Intro to Probability Instructor: Alexandre Bouchard

Size: px
Start display at page:

Download "Intro to Probability Instructor: Alexandre Bouchard"

Transcription

1 Intro to Probability Instructor: Alexandre Bouchard

2 Plan for today: Bayesian inference 101 Decision diagram for non equally weighted problems Bayes rule Law of total probability

3 NSERC USRA Paid internship program to do research in a research group Deadline: Jan 18 I will hire one student for a project on probabilistic inference Looking for someone with programming experience, esp. on JVM + strong interest in probability/machine learning If interested drop me a with CV + github Many other projects from other faculty members

4 Logistics What s new/recent on the website: Webwork: first set is released. Due on the 18th. Problems being fixed

5 Review

6 Def 7 Conditional probability: Review Conditioning S P(A E) = P(E A) P(E) E (observation) A (query)

7 Prop. 5 Properties Check these: 0 P(A E) 1 P(S E) = 1 If A1, A2,... are disjoint: P(A1 A2... E) = P(A1 E) + P(A2 E) +... In other words: P(. E) is a probability

8 Bonus: A more intuitive view of independent events Recall: Events A and B are independent if: P(A B) = P(A) * P(B) Equivalent definition (when P(B) > 0): Events A and B are independent if: P(A B) = P(A)

9 Decision trees and conditional probabilities

10 Ex. 23 Two bags 1) Flip a coin to pick one of the two bags 2) Pick one shape from the selected bag Question: Probability to pick the star? A. 1/6 B. 1/5 C. 1/4 D. 1/2 Bag of red shapes Bag of blue shapes

11 Decision tree: not equally weighted outcomes 1/2 Question: Probability to 1/2 B pick the star? S 1/2 1/3 A. 1/6 B. 1/5 C. 1/4 1/2 R 1/3 D. 1/2 P(R S) = P(R) 1/3 P(L R) Leaf L

12 Decision tree: not equally weighted outcomes 1/2 (1/2) * (1/2) = 1/4 1/2 B (1/2) * (1/2) S 1/2 = 1/4 1/3 (1/2) * (1/3) 1/2 R 1/3 = 1 / 6 (1/2) * (1/3) P(R S) = P(R) = 1 / 6 1/3 L P(L) = (1/2) * (1/3) P(L R) = 1 / 6

13 Decision tree: not equally weighted outcomes 1/2 Question: Probability to 1/2 B pick the star? S 1/2 1/3 A. 1/6 B. 1/5 C. 1/4 1/2 R 1/3 D. 1/2 P(R S) = P(R) 1/3 P(L R) Leaf L

14 Prop. 6 Chain rule For any events A, B, with P(A) > 0: P( A, B) = P(A) P(B A) Useful trick: it can be done in the other order P( A, B) = P(B) P(A B)

15 Medical tests and the law of total probability

16 Ex. 24 HIV tests: background Ways of detecting HIV infections: Direct: try to match conserved regions of HIV s genome, Indirect: try to detect the immune system s reaction to the virus. Modern tests often use combinations of these methods and are highly accurate. Today: let s assume an hypothetical, less than perfect test.. NOTE: The probabilities we will compute today are NOT representative of modern HIV test accuracies. But the ideas apply to rare/harder to diagnose diseases.

17 Ex. 24 HIV testing An HIV test has the following two modes of failure: When a patient has the disease, the test will still be negative 2% of the time (false negative) When a patient does not have the disease, the test will turn positive 1% of the time (false positive)

18 Ex. 24 HIV prevalence Source: Wikipedia,

19 Ex. 24 HIV testing An HIV test has the following two modes of failure: When a patient has the disease (event H), the test will still be negative (T - ) 2% of the time (false negative) When a patient does not have the disease (H c ), the test will turn positive (T + ) 1% of the time (false positive) Question: if 0.5% of the population has HIV, what % of the tests will turn positive? A. 2.0% B % C % D. 0.02%

20 Ex. 24 Translation of the problem into probabilities and conditional probabilities An HIV test has the following two modes of failure: When a patient has the disease (event H), the test will still be negative (T - ) 2% of the time (false negative) When a patient does not have the disease (H c ), the test will turn positive (T + ) 1% of the time (false positive) Question: if 0.5% of the population has HIV, what % of the tests will turn positive? P(T- H) = 0.02 P(T+ H c ) = 0.01 P(H) = P(T+) =?

21 Decision Ei P(Ei) tree T H T H 0.02 H T S H c 0.99 H c T H c T Why? P(T+) = P(H T+) + P(H c T+) =

22 Justification for: P(T+) = P(H T+) + P(H c T+) First: recall that... Def. 4 F { E1 E2 E3 Partition of an event The events Ei form a partition of the event F if: 1. The union of the Ei s is equal to F: i Ei = F 2. The Ei s are disjoint: if i j, then Ei Ej = F = T+ E1 = H T+ E2 = H c T+ E4 Why is this useful? Note: as consequence of 1, 2 and the axioms of probability, P(F) = P(E1) + P(E2) + P(E3) + P(E4) S T+ H c Second: check that E1 E2 = F 2. E1 E2 = H

23 Prop. 7 Law of total probability If A is any event of interest (for example, A = T+ in the previous example), then we can decompose its probability as: P(A) = P(H A) + P(H c A) This is true for any event H. Why? P(A) = P(S A) = P((H H c ) A) = P((H A) (H c A)) = P(H A) + P(H c A)

24 Ex. 24 HIV testing An HIV test has the following two modes of failure: When a patient has the disease (event H), the test will still be negative (T - ) 2% of the time (false negative) When a patient does not have the disease (H c ), the test will turn positive (T + ) 1% of the time (false positive) Question: if 0.5% of the population has HIV, what % of the tests will turn positive? A. 2.0% B % C % D. 0.02%

25 Prop. 8 Bayes rules Notation: H, H c : a partition of the space into hypotheses (example: whether the patient has HIV or not). E: an observation (example: test positive, E = T+) We want: P(H E). We have: P(E H), P(E H c ), P(H) P(H E) = P(E,H) P(E) = P(H) P(E H) P(E, H) + P(E, H c ) Chain rule Definition of conditional probability Law of total pr Chain rule = P(H) P(E H) P(H) P(E H) + P(H c ) P(E H c )

26 Applying Bayes rule An HIV test has the following two Ex. 26 modes of failure: When a patient has the disease, the test will still be negative 2% of the time (false negative) When a patient does not have the disease, the test will turn positive 1% of the time (false positive) Suppose now 25% of the population has HIV. Question: Given that the test is positive, what is the updated (posterior) probability that the patient is indeed affected by HIV? P(H E) = P(H) P(E H) P(H) P(E H) + P(H c ) P(E H c ) H, H c : a partition of the space into hypotheses E: an observation A. ~34% B. ~55% C. ~93% D. ~97%

27 Ex. 26 Applying Bayes rule An HIV test has the following two modes of failure: When a patient has the disease, the test will still be negative 2% of the time (false negative) When a patient does not have the disease, the test will turn positive 1% of the time (false positive) Question: Questions: (a) If 25% of the population has HIV, what % of the tests will turn positive? (b) Given that the test is positive, what is the updated (posterior) probability that the patient is indeed affected by HIV? P(H E) = P(H) P(E H) P(H) P(E H) + P(H c ) P(E H c ) H, H c : a partition of the space into hypotheses E: an observation A. ~34% B. ~55% C. ~93% D. ~97%

28 Law of total probability If A is any event of interest (for example, A = T+ in the previous example), then we can decompose it as: P(A) = P(H A) + P(H c A) This is true for any event H, H c. Extended version? A S { H Feature of H, H c we used? They form a partition of S into 2 blocks. The law of total probability still works with partitions of more than 2 blocks. H c

29 Prop. 7 (v2) Law of total probability If A is any event of interest, and H1,.., Hn is any partition of S, then we can decompose A as: S { P(A) = P(H1 A) P(Hn A) n = P(Hi A) i = 1 A H3 H1 H2 H4

30 Prop. 8 (v2) Bayes rule (extended version) Notation: H1,..., Hn: a partition of the space into hypotheses. S { E: an observation. We want: P(Hi E). We have: P(E Hi), P(Hi) H1 H2 P(Hi E) = P(Hi) P(E Hi) P(H1) P(E H1) P(Hn) P(E Hn) H3 H4

31 Prop. 6 (v2) Chain rule For any events A, B, with P(A) > 0: P( A, B) = P(A) P(B A) Extended version For any events A, B, C, with P(A, B) > 0: P( A, B, C) = P(A) P(B A) P(C A, B)

Probability. Esra Akdeniz. February 26, 2016

Probability. Esra Akdeniz. February 26, 2016 Probability Esra Akdeniz February 26, 2016 Terminology An experiment is any action or process whose outcome is subject to uncertainty. Example: Toss a coin, roll a die. The sample space of an experiment

More information

Section 6.1 "Basic Concepts of Probability and Counting" Outcome: The result of a single trial in a probability experiment

Section 6.1 Basic Concepts of Probability and Counting Outcome: The result of a single trial in a probability experiment Section 6.1 "Basic Concepts of Probability and Counting" Probability Experiment: An action, or trial, through which specific results are obtained Outcome: The result of a single trial in a probability

More information

Lesson 87 Bayes Theorem

Lesson 87 Bayes Theorem Lesson 87 Bayes Theorem HL2 Math - Santowski Bayes Theorem! Main theorem: Suppose we know We would like to use this information to find if possible. Discovered by Reverend Thomas Bayes 1 Bayes Theorem!

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 10: Introduction to inference (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 17 What is inference? 2 / 17 Where did our data come from? Recall our sample is: Y, the vector

More information

MITOCW conditional_probability

MITOCW conditional_probability MITOCW conditional_probability You've tested positive for a rare and deadly cancer that afflicts 1 out of 1000 people, based on a test that is 99% accurate. What are the chances that you actually have

More information

Probability and Sample space

Probability and Sample space Probability and Sample space We call a phenomenon random if individual outcomes are uncertain but there is a regular distribution of outcomes in a large number of repetitions. The probability of any outcome

More information

Knowledge is rarely absolutely certain. In expert systems we need a way to say that something is probably but not necessarily true.

Knowledge is rarely absolutely certain. In expert systems we need a way to say that something is probably but not necessarily true. CmSc310 Artificial Intelligence Expert Systems II 1. Reasoning under uncertainty Knowledge is rarely absolutely certain. In expert systems we need a way to say that something is probably but not necessarily

More information

Probability and Counting Techniques

Probability and Counting Techniques Probability and Counting Techniques 3.4-3.8 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 2 Lecture 2 1 / 44 Outline 1 Counting Techniques 2 Probability

More information

Cognitive Modeling. Lecture 12: Bayesian Inference. Sharon Goldwater. School of Informatics University of Edinburgh

Cognitive Modeling. Lecture 12: Bayesian Inference. Sharon Goldwater. School of Informatics University of Edinburgh Cognitive Modeling Lecture 12: Bayesian Inference Sharon Goldwater School of Informatics University of Edinburgh sgwater@inf.ed.ac.uk February 18, 20 Sharon Goldwater Cognitive Modeling 1 1 Prediction

More information

Approximate Inference in Bayes Nets Sampling based methods. Mausam (Based on slides by Jack Breese and Daphne Koller)

Approximate Inference in Bayes Nets Sampling based methods. Mausam (Based on slides by Jack Breese and Daphne Koller) Approximate Inference in Bayes Nets Sampling based methods Mausam (Based on slides by Jack Breese and Daphne Koller) 1 Bayes Nets is a generative model We can easily generate samples from the distribution

More information

Bayes theorem describes the probability of an event, based on prior knowledge of conditions that might be related to the event.

Bayes theorem describes the probability of an event, based on prior knowledge of conditions that might be related to the event. Bayes theorem Bayes' Theorem is a theorem of probability theory originally stated by the Reverend Thomas Bayes. It can be seen as a way of understanding how the probability that a theory is true is affected

More information

Chapter 6: Counting, Probability and Inference

Chapter 6: Counting, Probability and Inference Chapter 6: Counting, Probability and Inference 6.1 Introduction to Probability Definitions Experiment a situation with several possible results o Ex: Outcome each result of an experiment o Ex: Sample Space

More information

PRINTABLE VERSION. Quiz 10

PRINTABLE VERSION. Quiz 10 You scored 0 out of 100 Question 1 PRINTABLE VERSION Quiz 10 The z-score associated with the 97 percent confidence interval is a) 2.170 b) 2.081 c) 1.829 d) 1.881 e) 2.673 Question 2 What will reduce the

More information

Bayes Theorem Application: Estimating Outcomes in Terms of Probability

Bayes Theorem Application: Estimating Outcomes in Terms of Probability Bayes Theorem Application: Estimating Outcomes in Terms of Probability The better the estimates, the better the outcomes. It s true in engineering and in just about everything else. Decisions and judgments

More information

Understanding Probability. From Randomness to Probability/ Probability Rules!

Understanding Probability. From Randomness to Probability/ Probability Rules! Understanding Probability From Randomness to Probability/ Probability Rules! What is chance? - Excerpt from War and Peace by Leo Tolstoy But what is chance? What is genius? The words chance and genius

More information

Oct. 21. Rank the following causes of death in the US from most common to least common:

Oct. 21. Rank the following causes of death in the US from most common to least common: Oct. 21 Assignment: Read Chapter 17 Try exercises 5, 13, and 18 on pp. 379 380 Rank the following causes of death in the US from most common to least common: Stroke Homicide Your answers may depend on

More information

MATH Homework #3 Solutions. a) P(E F) b) P(E'UF') c) P(E' F') d) P(E F) a) P(E F) = P(E) * P(F E) P(E F) =.55(.20) =.11

MATH Homework #3 Solutions. a) P(E F) b) P(E'UF') c) P(E' F') d) P(E F) a) P(E F) = P(E) * P(F E) P(E F) =.55(.20) =.11 p. 04 3.8 Suppose P(E).55, P(F).40 and P(F E).20. Find a) P(E F) b) P(E'UF') c) P(E' F') d) P(E F) a) P(E F) P(E) * P(F E) P(E F).55(.20). b) P(E' F') P((E F)') P(E' F') P(E F) P(E' F')..89 c) P(E' F')

More information

Chapter 5 & 6 Review. Producing Data Probability & Simulation

Chapter 5 & 6 Review. Producing Data Probability & Simulation Chapter 5 & 6 Review Producing Data Probability & Simulation M&M s Given a bag of M&M s: What s my population? How can I take a simple random sample (SRS) from the bag? How could you introduce bias? http://joshmadison.com/article/mms-colordistribution-analysis/

More information

Reasoning with Uncertainty. Reasoning with Uncertainty. Bayes Rule. Often, we want to reason from observable information to unobservable information

Reasoning with Uncertainty. Reasoning with Uncertainty. Bayes Rule. Often, we want to reason from observable information to unobservable information Reasoning with Uncertainty Reasoning with Uncertainty Often, we want to reason from observable information to unobservable information We want to calculate how our prior beliefs change given new available

More information

Bayesian (Belief) Network Models,

Bayesian (Belief) Network Models, Bayesian (Belief) Network Models, 2/10/03 & 2/12/03 Outline of This Lecture 1. Overview of the model 2. Bayes Probability and Rules of Inference Conditional Probabilities Priors and posteriors Joint distributions

More information

Undesirable Optimality Results in Multiple Testing? Charles Lewis Dorothy T. Thayer

Undesirable Optimality Results in Multiple Testing? Charles Lewis Dorothy T. Thayer Undesirable Optimality Results in Multiple Testing? Charles Lewis Dorothy T. Thayer 1 Intuitions about multiple testing: - Multiple tests should be more conservative than individual tests. - Controlling

More information

Bayesian Inference. Review. Breast Cancer Screening. Breast Cancer Screening. Breast Cancer Screening

Bayesian Inference. Review. Breast Cancer Screening. Breast Cancer Screening. Breast Cancer Screening STAT 101 Dr. Kari Lock Morgan Review What is the deinition of the p- value? a) P(statistic as extreme as that observed if H 0 is true) b) P(H 0 is true if statistic as extreme as that observed) SETION

More information

Probability II. Patrick Breheny. February 15. Advanced rules Summary

Probability II. Patrick Breheny. February 15. Advanced rules Summary Probability II Patrick Breheny February 15 Patrick Breheny University of Iowa Introduction to Biostatistics (BIOS 4120) 1 / 26 A rule related to the addition rule is called the law of total probability,

More information

Game Theory. Uncertainty about Payoffs: Bayesian Games. Manar Mohaisen Department of EEC Engineering

Game Theory. Uncertainty about Payoffs: Bayesian Games. Manar Mohaisen Department of EEC Engineering 240174 Game Theory Uncertainty about Payoffs: Bayesian Games Manar Mohaisen Department of EEC Engineering Korea University of Technology and Education (KUT) Content Bayesian Games Bayesian Nash Equilibrium

More information

5.3: Associations in Categorical Variables

5.3: Associations in Categorical Variables 5.3: Associations in Categorical Variables Now we will consider how to use probability to determine if two categorical variables are associated. Conditional Probabilities Consider the next example, where

More information

Probability and Counting Techniques

Probability and Counting Techniques Probability and Counting Techniques 3.4-3.8 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 2 Lecture 2 1 / 44 Outline 1 Counting Techniques 2 Probability

More information

Concepts and Connections: What Do You Expect? Concept Example Connected to or Foreshadowing

Concepts and Connections: What Do You Expect? Concept Example Connected to or Foreshadowing Meaning of Probability: The term probability is applied to situations that have uncertain outcomes on individual trials but a predictable pattern of outcomes over many trials. Students find experimental

More information

BIOSTATS 540 Fall 2018 Exam 2 Page 1 of 12

BIOSTATS 540 Fall 2018 Exam 2 Page 1 of 12 BIOSTATS 540 Fall 2018 Exam 2 Page 1 of 12 BIOSTATS 540 - Introductory Biostatistics Fall 2018 Examination 2 Units 4, 5, 6, & 7 Probabilities in Epidemiology, Sampling, Binomial, Normal Due: Wednesday

More information

Unit 4 Probabilities in Epidemiology

Unit 4 Probabilities in Epidemiology BIOSTATS 540 Fall 2017 4. Probabilities in Epidemiology Page 1 of 19 Unit 4 Probabilities in Epidemiology All knowledge degenerates into probability - David Hume A weather report statement such as the

More information

Stat 111 Final. 1. What are the null and alternative hypotheses for Alex and Sarah having the same mean lap time?

Stat 111 Final. 1. What are the null and alternative hypotheses for Alex and Sarah having the same mean lap time? Stat 111 Final Question 1 Alex and Sarah enjoy riding their bikes around Valley Forge park. Alex rode 25 laps, averaging 40 minutes with a standard deviation of 5 minutes, and Sarah rode 36 laps, averaging

More information

Quantifying and Mitigating the Effect of Preferential Sampling on Phylodynamic Inference

Quantifying and Mitigating the Effect of Preferential Sampling on Phylodynamic Inference Quantifying and Mitigating the Effect of Preferential Sampling on Phylodynamic Inference Michael D. Karcher Department of Statistics University of Washington, Seattle April 2015 joint work (and slide construction)

More information

COMP90049 Knowledge Technologies

COMP90049 Knowledge Technologies COMP90049 Knowledge Technologies Introduction Classification (Lecture Set4) 2017 Rao Kotagiri School of Computing and Information Systems The Melbourne School of Engineering Some of slides are derived

More information

Bayesian performance

Bayesian performance Bayesian performance In this section we will study the statistical properties of Bayesian estimates. Major topics include: The likelihood principle Decision theory/bayes rules Shrinkage estimators Frequentist

More information

On the provenance of judgments of conditional probability

On the provenance of judgments of conditional probability On the provenance of judgments of conditional probability Jiaying Zhao (jiayingz@princeton.edu) Anuj Shah (akshah@princeton.edu) Daniel Osherson (osherson@princeton.edu) Abstract In standard treatments

More information

Modeling State Space Search Technique for a Real World Adversarial Problem Solving

Modeling State Space Search Technique for a Real World Adversarial Problem Solving Modeling State Space Search Technique for a Real World Adversarial Problem Solving Kester O. OMOREGIE Computer Science Department, Auchi Polytechnic, Auchi, NIGERIA Stella C. CHIEMEKE Computer Science

More information

Chapter 15: Continuation of probability rules

Chapter 15: Continuation of probability rules Chapter 15: Continuation of probability rules Example: HIV-infected women attending either an infectious disease clinic in Bangkok were screened for high-risk HPV and received a Pap test; those with abnormal

More information

5. Suppose there are 4 new cases of breast cancer in group A and 5 in group B. 1. Sample space: the set of all possible outcomes of an experiment.

5. Suppose there are 4 new cases of breast cancer in group A and 5 in group B. 1. Sample space: the set of all possible outcomes of an experiment. Probability January 15, 2013 Debdeep Pati Introductory Example Women in a given age group who give birth to their first child relatively late in life (after 30) are at greater risk for eventually developing

More information

Introduction. Patrick Breheny. January 10. The meaning of probability The Bayesian approach Preview of MCMC methods

Introduction. Patrick Breheny. January 10. The meaning of probability The Bayesian approach Preview of MCMC methods Introduction Patrick Breheny January 10 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/25 Introductory example: Jane s twins Suppose you have a friend named Jane who is pregnant with twins

More information

MIDTERM EXAM. Total 150. Problem Points Grade. STAT 541 Introduction to Biostatistics. Name. Spring 2008 Ismor Fischer

MIDTERM EXAM. Total 150. Problem Points Grade. STAT 541 Introduction to Biostatistics. Name. Spring 2008 Ismor Fischer STAT 541 Introduction to Biostatistics Spring 2008 Ismor Fischer Name MIDTERM EXAM Instructions: This exam is worth 150 points ( 1/3 of your course grade). Answer Problem 1, and any two of the remaining

More information

Math HL Chapter 12 Probability

Math HL Chapter 12 Probability Math HL Chapter 12 Probability Name: Read the notes and fill in any blanks. Work through the ALL of the examples. Self-Check your own progress by rating where you are. # Learning Targets Lesson I have

More information

Introduction to screening tests. Tim Hanson Department of Statistics University of South Carolina April, 2011

Introduction to screening tests. Tim Hanson Department of Statistics University of South Carolina April, 2011 Introduction to screening tests Tim Hanson Department of Statistics University of South Carolina April, 2011 1 Overview: 1. Estimating test accuracy: dichotomous tests. 2. Estimating test accuracy: continuous

More information

Bayes Linear Statistics. Theory and Methods

Bayes Linear Statistics. Theory and Methods Bayes Linear Statistics Theory and Methods Michael Goldstein and David Wooff Durham University, UK BICENTENNI AL BICENTENNIAL Contents r Preface xvii 1 The Bayes linear approach 1 1.1 Combining beliefs

More information

A Cue Imputation Bayesian Model of Information Aggregation

A Cue Imputation Bayesian Model of Information Aggregation A Cue Imputation Bayesian Model of Information Aggregation Jennifer S. Trueblood, George Kachergis, and John K. Kruschke {jstruebl, gkacherg, kruschke}@indiana.edu Cognitive Science Program, 819 Eigenmann,

More information

Study Guide for the Final Exam

Study Guide for the Final Exam Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

More information

Handout 11: Understanding Probabilities Associated with Medical Screening Tests STAT 100 Spring 2016

Handout 11: Understanding Probabilities Associated with Medical Screening Tests STAT 100 Spring 2016 Example: Using Mammograms to Screen for Breast Cancer Gerd Gigerenzer, a German psychologist, has conducted several studies to investigate physicians understanding of health statistics (Gigerenzer 2010).

More information

"PRINCIPLES OF PHYLOGENETICS: ECOLOGY AND EVOLUTION"

PRINCIPLES OF PHYLOGENETICS: ECOLOGY AND EVOLUTION "PRINCIPLES OF PHYLOGENETICS: ECOLOGY AND EVOLUTION" Integrative Biology 200B University of California, Berkeley Lab for Jan 25, 2011, Introduction to Statistical Thinking A. Concepts: A way of making

More information

CS343: Artificial Intelligence

CS343: Artificial Intelligence CS343: Artificial Intelligence Introduction: Part 2 Prof. Scott Niekum University of Texas at Austin [Based on slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials

More information

Supplementary notes for lecture 8: Computational modeling of cognitive development

Supplementary notes for lecture 8: Computational modeling of cognitive development Supplementary notes for lecture 8: Computational modeling of cognitive development Slide 1 Why computational modeling is important for studying cognitive development. Let s think about how to study the

More information

# tablets AM probability PM probability

# tablets AM probability PM probability Ismor Fischer, 8/21/2008 Stat 541 / 3-34 3.5 Problems 3-1. In a certain population of males, the following longevity probabilities are determined. P(Live to age 60) = 0.90 P(Live to age 70, given live

More information

Review: Logistic regression, Gaussian naïve Bayes, linear regression, and their connections

Review: Logistic regression, Gaussian naïve Bayes, linear regression, and their connections Review: Logistic regression, Gaussian naïve Bayes, linear regression, and their connections New: Bias-variance decomposition, biasvariance tradeoff, overfitting, regularization, and feature selection Yi

More information

Hypothesis-Driven Research

Hypothesis-Driven Research Hypothesis-Driven Research Research types Descriptive science: observe, describe and categorize the facts Discovery science: measure variables to decide general patterns based on inductive reasoning Hypothesis-driven

More information

Signal Detection Theory and Bayesian Modeling

Signal Detection Theory and Bayesian Modeling Signal Detection Theory and Bayesian Modeling COGS 202: Computational Modeling of Cognition Omar Shanta, Shuai Tang, Gautam Reddy, Reina Mizrahi, Mehul Shah Detection Theory and Psychophysics: A Review

More information

BAYESIAN HYPOTHESIS TESTING WITH SPSS AMOS

BAYESIAN HYPOTHESIS TESTING WITH SPSS AMOS Sara Garofalo Department of Psychiatry, University of Cambridge BAYESIAN HYPOTHESIS TESTING WITH SPSS AMOS Overview Bayesian VS classical (NHST or Frequentist) statistical approaches Theoretical issues

More information

Chapter 10. Screening for Disease

Chapter 10. Screening for Disease Chapter 10 Screening for Disease 1 Terminology Reliability agreement of ratings/diagnoses, reproducibility Inter-rater reliability agreement between two independent raters Intra-rater reliability agreement

More information

Statistical Hocus Pocus? Assessing the Accuracy of a Diagnostic Screening Test When You Don t Even Know Who Has the Disease

Statistical Hocus Pocus? Assessing the Accuracy of a Diagnostic Screening Test When You Don t Even Know Who Has the Disease Statistical Hocus Pocus? Assessing the Accuracy of a Diagnostic Screening Test When You Don t Even Know Who Has the Disease Michelle Norris Dept. of Mathematics and Statistics California State University,

More information

Lecture 9 Internal Validity

Lecture 9 Internal Validity Lecture 9 Internal Validity Objectives Internal Validity Threats to Internal Validity Causality Bayesian Networks Internal validity The extent to which the hypothesized relationship between 2 or more variables

More information

Probability: Judgment and Bayes Law. CSCI 5582, Fall 2007

Probability: Judgment and Bayes Law. CSCI 5582, Fall 2007 Probability: Judgment and Bayes Law CSCI 5582, Fall 2007 Administrivia Problem Set 2 was sent out by email, and is up on the class website as well; due October 23 (hard copy for in-class students) To read

More information

Probability and Random Processes ECS 315

Probability and Random Processes ECS 315 Probability and Random Processes ECS 315 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 6.1 Conditional Probability 1 Office Hours: BKD, 6th floor of Sirindhralai building Tuesday 9:00-10:00 Wednesday

More information

6 Relationships between

6 Relationships between CHAPTER 6 Relationships between Categorical Variables Chapter Outline 6.1 CONTINGENCY TABLES 6.2 BASIC RULES OF PROBABILITY WE NEED TO KNOW 6.3 CONDITIONAL PROBABILITY 6.4 EXAMINING INDEPENDENCE OF CATEGORICAL

More information

A Taxonomy of Decision Models in Decision Analysis

A Taxonomy of Decision Models in Decision Analysis This section is cortesy of Prof. Carlos Bana e Costa Bayesian Nets lecture in the Decision Analysis in Practice Course at the LSE and of Prof. Alec Morton in the Bayes Nets and Influence Diagrams in the

More information

SAMPLING AND SAMPLE SIZE

SAMPLING AND SAMPLE SIZE SAMPLING AND SAMPLE SIZE Andrew Zeitlin Georgetown University and IGC Rwanda With slides from Ben Olken and the World Bank s Development Impact Evaluation Initiative 2 Review We want to learn how a program

More information

Bayes theorem (1812) Thomas Bayes ( ) English statistician, philosopher, and Presbyterian minister

Bayes theorem (1812) Thomas Bayes ( ) English statistician, philosopher, and Presbyterian minister Bayes theorem (1812) Thomas Bayes (1701 1761) English statistician, philosopher, and Presbyterian minister Bayes theorem (simple) Definitions: P(B A) =P(B A)/P(A); P(A B) =P(A B)/P(B) In Science we often

More information

Lecture Outline Biost 517 Applied Biostatistics I. Statistical Goals of Studies Role of Statistical Inference

Lecture Outline Biost 517 Applied Biostatistics I. Statistical Goals of Studies Role of Statistical Inference Lecture Outline Biost 517 Applied Biostatistics I Scott S. Emerson, M.D., Ph.D. Professor of Biostatistics University of Washington Statistical Inference Role of Statistical Inference Hierarchy of Experimental

More information

Unit 4 Probabilities in Epidemiology

Unit 4 Probabilities in Epidemiology BIOSTATS 540 Fall 2018 4. Probabilities in Epidemiology Page 1 of 23 Unit 4 Probabilities in Epidemiology All knowledge degenerates into probability - David Hume With just a little bit of thinking, we

More information

PHP2500: Introduction to Biostatistics. Lecture III: Introduction to Probability

PHP2500: Introduction to Biostatistics. Lecture III: Introduction to Probability PHP2500: Introduction to Biostatistics Lecture III: Introduction to Probability 1 . 2 Example: 40% of adults aged 40-74 in Rhode Island have pre-diabetes, a condition that raises the risk of type 2 diabetes,

More information

Diagnostic Reasoning: Approach to Clinical Diagnosis Based on Bayes Theorem

Diagnostic Reasoning: Approach to Clinical Diagnosis Based on Bayes Theorem CHAPTER 75 Diagnostic Reasoning: Approach to Clinical Diagnosis Based on Bayes Theorem A. Mohan, K. Srihasam, S.K. Sharma Introduction Doctors caring for patients in their everyday clinical practice are

More information

Biostatistics Lecture April 28, 2001 Nate Ritchey, Ph.D. Chair, Department of Mathematics and Statistics Youngstown State University

Biostatistics Lecture April 28, 2001 Nate Ritchey, Ph.D. Chair, Department of Mathematics and Statistics Youngstown State University Biostatistics Lecture April 28, 2001 Nate Ritchey, Ph.D. Chair, Department of Mathematics and Statistics Youngstown State University 1. Some Questions a. If I flip a fair coin, what is the probability

More information

Cognitive Science and Bayes. The main question. Several views. Introduction. The main question Several views Examples. The heuristics view

Cognitive Science and Bayes. The main question. Several views. Introduction. The main question Several views Examples. The heuristics view To Bayes or not to Bayes Radboud University Nijmegen 07-04- 09 The original Bayesian view Are people Bayesian estimators? Or more precisely: should cognitive judgments be viewed as following optimal statistical

More information

HSC FACULTY CONTRACTS OFFICE. Non-Standard Payments October 18, :00 10:00

HSC FACULTY CONTRACTS OFFICE. Non-Standard Payments October 18, :00 10:00 HSC FACULTY CONTRACTS OFFICE Non-Standard Payments October 18, 2011 9:00 10:00 Welcome & Introductions Marie Chestnut, Director Catherine Anaya, Medical Faculty Services Rep Katie Fletcher, Medical Faculty

More information

I. Introduction and Data Collection B. Sampling. 1. Bias. In this section Bias Random Sampling Sampling Error

I. Introduction and Data Collection B. Sampling. 1. Bias. In this section Bias Random Sampling Sampling Error I. Introduction and Data Collection B. Sampling In this section Bias Random Sampling Sampling Error 1. Bias Bias a prejudice in one direction (this occurs when the sample is selected in such a way that

More information

A Case Study: Two-sample categorical data

A Case Study: Two-sample categorical data A Case Study: Two-sample categorical data Patrick Breheny January 31 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/43 Introduction Model specification Continuous vs. mixture priors Choice

More information

Foundations of AI. 10. Knowledge Representation: Modeling with Logic. Concepts, Actions, Time, & All the Rest

Foundations of AI. 10. Knowledge Representation: Modeling with Logic. Concepts, Actions, Time, & All the Rest Foundations of AI 10. Knowledge Representation: Modeling with Logic Concepts, Actions, Time, & All the Rest Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller 10/1 Contents Knowledge

More information

Reasoning with Bayesian Belief Networks

Reasoning with Bayesian Belief Networks Reasoning with Bayesian Belief Networks Overview Bayesian Belief Networks (BBNs) can reason with networks of propositions and associated probabilities Useful for many AI problems Diagnosis Expert systems

More information

Probabilistic Information Processing Systems: Evaluation with Conditionally Dependent Data 1

Probabilistic Information Processing Systems: Evaluation with Conditionally Dependent Data 1 ORGANIZATIONAL BEHAVIOR AND I-III~ IAN PERFORNiANCE 7, 77-85 (1972) Probabilistic Information Processing Systems: Evaluation with Conditionally Dependent Data 1 PATRICIA ANN ])OMAS AND CAMERON ~. PETERSON

More information

A Brief Introduction to Bayesian Statistics

A Brief Introduction to Bayesian Statistics A Brief Introduction to Statistics David Kaplan Department of Educational Psychology Methods for Social Policy Research and, Washington, DC 2017 1 / 37 The Reverend Thomas Bayes, 1701 1761 2 / 37 Pierre-Simon

More information

Application of Bayesian Network Model for Enterprise Risk Management of Expressway Management Corporation

Application of Bayesian Network Model for Enterprise Risk Management of Expressway Management Corporation 2011 International Conference on Innovation, Management and Service IPEDR vol.14(2011) (2011) IACSIT Press, Singapore Application of Bayesian Network Model for Enterprise Risk Management of Expressway

More information

SISCR Module 7 Part I: Introduction Basic Concepts for Binary Biomarkers (Classifiers) and Continuous Biomarkers

SISCR Module 7 Part I: Introduction Basic Concepts for Binary Biomarkers (Classifiers) and Continuous Biomarkers SISCR Module 7 Part I: Introduction Basic Concepts for Binary Biomarkers (Classifiers) and Continuous Biomarkers Kathleen Kerr, Ph.D. Associate Professor Department of Biostatistics University of Washington

More information

Module Overview. What is a Marker? Part 1 Overview

Module Overview. What is a Marker? Part 1 Overview SISCR Module 7 Part I: Introduction Basic Concepts for Binary Classification Tools and Continuous Biomarkers Kathleen Kerr, Ph.D. Associate Professor Department of Biostatistics University of Washington

More information

15.301/310, Managerial Psychology Prof. Dan Ariely Recitation 8: T test and ANOVA

15.301/310, Managerial Psychology Prof. Dan Ariely Recitation 8: T test and ANOVA 15.301/310, Managerial Psychology Prof. Dan Ariely Recitation 8: T test and ANOVA Statistics does all kinds of stuff to describe data Talk about baseball, other useful stuff We can calculate the probability.

More information

Problem Set and Review Questions 2

Problem Set and Review Questions 2 Problem Set and Review Questions 2 1. (Review of what we did in class) Imagine a hypothetical college that offers only two social science majors: Economics and Sociology. The economics department has 4

More information

Agenetic disorder serious, perhaps fatal without

Agenetic disorder serious, perhaps fatal without ACADEMIA AND CLINIC The First Positive: Computing Positive Predictive Value at the Extremes James E. Smith, PhD; Robert L. Winkler, PhD; and Dennis G. Fryback, PhD Computing the positive predictive value

More information

Exploring Experiential Learning: Simulations and Experiential Exercises, Volume 5, 1978 THE USE OF PROGRAM BAYAUD IN THE TEACHING OF AUDIT SAMPLING

Exploring Experiential Learning: Simulations and Experiential Exercises, Volume 5, 1978 THE USE OF PROGRAM BAYAUD IN THE TEACHING OF AUDIT SAMPLING THE USE OF PROGRAM BAYAUD IN THE TEACHING OF AUDIT SAMPLING James W. Gentry, Kansas State University Mary H. Bonczkowski, Kansas State University Charles W. Caldwell, Kansas State University INTRODUCTION

More information

Conditional probability

Conditional probability Conditional probability February 12, 2012 Once you eliminate the impossible, whatever remains, however improbable, must be the truth. Flip a fair coin twice. If you get TT, re-roll. Flip a fair coin twice.

More information

Bayesian Analysis of Diagnostic and Therapeutic Procedures in Clinical Medicine

Bayesian Analysis of Diagnostic and Therapeutic Procedures in Clinical Medicine Bayesian Analysis of Diagnostic and Therapeutic Procedures in Clinical Medicine page 1 of 12 Bayesian Analysis of Diagnostic and Therapeutic Procedures in Clinical Medicine by Richard J. Petti version

More information

D F 3 7. beer coke Cognition and Perception. The Wason Selection Task. If P, then Q. If P, then Q

D F 3 7. beer coke Cognition and Perception. The Wason Selection Task. If P, then Q. If P, then Q Cognition and Perception 1. Why would evolution-minded cognitive psychologists think it is more likely that the mind consists of many specialized mechanisms rather than a few general-purpose mechanisms?

More information

The Lens Model and Linear Models of Judgment

The Lens Model and Linear Models of Judgment John Miyamoto Email: jmiyamot@uw.edu October 3, 2017 File = D:\P466\hnd02-1.p466.a17.docm 1 http://faculty.washington.edu/jmiyamot/p466/p466-set.htm Psych 466: Judgment and Decision Making Autumn 2017

More information

Confirmation Bias. this entry appeared in pp of in M. Kattan (Ed.), The Encyclopedia of Medical Decision Making.

Confirmation Bias. this entry appeared in pp of in M. Kattan (Ed.), The Encyclopedia of Medical Decision Making. Confirmation Bias Jonathan D Nelson^ and Craig R M McKenzie + this entry appeared in pp. 167-171 of in M. Kattan (Ed.), The Encyclopedia of Medical Decision Making. London, UK: Sage the full Encyclopedia

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience Introduction to Computational Neuroscience Lecture 5: Data analysis II Lesson Title 1 Introduction 2 Structure and Function of the NS 3 Windows to the Brain 4 Data analysis 5 Data analysis II 6 Single

More information

Computer Age Statistical Inference. Algorithms, Evidence, and Data Science. BRADLEY EFRON Stanford University, California

Computer Age Statistical Inference. Algorithms, Evidence, and Data Science. BRADLEY EFRON Stanford University, California Computer Age Statistical Inference Algorithms, Evidence, and Data Science BRADLEY EFRON Stanford University, California TREVOR HASTIE Stanford University, California ggf CAMBRIDGE UNIVERSITY PRESS Preface

More information

Gene Finding in Eukaryotes

Gene Finding in Eukaryotes Gene Finding in Eukaryotes Jan-Jaap Wesselink jjwesselink@cnio.es Computational and Structural Biology Group, Centro Nacional de Investigaciones Oncológicas Madrid, April 2008 Jan-Jaap Wesselink jjwesselink@cnio.es

More information

Bayesian Networks Representation. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University

Bayesian Networks Representation. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University Bayesian Networks Representation Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University March 16 th, 2005 Handwriting recognition Character recognition, e.g., kernel SVMs r r r a c r rr

More information

Confirmation 4 Reasoning by Analogy; Nicod s Condition

Confirmation 4 Reasoning by Analogy; Nicod s Condition Confirmation 4 Reasoning by Analogy; Nicod s Condition (pp. 11 14) Patrick Maher Philosophy 471 Fall 2006 Reasoning by analogy If two individuals are known to be alike in certain respects, and one is found

More information

Ways of counting... Review of Basic Counting Principles. Spring Ways of counting... Spring / 11

Ways of counting... Review of Basic Counting Principles. Spring Ways of counting... Spring / 11 Ways of counting... Review of Basic Counting Principles Spring 2013 Ways of counting... Spring 2013 1 / 11 1 Introduction 2 Basic counting principles a first view 3 Counting with functions 4 Using functions

More information

Statistics. Dr. Carmen Bruni. October 12th, Centre for Education in Mathematics and Computing University of Waterloo

Statistics. Dr. Carmen Bruni. October 12th, Centre for Education in Mathematics and Computing University of Waterloo Statistics Dr. Carmen Bruni Centre for Education in Mathematics and Computing University of Waterloo http://cemc.uwaterloo.ca October 12th, 2016 Quote There are three types of lies: Quote Quote There are

More information

Bayesian Belief Network Based Fault Diagnosis in Automotive Electronic Systems

Bayesian Belief Network Based Fault Diagnosis in Automotive Electronic Systems Bayesian Belief Network Based Fault Diagnosis in Automotive Electronic Systems Yingping Huang *, David Antory, R. Peter Jones, Craig Groom, Ross McMurran, Peter Earp and Francis Mckinney International

More information

Bayesian Concepts in Software Testing: An Initial Review

Bayesian Concepts in Software Testing: An Initial Review Bayesian Concepts in Software Testing: An Initial Review Daniel Rodríguez Universidad de Alcalá Javier Dolado U. País Vasco/Euskal Herriko Unibertsitatea Javier Tuya Universidad de Oviedo PRESI TIN2013-46928-C3-1-R,

More information

Section F. Measures of Association: Risk Difference, Relative Risk, and the Odds Ratio

Section F. Measures of Association: Risk Difference, Relative Risk, and the Odds Ratio This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Creative Commons Attribution-NonCommercial-Share Alike License

Creative Commons Attribution-NonCommercial-Share Alike License Author: Brenda Gunderson, Ph.D., 2015 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution- NonCommercial-Share Alike 3.0 Unported License:

More information

The role of sampling assumptions in generalization with multiple categories

The role of sampling assumptions in generalization with multiple categories The role of sampling assumptions in generalization with multiple categories Wai Keen Vong (waikeen.vong@adelaide.edu.au) Andrew T. Hendrickson (drew.hendrickson@adelaide.edu.au) Amy Perfors (amy.perfors@adelaide.edu.au)

More information