preserved Ejection Fraction (HFpEF): Natural History and Contemporary Management

Heart Failure with Preserved Left Ventricular Ejection Fraction. (HFpEF)

Ejection across stenotic aortic valve requires a systolic pressure gradient between the LV and aorta. This places a pressure load on the LV.

Δυναμική υπερηχοκαρδιογραφία στις μυοκαρδιοπάθειες : έχει θέση και ποια ;

Content Display. - Introduction to Unit 4. Unit 4 - Cardiorespiratory Response to Exercise : Lesson 1. KINE xxxx Exercise Physiology

FOLLOW-UP MEDICAL CARE OF SERVICE MEMBERS AND VETERANS CARDIOPULMONARY EXERCISE TESTING

Heart Failure with preserved ejection fraction (HFpEF)

The right heart: the Cinderella of heart failure

THE PROPER APPROACH TO DIAGNOSING HEART FAILURE WITH PRESERVED EJECTION FRACTION

Cardiopulmonary Exercise Testing: its principles, interpretation & application. DM Seminar Harshith

Diastology State of The Art Assessment

LEFT BUNDLE BRANCH BLOCK- BENIGN OR A HARBINGER OF HEART FAILURE? PROGNOSTIC INDICATOR?

ECHO HAWAII. Role of Stress Echo in Valvular Heart Disease. Not only ischemia! Cardiomyopathy. Prosthetic Valve. Diastolic Dysfunction

Chapter 21 Training for Anaerobic and Aerobic Power

HEMODYNAMIC ASSESSMENT

Heart Failure. Cardiac Anatomy. Functions of the Heart. Cardiac Cycle/Hemodynamics. Determinants of Cardiac Output. Cardiac Output

Pulmonary Hypertension: Another Use for Viagra

Assessing the Impact on the Right Ventricle

The new Guidelines: Focus on Chronic Heart Failure

Interest of PVO2 assesment in HFpEF patients

How does Pulmonary Hypertension Affect the Decision to Intervene in Mitral Valve Disease? NO DISCLOSURE

Cardiopulmonary Exercise Testing in Cystic Fibrosis

Constrictive/Restrictive Cardiomyopathies: Diagnosis and Management Update; Radiation Induced Heart Disease. Alexander (Sandy) Dick, MD

Ejection Fraction in Heart Failure: A Redefinition. Tarek Kashour King Fahad Cardiac Center King Saud University Riyadh, KSA

The Pathophysiology of Cardiogenic Shock Knowledge Gaps & Opportunities

Rest and Exercise Echocardiography in Hypertrophic Cardiomyopathy: Determinants of Exercise Peak Gradient and Predictors of Outcome

Original Article. Role of Right Ventricle and Dynamic Pulmonary Hypertension on Determining ΔVO 2

Imaging in dilated cardiomyopathy : factors associated with a poor outcome

John G Lainchbury, A Mark Richards

Pulmonary Hypertension Due to Left Heart Disease

Acute Coronary Syndrome. Sonny Achtchi, DO

Advanced imaging of the left atrium - strain, CT, 3D, MRI -

Pathophysiology: Heart Failure

HeFSSA Practitioners Program 2017 Theme The Patient Journey: Feel Good and Live Long. Case Study 2

Valvular Guidelines: The Past, the Present, the Future

QATs. VCE Physical Education SCHOOL-ASSESSED COURSEWORK UNIT 3 OUTCOME 2. Introduction. Quality Assessment Tasks

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cardiopulmonary Exercise Testing: Relevant But Underused

Disclosure. RV is not the innocent bystander 10/1/16. Assessment and Management of Pulmonary Heart Disease in the Female Patient

Cor pulmonale. Dr hamid reza javadi

Revision of 10/27/2017 Form #280 Page 1 of 12 PVDOMICS STUDY Clinical Center Right Heart Catheterization (RHC) Results Form #280

Surgery and device intervention for the elderly with heart failure: assessing the need. Devices and Technology for heart failure in 2011

Echo assessment of the failing heart

Topics to be Covered. Cardiac Measurements. Distribution of Blood Volume. Distribution of Pulmonary Ventilation & Blood Flow

Lessons From An Advanced Dyspnea Center: New Approaches to An Old Problem. Robert Schilz DO, PhD

Evalua&on)of)Le-)Ventricular)Diastolic) Dysfunc&on)by)Echocardiography:) Role)of)Ejec&on)Frac&on)

Pathophysiology Department

Transcription:

La Riabilitazione Interdisciplinare L esercizio fisico e le patologie cardiorespiratorie: dalla valutazione funzionale alla prescrizione M. Guazzi Università di Milano Dipartimento Cardiologia Universitaria IRCCS Policlinico San Donato Milano

Functional Evaluation and Exercise Prescription In Cardiac Patients Background and Key Questions Background: Exercise is a Mainstay Physiological Stressor and VO 2 is a Key Measure of CV Health Questions: O 2 Transport and Utilization Chain: What The Wrong Pathways in HF? Gas Exchange Analysis and Exercise Prescription

Articles per annum Functional Evaluation in Heart Failure Applications of CPET in Cardiology-17 140 1 CPX and Oscillatory Breathing CPET Statements 100 80 60 40 0 1982-1990 1991 Single variable CPX pathophysiol/clinical (Peak VO2) 1992 1993 1994 1995 1996 1997 1998 1999 00 01 02 CPX and Ventilation (VE/VCO2 slope OUES, PETCO2) 03 04 05 Pubmed search analysis: CPET/CPX cardiac patients, heart disease, cardiopulmonary disease,exercise gas exchange 60% of papers looking at prognosis 70% on HFrEF Multiparametric approach 06 07 08 09 10 11 12 13 14 15 16 17 Cardiopulmonary Imaging/Reappraisal of Invasive CPET

From 9 plots to Score Risk Tables Universal Report Color-Coded Score Tables..the ultimate goal is to increase awareness of the value of CPET and to increase the number of healthcare professionals who are able to perform clinically meaningful interpretation.

Applications of NonInvasive Echo Combined Approach in the CPX Lab Diagnosis Instrumental Clinical follow-up Valvular heart disease HFrEF HFpEF Others Coronary Artery Disease (HCM, congenital ) Rest Echo MRI Pulmonary hemodynamics Rest Echo MRI Pulmonary Hemodyamics Ergometry Stress Echo Nuclear test Stress MRI Angio CT Rest Echo MRI Pulmonary hemodynamics Exercise Gas Exchange +Echo Angiography Medical LVAD HTx Surgery PCI Medical Surgery Medical post Surgery

Cardiopulmonary Imaging

Measurement Baseline Unloaded Effort Anaerobic Threshold Maximal Effort P Value for Each Group Within Group Between Groups Time-Group Interaction Stroke volume, ml Normal HFpEF HFrEF Cardiac output, l/min Normal HFpEF HFrEF Vo 2, l/min Normal HFpEF HFrEF Mitral regurgitation, ml Normal HFpEF HFrEF Avo 2 diff, l/l Normal HFpEF HFrEF 77.3 ± 10.0 78.8 ± 17.0 67.1 ±.0 6.2 ± 1.1 6.0 ± 1.5 4.9 ± 1.5 0.36 ± 0.09 0.37 ± 0.08 0.34 ± 0.09 0.1 ± 0.3 4.2 ± 4.1 8.6 ± 13.5 0.06 ± 0.01 0.06 ± 0.02 0.08 ± 0.03 92.1 ± 15.0 91 ± * 67.5 ± 18.0 8.0 ± 1.8 7.7 ± 2.0 5.8 ± 1.3 0.56 ± 0.13 0.57 ± 0.19 0.56 ± 0.25 1.2 ± 2.4 8.6 ± 3.4* 24.0 ± 27.0* 105 ± 16 94.5 ± 24.0 74.7 ± 27.0 12.6 ± 2.6 9.4 ± 3.5* 7.0 ± 2.8 1.23 ± 0.37 0.87 ± 0.27 0.87 ± 0.34* 0.4 ± 1.0 3.8 ± 6.6 21.3 ± 22.0 98.6 ± 13.0 86.7 ± 19,0* 70.7 ± 31.0 14.5 ± 2.9* 9.6 ± 4.2 8.2 ± 4.4 1.99 ± 0.67 1.23 ± 0.51 1.29 ± 0.56 AVO2 diff estimation by CO estim and VO2 0.07 ± 0.11 0.07 ± 0.02 0.09 ± 0.02* 0.10 ± 0.02 0.10 ± 0.03 0.12 ± 0.02* Values are mean ± SD, or n (%). *p< 0.01, p <0.001 AVo 2 Diff = arterial-venous oxygen content difference; EDV = end-diastolic volume; other abbreviations as in Table 1 1.2 ± 2.8 3.7 ± 5.9 23.9 ± 22.8 0.13 ± 0.03 0.13 ± 0.05 0.14 ± 0.01* <0.0001 0.007 0.12 <0.0001 0.007 0.10 <0.0001 <0.0001 <0.0001 0.50 0.04 0.05 <0.0001 <0.0001 0.02 <0.0001 0.006 0.0001 <0.0001 0.0001 <0.0001 <0.0001 0.003 <0.0001 0.05 <0.0001 0.01 <0.0001 0.06 0.80

Determinants of the O 2 Transport and Utilization Chain Framed on the Fick Principle Signs and Symptoms HFpEF HFrEF Exercise Intolerance Dyspnea and Fatigue Organ limiting steps in O 2 uptake [convection (delivery), release, diffusion and use] VO 2 = C.O. x C (a-v) O 2 Low Pcap O 2 High PvO 2

Fick Principle: Determinants. Delivery or convection Extraction 2.5 times VO 2 = C.O. x c (a-v) O 2 2.5 times 1.2 times C.O. = HR x SV Mixed Venous C = 1.34 x Sat O 2 x [Hb] Ventilation Gas diffusion Perfusion HYPOXIA ANEMIA

Cardiac Output (L/min) C.O. X C (a-v)o 2 = VO 2 2,525 AT Peak VO 2 (L/min) 4.0 Anemia Normal 3.5 1,515 COPD 3.0 2.5 10 1 2.0 1.5 0,55 0 Rest 0 5 10 15 C (a-v)o 2 (ml %) 1.0 0.5

Cardiac Output and O 2 Extraction at Maximum Exe. in Normal Individuals Stringer et al J Appl Physiol 1997;83:631-43. Normal A-V diff range

Cardiac Output and O 2 Extraction at Peak Exe. in HFrEF normals

Cardiac Output (L/min) C.O. X C (a-v)o 2 = VO 2 2,525 AT Peak VO 2 (L/min) 4.0 Normal 3.5 1,515 3.0 2.5 10 1 CHF 2.0 0,55 Rest Anemia 1.5 1.0 0.5 0 0 5 10 15 C (a-v)o 2 (ml %)

Partitioning C (a-v) O 2 Contribution to VO 2 Increase in Severe HFrEF To define the C(a-v)O 2 phenotypes (high vs low) by estimating extraction from the CO/VO 2 ratio 104 HFrEF patients (mean age 64±11 y, male %, ischemic etiology 68%, mean LVEF 34±9%) Population divided by CO/VO 2 median value Group A (<0.49) vs Group B (>0.49) In preparation

Functional and Echocardiographic Characteristics According to the Extent of C (a-v) O 2 Extent Variables Group A (n=52) Group B (n=52) p value Rest Peak Rest Peak Rest Peak CPET VO 2, L/min 0.26±0.1 0.96±0.3 0.29±0.1 0.99±0.3.03 ns Peak VO 2, 11.8±4 12.6±3.1 ns ml O 2 *Kg -1 *min -1 C(a-v)O 2, ml/100ml 9±3 19±5 7±1 12±3.000.000 VE/VCO 2, slope 36±11 31±7.01 ECHO LVEDVi, ml/m 2 101±33 91±23.09 MR ERO, mm 2 22±10 33±13 16±9 25±12.02.003 E/e 28±15 22±11.02 CO, l/min 3.1±0.8 5.1±1.8 4.4±1.2 8.1±2.3.000.000

Good Extractor (peak exercise CO/VO 2 <0.49) CO, L/min: Rest 2.9; Peak 3.72 VO 2 : L/min Rest 0.27; Peak 0.65 C(a-v)O 2 ml/100 ml Rest 9; Peak 17 Bad Extractor (peak exercise CO/VO 2 0.49) CO, L/min: Rest 3.3; Peak 5.2 VO 2 : L/min Rest 0.19 ; Peak 0.61 C(a-v)O 2 ml/100 ml Rest 6; Peak 12 44 28.9 Impaired ventilatory efficiency Preserved ventilatory efficiency

Effects of Exe. Central Blood Flow Distribution on Fick Principle in HFrEF To define the role of mitral regurgitation on C(a-v)O 2, CO and related functional phenotype 110 HFrEF patients (mean age 65±11 y, male %, ischemic etiology 64%, mean LVEF 32±8%) divided by severe MR 33 Controls In preparation

CO (L/min) 10 peak VO 2 1.33 ± 0.6 L/min CONTROLS 9 8 7 peak VO 2 1.03 ± 0.32 L/min -% no MR 6 5-40% rest VO 2 0.27 ± 0.08 ml/min MR 4 3 rest VO 2 0.27 ± 0.06 ml/min peak VO 2 0.82 ± 0.26 ml/min 2 1 rest VO 2 0.28 ± 0.09 ml/min +% 2 7 12 22 C (a-v)o 2 (ml/100ml)

Functional and Echocardiographic Characteristics According to MR Variables CPET Group A (n=24) Group B (n=80) p value Rest Peak Rest Peak Rest Peak Peak VO 2, ml O 2 *Kg -1 *min -1 11.0±4 13.3±3.01 C(a-v)O 2, ml/100ml 8±3 19±4 7.5±1 14±4.000.000 VE/VCO 2, slope 37±10 31±6.01 ECHO LVEDVi, ml/m 2 111±30 89±22.07 E/e 28±15 22±11.02 CO, l/min 3.5±0.8 5.1±1.8 3.8±1.2 7.0±2.3.000.000

Good Extractor Bad Extractor Severe mitral insufficiency (ERO=37 mm 2 ) and LV dilatation (LVEDVi= 117 ml/m 2 ) Mild mitral insufficiency (ERO=11 mm 2 ) and LV dilatation (LVEDVi= 86 ml/m 2 )

Determinants of mpap in HFrEF pump load mpap = Q x PVR + PCWP RV Function Compliance Mitral Insuff In the systemic circulation, downstream hydraulic pressure (in the right atrium) contributes little (<5%) to systemic arterial pressure. In the lung, downstream pressure (ie, LAP) is a much more important contributor to mean PAP ( 50%), and this proportion can become even greater in HF Vascular tone and remodeling resistive Increased LV filling pressure stiffness pulsatile

Mitral Regurgitation Induces PH and RV Dysfunction 1. MR (primary or secondary) in both HFrEF and HFpEF is prognostically relevant 1,2 especially when detected during exercise 3,4 2. Exercise-induced MR triggers PH and portends a severe outcome ò significance especially when RV dysfunction/failure coexists 5-7 Rest watt 40 watt peak 1: Tumminello G et al 2: Guazzi M et al Circulation 12; 3: Lancellotti P et al. Circulation 03;108:1713-1717; 4: Lancellotti P Eur Heart J 05;26:1528-1532; 5: Kusunose K Circ Cardiovasc Imaging. 13;6:167-76. 7: Bandera F et al Eur J Cardiov Imag 16 PASP: 50 mmhg PASP: 85 mmhg

Right Ventricular Contractile Reserve and Pulmonary Circulation Uncoupling During Exercise Challenge in Heart Failure: Pathophysiology and Clinical Phenotypes JACC HF 16; 4(8):625-35 97 HFrEF pts undergoing Echo stress test and CPX Group A (TAPSE > 16 mm) n= 60 Average TAPSE: 21 mm (TAPSE < 16 mm) n=37 Average TAPSE= 13 mm Rest Median TAPSE at peak exe 15.5 mm Group B (TAPSE > 15.5 mm) n=19 Group C (TAPSE < 15.5 mm) n=18 Peak Exe B C

Right Ventricular Contractile Reserve and Pulmonary Circulation Uncoupling During Exercise Challenge in Heart Failure: Pathophysiology and Clinical Phenotypes 97 HFrEF pts undergoing Echo stress test and CPX, divided according to TAPSE > 16 mm Group A or < 16 mmhg at rest with recovery (Group B) or not during exercise (Group C) Results- RV to PC Coupling PASP (mmhg) 80 PASP (mmhg) 80 70 60 y = 13,721x + 4,5659 R² = 0,9953 y = 6,2162x + 16,495 R² = 0,9975 70 60 y = 72,5x - 896,5 R² = 0,7758 y = 4,4426x - 26,23 R² = 1 50 40 y = 5,7934x + 9,679 R² = 0,9995 50 40 y = 5,5x - 82,833 R² = 0,9973 30 30 2 3 4 5 6 7 8 8 13 18 23 28 Cardiac Output (ml/min) TAPSE (mm) Group A Group B Group C

LENGTH TAPSE (mm) TAPSE (mm) 293 HF patients (247 HFrEF; 46 HFpEF) Echocardiographic evaluation of RV function, PH, LV function and biomarkers 28 24 y=-0,1407x+23,645 R 2 =0,3219 28 24 y=-0,0277x+,579 R 2 =0,00239 16 16 12 12 8 4 0 Survivors (n=246) Non-survivors (n=47) y=-0,1107x+19,897 R 2 =0,1729 10 30 40 50 60 70 80 PASP, FORCE mmhg 8 4 0 TAPSE > 16 mm (n=176) TAPSE 16 mm (n=117) y=-0,0473x+16,589 R 2 =0,081 10 30 40 50 60 70 80 PASP (mmhg)

Right Ventricular Contractile Reserve and Pulmonary Circulation Uncoupling During Exercise Challenge in Heart Failure: Pathophysiology and Clinical Phenotypes Results- RV Contractile Reserve (TAPSE vs PASP relationship at rest and peak exe) Group A Group B Group C TAPSE (mm) 30 y = -0,0151x + 23,32 TAPSE (mm) 30 TAPSE (mm) 30 25 25 y = 0,0081x + 17,682 25 y = -0,0344x + 14,977 15 15 15 10 y = -0,0321x + 21,785 10 10 5 5 y = -0,0002x + 14,008 5 y = -0,0136x + 13,4 0 0 0 25 50 75 100 125 150 PASP (mmhg) 0 25 50 75 100 125 150 PASP (mmhg) 0 0 25 50 75 100 125 150 PASP (mmhg) Full simbols: Rest Empty symbols: Peak exercise

Right Ventricular Contractile Reserve and Pulmonary Circulation Uncoupling During Exercise Challenge in Heart Failure: Pathophysiology and Clinical Phenotype Clinical Characteristics Group A (n=60) Group B (n=19) Group C (n=18) P Age, y 62±10 65±8 64±13 0.73 BMI 26±4 26±4 27±4 0.22 Female gender, % 16 28 35 0.27 BNP, pg/dl 1879 ±1804 2978 ±1812 2463 ±1251 0.03* LV Cardiac Data *:Group B and C vs Group A Group A (n=60) Group B (n=19) Group C (n=18) P Rest Peak Rest Peak Rest Peak Rest Peak LV ejection fraction, % 33±8 37±10 34±9 37±14 32±11 35±10 ns ns LV end diastolic vol. indexed, ml/m 2 90±23 95±28 113±47 ns LV mass indexed, g/m 2 126±30 121±22 154±37.0017 Left atrial volume indexed, ml/m 2 47±18 52±24 80±35.0005 E/e 22±11 25±16 38±13.001 Cardiac output, l*min -1 4.0±1.2 7.2±2.6 3.3±0.8 6.5±1.8 2.9±1.0 4.4±1.9.0004.0002 Severe MR, % 16 21 56

Right Ventricular Contractile Reserve and Pulmonary Circulation Uncoupling During Exercise Challenge in Heart Failure: Pathophysiology and Clinical Phenotypes CPET Data HF (n= 97) Group A (n=60) Group B (n=19) Group C (n=18) P Value Maximal work, W 65 ± 25 69 ± 26 68 ± 21 46 ± 18ⱡ 0.0029 Peak VO 2, ml/kg/min 13.0 ± 3.7 13.5 ± 3.5 14.1 ± 4.2 10.2 ± 2.3ⱡ 0.008 Predicted peak VO 2, % 53 ± 15 55 ± 14 55 ± 14 43 ± 13 0.0082 Peak RER 1.17 ± 0.12 1.17 ± 0.14 1.17 ± 0.14 1.19 ± 0.12 0.88 Peak O 2 pulse, ml/beat 9.0 ± 2.7 9.3 ± 2.8 10.0 ± 2.7 7.4 ± 2.0 0.0068 VE/VCO 2 slope 34 ± 10 31 ± 7 35 ± 10 42 ± 12 0.0001 End-tidal CO 2, mmhg 33 ± 6 35 ± 5 33 ± 6 28 ± 4 0.0001 Exercise Oscillatory Ventilation 44 40 42 61 0.28* Circulatory power, mmhg ml O 2 1,886 ± 672 2,144 ± 627 1,734 ± 508 1,182 ± 366 0.0001 kg -1 min -1 Ventilatory power, mmhg 4.8 ± 1.5 5.3 ± 1.3 4.7 ± 1.6 3.5 ± 1.2 <0.0001 Values are mean ± SD or %. *Chi-square test. Kruskal-Wallis test. p < 0.025, group B versus group C. BP= blood pressure; EOV= exercise oscillatory ventilation; HF= heart failure; RER= respiratory exchange ratio; VCO2= carbon dioxide output; VE= minute ventilation; VO2 = oxygen uptake. *:Group B and C vs Group A peak

HR (beats/min) HR (bpm) VE (L/min) VCO 2 (L/min) VO 2 (L/min) VO 2 /HR V T (L) VE (L/min) RR P ET O 2 (mmhg) VE (L/min) VO 2 (ml/min) VO 2 (ml/min) P ET CO 2 (mmhg) The 9-plot Analysis 1.5 1.5 1.0 peak VO 2 : 8 ml/min/kg 80 60 1.5 1.0 1.5 1.0 Ramp protocol (8 watt/min) Max workload: 45 watt 1.0 0.5 0.0 0 10 30 40 1 60 40 0 0.0 0.4 0.8 1.2 100 90 80 70 Work Symptom-limited test 100 terminated because of DYSPNEA and Significant 80 0.0 RV-PA UNCOUPLING 0 10 30 40 0.5 Work VO 2 (L/min) 0.5 0.4 0.3 0.2 0.1 80 60 40 40 80 60 40 0 0 100 0 300 Time (sec) 0 0.0 0.4 VE/VCO0.8 2 : slope: 1.2 39 2.0 1.5 1.0 0.5 60 40 VE/VO 2 0 VCO 0.0 0.4 2 0.8 1.2 VCO 2 (L/min) 0.5 0.0 0.0 0 100 0 300 10 8 6 4 2 140 1 100 Time (sec) 0 0 0 100 0 300 Time (sec) 0.5 100 80 60 40 40 30 10 VE/VCO 2 60 0 50 100 150 0 250 0.0 0.0 0 0 40 60 80 80 0 0 100 0 300 Time (sec) VE (L/min) Time (sec) Guazzi M et al JACC 17 in press

Group B Rest Peak Rest TAPSE 13 mm Peak TAPSE 18 mm Rest Peak Rest PASP 30 mmhg Peak PASP 50 mmhg ERO 9 mm 2 ERO 13 mm 2 Peak VO 2 15.3 ml/kg/min; VE/VCO 2 Slope 32; EOV no Group C Rest Peak Rest Peak Rest TAPSE 12 mm Peak TAPSE 13 mm Rest PASP 66 mmhg Peak PASP 78 mmhg ERO 41 mm 2 ERO 51 mm 2 Peak VO 2 8.2 ml/kg/min; VE/VCO 2 Slope 42; EOV yes

Exercise Training in Heart Failure 1. Training Intensity (% of VO2 max or max HR) 2. Type of training (endurance, resistance, combined) 3. Methods of training (continuous or steady state, intermittent, interval) 4. Training modality (concentric vs eccentric) 5. Training target (systemic vs regional training, e.g. respiratory training) 6. Training control (supervised/non supervised) 7. Training location (hospital based, outpatient, home based) Moderate intensity endurance training has been proven prognostic benefits reduced hospitalization rate 1, mortality 2,3 1 O Connor CM et al, JAMA 09;301:1439-1450 2 Keteyan SJ et al JACC 12;60:1899-1905 3 Piepoli MF et al BMJ 04;328:189

Conclusions and Outlook CPET imaging seems now an evolving step to better phenotyping advanced HFrEF. Mitral regurgitation is a sort of central redistributor of O 2 delivery whose mechanistic implications on exercise are of novel interest for either extraction (exhaustion at maximum), RV to PC uncoupuling (increased load) and exercise ventilation inefficiency RV pump failure comes up as an early and quite underestimated mechanical cause of impaired performance and exhaustion. ET training in HF: the evidence is just for continuous, moderate intensity, supervised modalities