Systems Neurobiology: Plasticity in the Auditory System. Jason Middleton -

Size: px
Start display at page:

Download "Systems Neurobiology: Plasticity in the Auditory System. Jason Middleton -"

Transcription

1 Systems Neurobiology: Plasticity in the Auditory System Jason Middleton - jmiddlet@pitt.edu

2 Auditory plasticity Plasticity Early development and critical period Adult plasticity and neuromodulation Brainstem plasticity

3 Plasticity Substrate Mechanism Timescale Synapse Neuron Network Molecular Cellular Anatomical short, long

4 Short term synaptic plasticity Gil, et al. Neuron (1997) Reyes, et al. Nat Neurosci (1998)

5 Intrinsic property plasticity Song, et al. Nat Neurosci (2005)

6 Structural plasticity Trachtenberg, Nature (2002)

7 Plasticity Substrate Mechanism Timescale Synapse Neuron Network Molecular Cellular Anatomical short, long

8 Auditory system preferred frequency Hair cells Auditory stimulus frequency (khz) Caspary, et al. J Exp Biol (2008)

9 Polley, et al. J Neurophys (2007) - Cortex is tontopically organized along one dimension (tonotopic axis)

10 Polley, et al. J Neurophys (2007) - Different stimulus response properties obey different organizational principles in cortex

11 Auditory development and critical period When the effect of experience on the brain is particularly strong during a limited period in development, this period is referred to as a sensitive period. When experience provides information that is essential for normal development and alters performance permanently, such sensitive periods are referred to as critical periods. Knudsen, E. Journal of Cognitive Neuroscience (2004) Somatosensory: - critical period for barrel field development (P2-P5) Visual: - critical period for ocular dominance V1 (P15-P33)

12 Zhang, et al. Nat Neurosci (2001)

13 Zhang, et al. Nat Neurosci (2001)

14 Zhang, et al. Nat Neurosci (2001)

15 De Villers-Sidani, J Neurosci (2007) Critical period for auditory cortical tonotopic alignment: ~P11-P15

16 Chang, et al. Science (2003)

17 Chang, et al. Science (2003)

18 - Critical period for development of cortical tonotopy: ~P11-P15 - Tonotopy is plastic and can be altered by abnormal sensory experience - Auditory critical period can be extended by noise rearing - Normal tonotopy can be restored - Neural organization set up during critical period serves as a template for further adult plasticity

19 Adult cortical plasticity - Nucleus Basalis (NB); basal forebrain nucleus; major source of cholinergic input to cortex - Pairing NB electrical stimulation with acoustic tones causes overrepresentation in cortex Kilgard and Merzenich, Nature (1998) - What is the circuit basis for this reorganization?

20 Froemke, et al. Nature (2007)

21 Froemke, et al. Nature (2007)

22 Influence of operant learning r Bao, et al. Nature (2004)

23 Bao, et al. Nature (2004)

24 Bao, et al. Nature (2004) Bao, et al. Nature (2004)

25 Bao, et al. Nature (2004)

26 - Plasticity of neural representations auditory cortex extends in adulthood - Usually involves behaviorally relevant neuromodulation - Cholinergic modulation (Kilgard, Froemke, Merzenich) - Dopamine (Bao, Merzenich) - Norepinephrine, Oxytocin (Froemke, unpublished results)

27 Cortical plasticity... what about the brainstem?

28 Brainstem plasticity Song, et al. Nat Neurosci (2005) Seidl and Grothe J Neurophys (2005)

29 Bajo, et al. Nat Neurosci (2010) King, et al. Neurosci Biobehav Rev (2011)

30 King, et al. Neurosci Biobehav Rev (2011)

31 Bajo, et al. Nat Neurosci (2010) King, et al. Neurosci Biobehav Rev (2011)

32 Yan and Ehret, Eur J Neurosci (2002) Zhang, et al. Eur J Neurosci (2005)

33 Zhang, et al. Eur J Neurosci (2005)

34 Selected References development/critical period adult plasticity brainstem/midbrain Gil Z, Connors BW, Amitai Y. Differential regulation of neocortical synapses by neuromodulators and activity. Neuron, 19: (1997) Reyes A, Lujan R, Rozov A, Burnashev N, Somogyi P, Sakmann B. Target-cell-specific facilitation and depression in neocortical circuits. Nature Neuroscience, 1: (1998) Song P, Yang Y, Barnes-Davies M, Bhattacharjee A, Hamann M, Forsythe ID, Oliver DL, Kaczmarek L. Acoustic environment determines phosphorylation state of the Kv3.1 potassium channel in auditory neurons. Nature Neuroscience, 8: (2005) Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature, 420: (2002) Caspary DM, Ling L, Turner JG, Hughes LF. Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. Journal of Experimental Biology, 211: (2008) Polley DB, Read HL, Storace DA, Merzenich MM. Multiparametric auditory receptive field organization across five cortical fields in the albino rat. Journal of Neurophysiology, 97: (2007) Knudsen EI. Sensitive periods in the development of the brain and behavior. Journal of Cognitive Neuroscience, 16: (2004) Zhang LI, Bao S, Merzenich MM. Persistent influences of early acoustic environments on primary auditory cortex. Nature Neuroscience, 4: (2001) De Villers-Sidani E, Chang EF, Bao S, Merzenich MM. Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. Journal of Neuroscience, 27:180-9 (2007) Chang EF, Merzenich MM. Enviornmental noise retards auditory cortical development. Science, 300: (2003) Kilgard MP, Merzenich MM. Cortical map reorganization enabled by nucleus basalis activity. Science, 279: (1998) Froemke RC, Merzenich MM, Schreiner CE. A synaptic memory trace for cortical receptive field plasticity. Nature, 450: (2007) Bao S, Chang EF, Woods J, Merzenich MM. Temporal plasticity in the primary auditory cortex induced by operant learning. Nature Neuroscience, 7: (2004) Seidl AH and Grothe B. Development of sound localization mechanisms in the mongolian gerbil is shaped by early acoustic experience. Journal of Neurophysiology, 94: (2005) Bajo VM, Nodal FR, Moore DR, King AJ. The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nature Neuroscience, 13: (2010) King AJ, Dahmen JC, Keating P, Leach ND, Nodal FR, Bajo VM. Neural circuits underlying adaptation and learning in the perception of auditory space. Neuroscience and Biobehavioral Reviews, 35: (2011) Yan J, Ehret G. Corticofugal modulation of midbrain sound processing in the house mouse. European Journal of Neuroscience, 16: (2002) Zhang Y, Hakes JJ, Bonfield SP, Yan J. Corticofugal feedback for auditory midbrain plasticity elicited by tones and electrical stimulation of basal forebrain in mice. European Journal of Neuroscience, 22: (2005)

Sensory Physiology Bi353 Fall Term 2016

Sensory Physiology Bi353 Fall Term 2016 Lectures 2-3p MWF 111 Lillis (CRN 11012) Lab/Discussion Section 1 (CRN 11013) Friday 10-110:50a Hue 129 Lab/Discussion Section 2 (CRN 11014) Friday 11a-11:50a Hue 129 Lab/Discussion Section 3 (CRN 16400)

More information

VISUAL CORTICAL PLASTICITY

VISUAL CORTICAL PLASTICITY VISUAL CORTICAL PLASTICITY OCULAR DOMINANCE AND OTHER VARIETIES REVIEW OF HIPPOCAMPAL LTP 1 when an axon of cell A is near enough to excite a cell B and repeatedly and consistently takes part in firing

More information

Dynamic, adaptive task-related processing of sound in the auditory and prefrontal cortex

Dynamic, adaptive task-related processing of sound in the auditory and prefrontal cortex Dynamic, adaptive task-related processing of sound in the auditory and prefrontal cortex Jonathan Fritz 1, Stephen David 1,3, Bernhard Englitz 1,4, Serin Atiani 1,5, Diego Elgueda 1, Michael Locastro 1,

More information

Neurobiology of Hearing (Salamanca, 2012) Auditory Cortex (2) Prof. Xiaoqin Wang

Neurobiology of Hearing (Salamanca, 2012) Auditory Cortex (2) Prof. Xiaoqin Wang Neurobiology of Hearing (Salamanca, 2012) Auditory Cortex (2) Prof. Xiaoqin Wang Laboratory of Auditory Neurophysiology Department of Biomedical Engineering Johns Hopkins University web1.johnshopkins.edu/xwang

More information

How Therapy Changes the Human Brain

How Therapy Changes the Human Brain Selected Neural Plasticity References How Therapy Changes the Human Brain Martha S. Burns, Ph.D.,ccc-slp Joint Appointment Professor Northwestern University Bryck & Fisher (2012) Training the Brain: Practical

More information

FINE-TUNING THE AUDITORY SUBCORTEX Measuring processing dynamics along the auditory hierarchy. Christopher Slugocki (Widex ORCA) WAS 5.3.

FINE-TUNING THE AUDITORY SUBCORTEX Measuring processing dynamics along the auditory hierarchy. Christopher Slugocki (Widex ORCA) WAS 5.3. FINE-TUNING THE AUDITORY SUBCORTEX Measuring processing dynamics along the auditory hierarchy. Christopher Slugocki (Widex ORCA) WAS 5.3.2017 AUDITORY DISCRIMINATION AUDITORY DISCRIMINATION /pi//k/ /pi//t/

More information

Background sounds contribute to spectrotemporal plasticity in primary auditory cortex

Background sounds contribute to spectrotemporal plasticity in primary auditory cortex Exp Brain Res (2005) 162: 417 427 DOI 10.1007/s00221-004-2098-4 RESEARCH ARTICLE Raluca Moucha Æ Pritesh K. Pandya Navzer D. Engineer Æ Daniel L. Rathbun Michael P. Kilgard Background sounds contribute

More information

Asynchronous inputs alter excitability, spike timing, and topography in primary auditory cortex

Asynchronous inputs alter excitability, spike timing, and topography in primary auditory cortex Hearing Research 203 (2005) 10 20 www.elsevier.com/locate/heares Asynchronous inputs alter excitability, spike timing, and topography in primary auditory cortex Pritesh K. Pandya, Raluca Moucha, Navzer

More information

Neuroethology in Neuroscience or Why study an exotic animal

Neuroethology in Neuroscience or Why study an exotic animal Neuroethology in Neuroscience or Why study an exotic animal Nobel prize in Physiology and Medicine 1973 Karl von Frisch Konrad Lorenz Nikolaas Tinbergen for their discoveries concerning "organization and

More information

Using MEG to map the auditory cortex. Jonathan Côté PhD Candidate in Etienne de Villers-Sidani s laboratory

Using MEG to map the auditory cortex. Jonathan Côté PhD Candidate in Etienne de Villers-Sidani s laboratory Using MEG to map the auditory cortex Jonathan Côté PhD Candidate in Etienne de Villers-Sidani s laboratory Sensory representations organization Sensory representations organization Organized map for most

More information

USING AUDITORY SALIENCY TO UNDERSTAND COMPLEX AUDITORY SCENES

USING AUDITORY SALIENCY TO UNDERSTAND COMPLEX AUDITORY SCENES USING AUDITORY SALIENCY TO UNDERSTAND COMPLEX AUDITORY SCENES Varinthira Duangudom and David V Anderson School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta, GA 30332

More information

Analysis of in-vivo extracellular recordings. Ryan Morrill Bootcamp 9/10/2014

Analysis of in-vivo extracellular recordings. Ryan Morrill Bootcamp 9/10/2014 Analysis of in-vivo extracellular recordings Ryan Morrill Bootcamp 9/10/2014 Goals for the lecture Be able to: Conceptually understand some of the analysis and jargon encountered in a typical (sensory)

More information

Lauer et al Olivocochlear efferents. Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS

Lauer et al Olivocochlear efferents. Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS Lauer et al. 2012 Olivocochlear efferents Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS May 30, 2016 Overview Structural organization Responses Hypothesized roles in hearing Olivocochlear efferent

More information

Cortical Map Plasticity. Gerald Finnerty Dept Basic and Clinical Neuroscience

Cortical Map Plasticity. Gerald Finnerty Dept Basic and Clinical Neuroscience Cortical Map Plasticity Gerald Finnerty Dept Basic and Clinical Neuroscience Learning Objectives Be able to: 1. Describe the characteristics of a cortical map 2. Appreciate that the term plasticity is

More information

Monaural Deprivation Disrupts Development of Binaural Selectivity in Auditory Midbrain and Cortex

Monaural Deprivation Disrupts Development of Binaural Selectivity in Auditory Midbrain and Cortex Article Monaural Deprivation Disrupts Development of Binaural Selectivity in Auditory Midbrain and Cortex Maria V. Popescu 1 and Daniel B. Polley 1,2, * 1 Vanderbilt Kennedy Center for Research on Human

More information

J Jeffress model, 3, 66ff

J Jeffress model, 3, 66ff Index A Absolute pitch, 102 Afferent projections, inferior colliculus, 131 132 Amplitude modulation, coincidence detector, 152ff inferior colliculus, 152ff inhibition models, 156ff models, 152ff Anatomy,

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Spontaneously generated and or externally driven neuronal

Spontaneously generated and or externally driven neuronal Disruption of primary auditory cortex by synchronous auditory inputs during a critical period Li I. Zhang*, Shaowen Bao, and Michael M. Merzenich Keck Center of Integrative Neurosciences, University of

More information

Article begins on next page

Article begins on next page Remodeling sensory cortical maps implants specific behavioral memory Rutgers University has made this article freely available. Please share how this access benefits you. Your story matters. [https://rucore.libraries.rutgers.edu/rutgers-lib/47939/story/]

More information

Visual cortical plasticity

Visual cortical plasticity Visual cortical plasticity Deprivation-induced changes in representation Ocular dominance plasticity Retinal scotoma and cortical re-organization Perceptual learning-related plasticity Timing-dependent

More information

REVIEWS MULTIPARAMETRIC CORTICOFUGAL MODULATION AND PLASTICITY IN THE AUDITORY SYSTEM. Nobuo Suga and Xiaofeng Ma

REVIEWS MULTIPARAMETRIC CORTICOFUGAL MODULATION AND PLASTICITY IN THE AUDITORY SYSTEM. Nobuo Suga and Xiaofeng Ma MULTIPARAMETRIC CORTICOFUGAL MODULATION AND PLASTICITY IN THE AUDITORY SYSTEM Nobuo Suga and Xiaofeng Ma The auditory systems of adult animals can be reorganized by auditory experience. The auditory cortex,

More information

Synaptic mechanisms underlying auditory processing Anne-Marie M Oswald, Max L Schiff and Alex D Reyes

Synaptic mechanisms underlying auditory processing Anne-Marie M Oswald, Max L Schiff and Alex D Reyes Synaptic mechanisms underlying auditory processing Anne-Marie M Oswald, Max L Schiff and Alex D Reyes In vivo voltage clamp recordings have provided new insights into the synaptic mechanisms that underlie

More information

HHS Public Access Author manuscript Curr Opin Neurobiol. Author manuscript; available in PMC 2016 December 01.

HHS Public Access Author manuscript Curr Opin Neurobiol. Author manuscript; available in PMC 2016 December 01. Synaptic Plasticity as a Cortical Coding Scheme Robert C. Froemke 1,2 and Christoph E. Schreiner 3 1 Skirball Institute for Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology,

More information

Hearing and the Auditory System: Overview

Hearing and the Auditory System: Overview Harvard-MIT Division of Health Sciences and Technology HST.723: Neural Coding and Perception of Sound Instructor: Bertrand Delgutte, and Andrew Oxenham Hearing and the Auditory System: Overview Bertrand

More information

Auditory System & Hearing

Auditory System & Hearing Auditory System & Hearing Chapters 9 and 10 Lecture 17 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Spring 2015 1 Cochlea: physical device tuned to frequency! place code: tuning of different

More information

Plasticity of temporal information processing in the primary auditory cortex

Plasticity of temporal information processing in the primary auditory cortex Plasticity of temporal information processing in the primary auditory cortex Michael P. Kilgard 1 and Michael M. Merzenich 1,2 1 Coleman Laboratory, Departments of Otolaryngology and Physiology, Keck Center

More information

Plasticity of Cerebral Cortex in Development

Plasticity of Cerebral Cortex in Development Plasticity of Cerebral Cortex in Development Jessica R. Newton and Mriganka Sur Department of Brain & Cognitive Sciences Picower Center for Learning & Memory Massachusetts Institute of Technology Cambridge,

More information

Neurobiology Biomed 509 Sensory transduction References: Luo , ( ), , M4.1, M6.2

Neurobiology Biomed 509 Sensory transduction References: Luo , ( ), , M4.1, M6.2 Neurobiology Biomed 509 Sensory transduction References: Luo 4.1 4.8, (4.9 4.23), 6.22 6.24, M4.1, M6.2 I. Transduction The role of sensory systems is to convert external energy into electrical signals

More information

Development of Sound Localization 2. How do the neural mechanisms subserving sound localization develop?

Development of Sound Localization 2. How do the neural mechanisms subserving sound localization develop? Development of Sound Localization 2 How do the neural mechanisms subserving sound localization develop? 1 Overview of the development of sound localization Gross localization responses are observed soon

More information

Inhibition: Effects of Timing, Time Scales and Gap Junctions

Inhibition: Effects of Timing, Time Scales and Gap Junctions Inhibition: Effects of Timing, Time Scales and Gap Junctions I. Auditory brain stem neurons and subthreshold integ n. Fast, precise (feed forward) inhibition shapes ITD tuning. Facilitating effects of

More information

Reorganization of the Frequency Map of the Auditory Cortex Evoked by Cortical Electrical Stimulation in the Big Brown Bat

Reorganization of the Frequency Map of the Auditory Cortex Evoked by Cortical Electrical Stimulation in the Big Brown Bat Reorganization of the Frequency Map of the Auditory Cortex Evoked by Cortical Electrical Stimulation in the Big Brown Bat SYED A. CHOWDHURY AND NOBUO SUGA Department of Biology, Washington University,

More information

Hearing Research 289 (2012) 1e12. Contents lists available at SciVerse ScienceDirect. Hearing Research

Hearing Research 289 (2012) 1e12. Contents lists available at SciVerse ScienceDirect. Hearing Research Hearing Research 289 (2012) 1e12 Contents lists available at SciVerse ScienceDirect Hearing Research journal homepage: www.elsevier.com/locate/heares Research paper Speech discrimination after early exposure

More information

Plasticity in the Rat Posterior Auditory Field Following Nucleus Basalis Stimulation

Plasticity in the Rat Posterior Auditory Field Following Nucleus Basalis Stimulation J Neurophysiol 98: 253 265, 2007. First published April 25, 2007; doi:10.1152/jn.01309.2006. Plasticity in the Rat Posterior Auditory Field Following Nucleus Basalis Stimulation Amanda C. Puckett,* Pritesh

More information

Correspondence should be addressed to Robert V. Harrison;

Correspondence should be addressed to Robert V. Harrison; Research Article Changes to Neural Activation Patterns (c-fos Labeling) in Chinchilla Auditory Midbrain following Neonatal Exposure to an Enhanced Sound Environment Lisa M. D Alessandro 1,2,3 and Robert

More information

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction Sarah L. Chollar University of California, Riverside sarah.chollar@gmail.com Sensory Systems How the brain allows us to see, hear,

More information

Timing and the cerebellum (and the VOR) Neurophysiology of systems 2010

Timing and the cerebellum (and the VOR) Neurophysiology of systems 2010 Timing and the cerebellum (and the VOR) Neurophysiology of systems 2010 Asymmetry in learning in the reverse direction Full recovery from UP using DOWN: initial return to naïve values within 10 minutes,

More information

Introduction to sensory pathways. Gatsby / SWC induction week 25 September 2017

Introduction to sensory pathways. Gatsby / SWC induction week 25 September 2017 Introduction to sensory pathways Gatsby / SWC induction week 25 September 2017 Studying sensory systems: inputs and needs Stimulus Modality Robots Sensors Biological Sensors Outputs Light Vision Photodiodes

More information

Corticocortical Interactions between and within Three Cortical Auditory Areas Specialized for Time-Domain Signal Processing

Corticocortical Interactions between and within Three Cortical Auditory Areas Specialized for Time-Domain Signal Processing 7230 The Journal of Neuroscience, June 3, 2009 29(22):7230 7237 Development/Plasticity/Repair Corticocortical Interactions between and within Three Cortical Auditory Areas Specialized for Time-Domain Signal

More information

Structural basis for the role of inhibition in facilitating adult brain plasticity

Structural basis for the role of inhibition in facilitating adult brain plasticity Structural basis for the role of inhibition in facilitating adult brain plasticity Jerry L. Chen, Walter C. Lin, Jae Won Cha, Peter T. So, Yoshiyuki Kubota & Elly Nedivi SUPPLEMENTARY FIGURES 1-6 a b M

More information

Models of Plasticity in Spatial Auditory Processing

Models of Plasticity in Spatial Auditory Processing Auditory CNS Processing and Plasticity Audiol Neurootol 2001;6:187 191 Models of Plasticity in Spatial Auditory Processing Barbara Shinn-Cunningham Departments of Cognitive and Neural Systems and Biomedical

More information

Mechanisms of stimulus feature selectivity in sensory systems

Mechanisms of stimulus feature selectivity in sensory systems Mechanisms of stimulus feature selectivity in sensory systems 1. Orientation and direction selectivity in the visual cortex 2. Selectivity to sound frequency in the auditory cortex 3. Feature selectivity

More information

Effects of aging on temporal synchronization of speech in noise investigated in the cortex by using MEG and in the midbrain by using EEG techniques

Effects of aging on temporal synchronization of speech in noise investigated in the cortex by using MEG and in the midbrain by using EEG techniques Hearing Brain Lab Computational Sensorimotor Systems Lab Effects of aging on temporal synchronization of speech in noise investigated in the cortex by using MEG and in the midbrain by using EEG techniques

More information

HHS Public Access Author manuscript Neuroscience. Author manuscript; available in PMC 2016 June 18.

HHS Public Access Author manuscript Neuroscience. Author manuscript; available in PMC 2016 June 18. Rodent Auditory Perception: Critical Band Limitations and Plasticity Julia King 1,2, Michele Insanally 1,2, Menghan Jin 1,2, Ana Raquel O. Martins 1,2,3, James A. D'amour 1,2, and Robert C. Froemke 1,2,*

More information

NEUROMODULATION OF INTRINSIC AND SYNAPTIC PLASTICITY IN AUDITORY CORTEX

NEUROMODULATION OF INTRINSIC AND SYNAPTIC PLASTICITY IN AUDITORY CORTEX NEUROMODULATION OF INTRINSIC AND SYNAPTIC PLASTICITY IN AUDITORY CORTEX Deepti Rao A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the

More information

Thalamo-Cortical Relationships Ultrastructure of Thalamic Synaptic Glomerulus

Thalamo-Cortical Relationships Ultrastructure of Thalamic Synaptic Glomerulus Central Visual Pathways V1/2 NEUR 3001 dvanced Visual Neuroscience The Lateral Geniculate Nucleus () is more than a relay station LP SC Professor Tom Salt UCL Institute of Ophthalmology Retina t.salt@ucl.ac.uk

More information

Rhythm and Rate: Perception and Physiology HST November Jennifer Melcher

Rhythm and Rate: Perception and Physiology HST November Jennifer Melcher Rhythm and Rate: Perception and Physiology HST 722 - November 27 Jennifer Melcher Forward suppression of unit activity in auditory cortex Brosch and Schreiner (1997) J Neurophysiol 77: 923-943. Forward

More information

Central Auditory System Basics and the Effects of Abnormal Auditory Input to the Brain. Amanda M. Lauer, Ph.D. July 3,

Central Auditory System Basics and the Effects of Abnormal Auditory Input to the Brain. Amanda M. Lauer, Ph.D. July 3, Central Auditory System Basics and the Effects of Abnormal Auditory Input to the Brain Amanda M. Lauer, Ph.D. July 3, 2012 1 Overview Auditory system tasks Peripheral auditory system Central pathways -Ascending

More information

Long-term, but not transient, threshold shifts alter the morphology and increase the excitability of cortical pyramidal neurons

Long-term, but not transient, threshold shifts alter the morphology and increase the excitability of cortical pyramidal neurons J Neurophysiol 108: 1567 1574, 2012. First published June 20, 2012; doi:10.1152/jn.00371.2012. Long-term, but not transient, threshold shifts alter the morphology and increase the excitability of cortical

More information

Structure and Function of the Auditory and Vestibular Systems (Fall 2014) Auditory Cortex (3) Prof. Xiaoqin Wang

Structure and Function of the Auditory and Vestibular Systems (Fall 2014) Auditory Cortex (3) Prof. Xiaoqin Wang 580.626 Structure and Function of the Auditory and Vestibular Systems (Fall 2014) Auditory Cortex (3) Prof. Xiaoqin Wang Laboratory of Auditory Neurophysiology Department of Biomedical Engineering Johns

More information

How is the stimulus represented in the nervous system?

How is the stimulus represented in the nervous system? How is the stimulus represented in the nervous system? Eric Young F Rieke et al Spikes MIT Press (1997) Especially chapter 2 I Nelken et al Encoding stimulus information by spike numbers and mean response

More information

biological psychology, p. 40 The study of the nervous system, especially the brain. neuroscience, p. 40

biological psychology, p. 40 The study of the nervous system, especially the brain. neuroscience, p. 40 biological psychology, p. 40 The specialized branch of psychology that studies the relationship between behavior and bodily processes and system; also called biopsychology or psychobiology. neuroscience,

More information

Takwa Adly Gabr Assistant lecturer of Audiology

Takwa Adly Gabr Assistant lecturer of Audiology Mismatch Negativity as an Objective Tool for the Assessment of Cognitive Function in Subjects with Unilateral Severe to Profound Sensorineural Hearing Loss Takwa Adly Gabr Assistant lecturer of Audiology

More information

Critical Period Window for Spectral Tuning Defined in the Primary Auditory Cortex (A1) in the Rat

Critical Period Window for Spectral Tuning Defined in the Primary Auditory Cortex (A1) in the Rat 180 The Journal of Neuroscience, January 3, 2007 27(1):180 189 Development/Plasticity/Repair Critical Period Window for Spectral Tuning Defined in the Primary Auditory Cortex (A1) in the Rat Etienne de

More information

Corticothalamic Feedback for Sound- Specific Plasticity of Auditory Thalamic Neurons Elicited by Tones Paired with Basal Forebrain Stimulation

Corticothalamic Feedback for Sound- Specific Plasticity of Auditory Thalamic Neurons Elicited by Tones Paired with Basal Forebrain Stimulation Cerebral Cortex July 2008;18:1521--1528 doi:10.1093/cercor/bhm188 Advance Access publication January 17, 2008 Corticothalamic Feedback for Sound- Specific Plasticity of Auditory Thalamic Neurons Elicited

More information

Receptors and Neurotransmitters: It Sounds Greek to Me. Agenda. What We Know About Pain 9/7/2012

Receptors and Neurotransmitters: It Sounds Greek to Me. Agenda. What We Know About Pain 9/7/2012 Receptors and Neurotransmitters: It Sounds Greek to Me Cathy Carlson, PhD, RN Northern Illinois University Agenda We will be going through this lecture on basic pain physiology using analogies, mnemonics,

More information

Lecture 7 Hearing 2. Raghav Rajan Bio 354 Neurobiology 2 February 04th All lecture material from the following links unless otherwise mentioned:

Lecture 7 Hearing 2. Raghav Rajan Bio 354 Neurobiology 2 February 04th All lecture material from the following links unless otherwise mentioned: Lecture 7 Hearing 2 All lecture material from the following links unless otherwise mentioned: 1. http://wws.weizmann.ac.il/neurobiology/labs/ulanovsky/sites/neurobiology.labs.ulanovsky/files/uploads/purves_ch12_ch13_hearing

More information

You submitted this quiz on Sun 19 May :32 PM IST (UTC +0530). You got a score of out of

You submitted this quiz on Sun 19 May :32 PM IST (UTC +0530). You got a score of out of Feedback Ex6 You submitted this quiz on Sun 19 May 2013 9:32 PM IST (UTC +0530). You got a score of 10.00 out of 10.00. Question 1 What is common to Parkinson, Alzheimer and Autism? Electrical (deep brain)

More information

Over-representation of speech in older adults originates from early response in higher order auditory cortex

Over-representation of speech in older adults originates from early response in higher order auditory cortex Over-representation of speech in older adults originates from early response in higher order auditory cortex Christian Brodbeck, Alessandro Presacco, Samira Anderson & Jonathan Z. Simon Overview 2 Puzzle

More information

The Structure and Function of the Auditory Nerve

The Structure and Function of the Auditory Nerve The Structure and Function of the Auditory Nerve Brad May Structure and Function of the Auditory and Vestibular Systems (BME 580.626) September 21, 2010 1 Objectives Anatomy Basic response patterns Frequency

More information

Processing in The Cochlear Nucleus

Processing in The Cochlear Nucleus Processing in The Cochlear Nucleus Alan R. Palmer Medical Research Council Institute of Hearing Research University Park Nottingham NG7 RD, UK The Auditory Nervous System Cortex Cortex MGB Medial Geniculate

More information

S FE LECT. DTIC AD-A Progress Report. No. N J-1193 "Cortical Adaptive Filtering in Bioacoustic Signal Classification" JUN 3O A

S FE LECT. DTIC AD-A Progress Report. No. N J-1193 Cortical Adaptive Filtering in Bioacoustic Signal Classification JUN 3O A AD-A266 229 Office of Naval Research No. N00014-91-J-1193 "Cortical Adaptive Filtering in Bioacoustic Signal Classification" DTIC S FE LECT. JUN 3O01993 33 A Period: November 1, 1992- April 30, 1993 Investigator:

More information

Sequential critical periods for the development of binaural integration in the infant mouse auditory cortex

Sequential critical periods for the development of binaural integration in the infant mouse auditory cortex Sequential critical periods for the development of binaural integration in the infant mouse auditory cortex The Harvard community has made this article openly available. Please share how this access benefits

More information

Processing and Plasticity in Rodent Somatosensory Cortex

Processing and Plasticity in Rodent Somatosensory Cortex Processing and Plasticity in Rodent Somatosensory Cortex Dan Feldman Dept. of Molecular & Cell Biology Helen Wills Neuroscience Institute UC Berkeley Primary sensory neocortex Secondary and higher areas

More information

Auditory System & Hearing

Auditory System & Hearing Auditory System & Hearing Chapters 9 part II Lecture 16 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Spring 2019 1 Phase locking: Firing locked to period of a sound wave example of a temporal

More information

A dendritic model of coincidence detection in the avian brainstem

A dendritic model of coincidence detection in the avian brainstem Neurocomputing 26}27 (1999) 263}269 A dendritic model of coincidence detection in the avian brainstem Jonathan Z. Simon *, Catherine E. Carr, Shihab A. Shamma Institute for Systems Research, University

More information

Neural Plasticity: Merzenich,Taub, and Greenough

Neural Plasticity: Merzenich,Taub, and Greenough 16 Neural Plasticity: Merzenich,Taub, and Greenough BY ERIN CLIFFORD Introduction REVIEW The study of neural plasticity has important implications for psychological development. Plasticity refers to the

More information

Supporting information

Supporting information Supporting information Buckley CL, Toyoizumi T (2018) A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback. PLoS Comput Biol 14(1): e1005926.

More information

How Dopamine Shapes Representations in Auditory Cortex

How Dopamine Shapes Representations in Auditory Cortex ISSN 2215-3535 DOI: http://dx.doi.org/10.15517/ap.v28i117.14137 How Dopamine Shapes Representations in Auditory Cortex Sebastian Puschmann 1 Tina Weis 2 Christiane M. Thiel 3 Carl von Ossietzky Universität

More information

Behavioral Neurobiology

Behavioral Neurobiology Behavioral Neurobiology The Cellular Organization of Natural Behavior THOMAS J. CAREW University of California, Irvine Sinauer Associates, Inc. Publishers Sunderland, Massachusetts PART I: Introduction

More information

HHS Public Access Author manuscript Nat Neurosci. Author manuscript; available in PMC 2016 April 01.

HHS Public Access Author manuscript Nat Neurosci. Author manuscript; available in PMC 2016 April 01. Coordinated forms of noradrenergic plasticity in the locus coeruleus and primary auditory cortex Ana Raquel O. Martins 1,2,3,4,5,6,7 and Robert C. Froemke 1,2,3,4,5,* 1 Skirball Institute for Biomolecular

More information

What do you notice? Woodman, Atten. Percept. Psychophys., 2010

What do you notice? Woodman, Atten. Percept. Psychophys., 2010 What do you notice? Woodman, Atten. Percept. Psychophys., 2010 You are trying to determine if a small amplitude signal is a consistent marker of a neural process. How might you design an experiment to

More information

Stimulus-Specific Adaptation Occurs in the Auditory Thalamus

Stimulus-Specific Adaptation Occurs in the Auditory Thalamus The Journal of Neuroscience, June 3, 9 9():739 733 739 Brief Communications Stimulus-Specific Adaptation Occurs in the Auditory Thalamus Lucy A. Anderson, 1 G. Björn Christianson, 1 and Jennifer F. Linden

More information

Ch 5. Perception and Encoding

Ch 5. Perception and Encoding Ch 5. Perception and Encoding Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2002. Summarized by Y.-J. Park, M.-H. Kim, and B.-T. Zhang

More information

Cortical Organization. Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:.

Cortical Organization. Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:. Cortical Organization Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:. 2. Secondary cortex: located immediately adjacent to primary cortical areas,

More information

Hearing II Perceptual Aspects

Hearing II Perceptual Aspects Hearing II Perceptual Aspects Overview of Topics Chapter 6 in Chaudhuri Intensity & Loudness Frequency & Pitch Auditory Space Perception 1 2 Intensity & Loudness Loudness is the subjective perceptual quality

More information

Enhancing Perceptual Learning by Combining Practice with Periods of Additional Sensory Stimulation

Enhancing Perceptual Learning by Combining Practice with Periods of Additional Sensory Stimulation 12868 The Journal of Neuroscience, September 22, 2010 30(38):12868 12877 Behavioral/Systems/Cognitive Enhancing Perceptual Learning by Combining Practice with Periods of Additional Sensory Stimulation

More information

Mechanisms of plasticity in the developing visual cortex and how behavioral state changes cortical gain and adult plasticity

Mechanisms of plasticity in the developing visual cortex and how behavioral state changes cortical gain and adult plasticity Mechanisms of plasticity in the developing visual cortex and how behavioral state changes cortical gain and adult plasticity Michael P. Stryker Center for Integrative Neuroscience University of California,

More information

Visualizing Psychology

Visualizing Psychology Visualizing Psychology by Siri Carpenter & Karen Huffman PowerPoint Lecture Notes Presentation Chapter 2: Neuroscience and Biological Foundations Siri Carpenter, Yale University Karen Huffman, Palomar

More information

Photoreceptors Rods. Cones

Photoreceptors Rods. Cones Photoreceptors Rods Cones 120 000 000 Dim light Prefer wavelength of 505 nm Monochromatic Mainly in periphery of the eye 6 000 000 More light Different spectral sensitivities!long-wave receptors (558 nm)

More information

Learning Sensory Maps With Real-World Stimuli in Real Time Using a Biophysically Realistic Learning Rule

Learning Sensory Maps With Real-World Stimuli in Real Time Using a Biophysically Realistic Learning Rule IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 3, MAY 2002 619 Learning Sensory Maps With Real-World Stimuli in Real Time Using a Biophysically Realistic Learning Rule Manuel A. Sánchez-Montañés, Peter

More information

The mammalian cochlea possesses two classes of afferent neurons and two classes of efferent neurons.

The mammalian cochlea possesses two classes of afferent neurons and two classes of efferent neurons. 1 2 The mammalian cochlea possesses two classes of afferent neurons and two classes of efferent neurons. Type I afferents contact single inner hair cells to provide acoustic analysis as we know it. Type

More information

Spectro-temporal response fields in the inferior colliculus of awake monkey

Spectro-temporal response fields in the inferior colliculus of awake monkey 3.6.QH Spectro-temporal response fields in the inferior colliculus of awake monkey Versnel, Huib; Zwiers, Marcel; Van Opstal, John Department of Biophysics University of Nijmegen Geert Grooteplein 655

More information

Spatial hearing and sound localization mechanisms in the brain. Henri Pöntynen February 9, 2016

Spatial hearing and sound localization mechanisms in the brain. Henri Pöntynen February 9, 2016 Spatial hearing and sound localization mechanisms in the brain Henri Pöntynen February 9, 2016 Outline Auditory periphery: from acoustics to neural signals - Basilar membrane - Organ of Corti Spatial

More information

Cochlear anatomy, function and pathology II. Professor Dave Furness Keele University

Cochlear anatomy, function and pathology II. Professor Dave Furness Keele University Cochlear anatomy, function and pathology II Professor Dave Furness Keele University d.n.furness@keele.ac.uk Aims and objectives of this lecture Focus (2) on the biophysics of the cochlea, the dual roles

More information

Chapter 5. Summary and Conclusions! 131

Chapter 5. Summary and Conclusions! 131 ! Chapter 5 Summary and Conclusions! 131 Chapter 5!!!! Summary of the main findings The present thesis investigated the sensory representation of natural sounds in the human auditory cortex. Specifically,

More information

Ch 5. Perception and Encoding

Ch 5. Perception and Encoding Ch 5. Perception and Encoding Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga,, R. B. Ivry,, and G. R. Mangun,, Norton, 2002. Summarized by Y.-J. Park, M.-H. Kim, and B.-T. Zhang

More information

Sound waves from the auditory environment all combine in the ear canal to form a complex waveform. This waveform is deconstructed by the cochlea with

Sound waves from the auditory environment all combine in the ear canal to form a complex waveform. This waveform is deconstructed by the cochlea with 1 Sound waves from the auditory environment all combine in the ear canal to form a complex waveform. This waveform is deconstructed by the cochlea with respect to time, loudness, and frequency and neural

More information

Extra-Classical Tuning Predicts Stimulus-Dependent Receptive Fields in Auditory Neurons

Extra-Classical Tuning Predicts Stimulus-Dependent Receptive Fields in Auditory Neurons The Journal of Neuroscience, August 17, 2011 31(33):11867 11878 11867 Behavioral/Systems/Cognitive Extra-Classical Tuning Predicts Stimulus-Dependent Receptive Fields in Auditory Neurons David M. Schneider

More information

Nikos Laskaris ENTEP

Nikos Laskaris ENTEP Nikos Laskaris ENTEP Reflections of learning at the University of Patras and opportunities to discover at BSI/RIKEN Understanding begins by elucidating basic brain mechanisms. This area of research is

More information

Lab 4: Compartmental Model of Binaural Coincidence Detector Neurons

Lab 4: Compartmental Model of Binaural Coincidence Detector Neurons Lab 4: Compartmental Model of Binaural Coincidence Detector Neurons Introduction The purpose of this laboratory exercise is to give you hands-on experience with a compartmental model of a neuron. Compartmental

More information

A Model of Visually Guided Plasticity of the Auditory Spatial Map in the Barn Owl

A Model of Visually Guided Plasticity of the Auditory Spatial Map in the Barn Owl A Model of Visually Guided Plasticity of the Auditory Spatial Map in the Barn Owl Andrea Haessly andrea@cs.utexas.edu Joseph Sirosh sirosh@cs.utexas.edu Risto Miikkulainen risto@cs.utexas.edu Abstract

More information

9.01 Introduction to Neuroscience Fall 2007

9.01 Introduction to Neuroscience Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 9.01 Introduction to Neuroscience Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 9.01 Recitation (R02)

More information

The location of a sound source does not project directly onto

The location of a sound source does not project directly onto Colloquium Traces of learning in the auditory localization pathway Eric I. Knudsen*, Weimin Zheng, and William M. DeBello Department of Neurobiology, Stanford University School of Medicine, Stanford, CA

More information

Sincerely, Florence Clark, PhD, OTR/L, FAOTA President, American Occupational Therapy Association

Sincerely, Florence Clark, PhD, OTR/L, FAOTA President, American Occupational Therapy Association August 2012 On behalf of the American Occupational Therapy Association (AOTA), I would like to commend the American Academy of Pediatrics for issuing a policy statement on sensory integration therapy (SIT)

More information

The severity of developmental hearing loss does not determine the magnitude of synapse dysfunction

The severity of developmental hearing loss does not determine the magnitude of synapse dysfunction The severity of developmental hearing loss does not determine the magnitude of synapse dysfunction TODD M. MOWERY, VIBHAKAR C. KOTAK, AND DAN H. SANES * Center for Neural Science, New York University,

More information

Dorsal Cochlear Nucleus September 14, 2005

Dorsal Cochlear Nucleus September 14, 2005 HST.722 Brain Mechanisms of Speech and Hearing Fall 2005 Dorsal Cochlear Nucleus September 14, 2005 Ken Hancock Dorsal Cochlear Nucleus (DCN) Overview of the cochlear nucleus and its subdivisions Anatomy

More information

Amygdala Strengthening of Cortical Memory Representations

Amygdala Strengthening of Cortical Memory Representations Chapter 7 Amygdala Strengthening of Cortical Memory Representations Candice M. Chavez, James L. McGaugh and Norman M. Weinberger Additional information is available at the end of the chapter http://dx.doi.org/10.5772/53677

More information

A Behavioral Framework to Guide Research on Central Auditory Development and Plasticity

A Behavioral Framework to Guide Research on Central Auditory Development and Plasticity A Behavioral Framework to Guide Research on Central Auditory Development and Plasticity Dan H. Sanes 1,2, * and Sarah M.N. Woolley 3 1 Center for Neural Science 2 Department of Biology 4 Washington Place,

More information

Network Models of Frequency Modulated Sweep Detection

Network Models of Frequency Modulated Sweep Detection RESEARCH ARTICLE Network Models of Frequency Modulated Sweep Detection Steven Skorheim 1, Khaleel Razak 2, Maxim Bazhenov 1 * 1. Department of Cell Biology and Neuroscience, University of California Riverside,

More information

Delayed inhibition creates amplitude tuning of mouse inferior collicular neurons

Delayed inhibition creates amplitude tuning of mouse inferior collicular neurons AUDITORYAND VESTIBULAR SYSTEMS Delayed inhibition creates amplitude tuning of mouse inferior collicular neurons Jie Tang a,b, Zhong-Ju Xiao a,c andjun-xianshen a a State Key Laboratory of Brain and Cognitive

More information