Approximate Inference in Bayes Nets Sampling based methods. Mausam (Based on slides by Jack Breese and Daphne Koller)

Size: px
Start display at page:

Download "Approximate Inference in Bayes Nets Sampling based methods. Mausam (Based on slides by Jack Breese and Daphne Koller)"

Transcription

1 Approximate Inference in Bayes Nets Sampling based methods Mausam (Based on slides by Jack Breese and Daphne Koller) 1

2 Bayes Nets is a generative model We can easily generate samples from the distribution represented by the Bayes net Generate one variable at a time in topological order Use the samples to compute marginal probabilities, say P(c) 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 Rejection Sampling Sample from the prior reject if do not match the evidence Returns consistent posterior estimates Hopelessly expensive if P(e) is small P(e) drops off exponentially with no. of evidence vars 19

20 Likelihood Weighting Idea: fix evidence variables sample only non-evidence variables weight each sample by the likelihood of evidence 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 Likelihood Weighting Sampling probability: S(z,e) = Neither prior nor posterior Wt for a sample <z,e>: w(z,e) i P(z i i Parents(Z)) i P(e i Parents(E i) Weighted Sampling probability S(z,e)w(z,e) = i P(z = P(z,e) i Parents(Z)) i i P(e returns consistent estimates i Parents(E i) performance degrades w/ many evidence vars but a few samples have nearly all the total weight late occuring evidence vars do not guide sample generation 31

32 MCMC with Gibbs Sampling Fix the values of observed variables Set the values of all non-observed variables randomly Perform a random walk through the space of complete variable assignments. On each move: 1. Pick a variable X 2. Calculate Pr(X=true all other variables) 3. Set X to true with that probability Repeat many times. Frequency with which any variable X is true is it s posterior probability. Converges to true posterior when frequencies stop changing significantly stable distribution, mixing 32

33 Markov Blanket Sampling How to calculate Pr(X=true all other variables)? Recall: a variable is independent of all others given it s Markov Blanket parents children other parents of children So problem becomes calculating Pr(X=true MB(X)) We solve this sub-problem exactly Fortunately, it is easy to solve P( X ) P( X Parents( X )) P( Y Parents( Y)) Y Children ( X ) 33

34 Example P( X ) P( X Parents( X )) P( Y Parents( Y)) Y Children ( X ) A P( X A, B, C) P( X, A, B, C) P( A, B, C) X C P( A) P( X A) P( C) P( B X, C) P( A, B, C) B P( A) P( C) P ( X A ) P ( B X, C ) P( A, B, C) PX ( A) P( B X, C) 34

35 Example P(h) s 0.6 ~s 0.1 P(s) 0.2 Heart disease Smoking Lung disease P(g) s 0.8 ~s 0.1 H G P(b) h g 0.9 h ~g 0.8 ~h g 0.7 ~h ~g 0.1 Shortness of breath 35

36 Example P(h) s 0.6 ~s 0.1 P(s) 0.2 Heart disease Smoking Lung disease P(g) s 0.8 ~s 0.1 Evidence: s, b H G P(b) h g 0.9 h ~g 0.8 ~h g 0.7 ~h ~g 0.1 Shortness of breath 36

37 Example P(h) s 0.6 ~s 0.1 P(s) 0.2 Heart disease Smoking Lung disease P(g) s 0.8 ~s 0.1 H G P(b) h g 0.9 h ~g 0.8 ~h g 0.7 ~h ~g 0.1 Shortness of breath Evidence: s, b Randomly set: h, b 37

38 Example P(h) s 0.6 ~s 0.1 P(s) 0.2 Heart disease Smoking Lung disease P(g) s 0.8 ~s 0.1 H G P(b) h g 0.9 h ~g 0.8 ~h g 0.7 ~h ~g 0.1 Shortness of breath Evidence: s, b Randomly set: h, g Sample H using P(H s,g,b) 38

39 Example P(h) s 0.6 ~s 0.1 P(s) 0.2 Heart disease Smoking Lung disease P(g) s 0.8 ~s 0.1 H G P(b) h g 0.9 h ~g 0.8 ~h g 0.7 ~h ~g 0.1 Shortness of breath Evidence: s, b Randomly set: ~h, g Sample H using P(H s,g,b) Suppose result is ~h 39

40 Example P(h) s 0.6 ~s 0.1 P(s) 0.2 Heart disease Smoking Lung disease P(g) s 0.8 ~s 0.1 H G P(b) h g 0.9 h ~g 0.8 ~h g 0.7 ~h ~g 0.1 Shortness of breath Evidence: s, b Randomly set: ~h, g Sample H using P(H s,g,b) Suppose result is ~h Sample G using P(G s,~h,b) 40

41 Example P(h) s 0.6 ~s 0.1 P(s) 0.2 Heart disease Smoking Lung disease P(g) s 0.8 ~s 0.1 H G P(b) h g 0.9 h ~g 0.8 ~h g 0.7 ~h ~g 0.1 Shortness of breath Evidence: s, b Randomly set: ~h, g Sample H using P(H s,g,b) Suppose result is ~h Sample G using P(G s,~h,b) Suppose result is g 41

42 Example P(h) s 0.6 ~s 0.1 P(s) 0.2 Heart disease Smoking Lung disease P(g) s 0.8 ~s 0.1 H G P(b) h g 0.9 h ~g 0.8 ~h g 0.7 ~h ~g 0.1 Shortness of breath Evidence: s, b Randomly set: ~h, g Sample H using P(H s,g,b) Suppose result is ~h Sample G using P(G s,~h,b) Suppose result is g Sample G using P(G s,~h,b) 42

43 Example P(h) s 0.6 ~s 0.1 P(s) 0.2 Heart disease Smoking Lung disease P(g) s 0.8 ~s 0.1 H G P(b) h g 0.9 h ~g 0.8 ~h g 0.7 ~h ~g 0.1 Shortness of breath Evidence: s, b Randomly set: ~h, g Sample H using P(H s,g,b) Suppose result is ~h Sample G using P(G s,~h,b) Suppose result is g Sample G using P(G s,~h,b) Suppose result is ~g 43

44 Gibbs MCMC Summary Advantages: No samples are discarded No problem with samples of low weight Can be implemented very efficiently 10K second Disadvantages: P(X E) = number of samples with X=x total number of samples Can get stuck if relationship between two variables is deterministic Many variations have been devised to make MCMC more robust 44

45 Other inference methods Exact inference Junction tree Approximate inference Belief Propagation Variational Methods 45

Bayesian (Belief) Network Models,

Bayesian (Belief) Network Models, Bayesian (Belief) Network Models, 2/10/03 & 2/12/03 Outline of This Lecture 1. Overview of the model 2. Bayes Probability and Rules of Inference Conditional Probabilities Priors and posteriors Joint distributions

More information

CISC453 Winter Probabilistic Reasoning Part B: AIMA3e Ch

CISC453 Winter Probabilistic Reasoning Part B: AIMA3e Ch CISC453 Winter 2010 Probabilistic Reasoning Part B: AIMA3e Ch 14.5-14.8 Overview 2 a roundup of approaches from AIMA3e 14.5-14.8 14.5 a survey of approximate methods alternatives to the direct computing

More information

Bayesian Inference Bayes Laplace

Bayesian Inference Bayes Laplace Bayesian Inference Bayes Laplace Course objective The aim of this course is to introduce the modern approach to Bayesian statistics, emphasizing the computational aspects and the differences between the

More information

Intro to Probability Instructor: Alexandre Bouchard

Intro to Probability Instructor: Alexandre Bouchard www.stat.ubc.ca/~bouchard/courses/stat302-sp2017-18/ Intro to Probability Instructor: Alexandre Bouchard Plan for today: Bayesian inference 101 Decision diagram for non equally weighted problems Bayes

More information

Introduction. Patrick Breheny. January 10. The meaning of probability The Bayesian approach Preview of MCMC methods

Introduction. Patrick Breheny. January 10. The meaning of probability The Bayesian approach Preview of MCMC methods Introduction Patrick Breheny January 10 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/25 Introductory example: Jane s twins Suppose you have a friend named Jane who is pregnant with twins

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 10: Introduction to inference (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 17 What is inference? 2 / 17 Where did our data come from? Recall our sample is: Y, the vector

More information

Bayesian and Frequentist Approaches

Bayesian and Frequentist Approaches Bayesian and Frequentist Approaches G. Jogesh Babu Penn State University http://sites.stat.psu.edu/ babu http://astrostatistics.psu.edu All models are wrong But some are useful George E. P. Box (son-in-law

More information

Lesson 87 Bayes Theorem

Lesson 87 Bayes Theorem Lesson 87 Bayes Theorem HL2 Math - Santowski Bayes Theorem! Main theorem: Suppose we know We would like to use this information to find if possible. Discovered by Reverend Thomas Bayes 1 Bayes Theorem!

More information

CS 4365: Artificial Intelligence Recap. Vibhav Gogate

CS 4365: Artificial Intelligence Recap. Vibhav Gogate CS 4365: Artificial Intelligence Recap Vibhav Gogate Exam Topics Search BFS, DFS, UCS, A* (tree and graph) Completeness and Optimality Heuristics: admissibility and consistency CSPs Constraint graphs,

More information

Iterative Join Graph Propagation

Iterative Join Graph Propagation Iterative Join Graph Propagation Vibhav Gogate Stat methods class dapted from Robert Mateescu s slides The University of Texas at Dallas What is IJGP? IJGP is an approximate algorithm for belief updating

More information

Sequential Decision Making

Sequential Decision Making Sequential Decision Making Sequential decisions Many (most) real world problems cannot be solved with a single action. Need a longer horizon Ex: Sequential decision problems We start at START and want

More information

A Brief Introduction to Bayesian Statistics

A Brief Introduction to Bayesian Statistics A Brief Introduction to Statistics David Kaplan Department of Educational Psychology Methods for Social Policy Research and, Washington, DC 2017 1 / 37 The Reverend Thomas Bayes, 1701 1761 2 / 37 Pierre-Simon

More information

Sections 10.7 and 10.9

Sections 10.7 and 10.9 Sections 10.7 and 10.9 Timothy Hanson Department of Statistics, University of South Carolina Stat 205: Elementary Statistics for the Biological and Life Sciences 1 / 24 10.7 confidence interval for p 1

More information

Probability and Sample space

Probability and Sample space Probability and Sample space We call a phenomenon random if individual outcomes are uncertain but there is a regular distribution of outcomes in a large number of repetitions. The probability of any outcome

More information

Introduction to Bayesian Analysis 1

Introduction to Bayesian Analysis 1 Biostats VHM 801/802 Courses Fall 2005, Atlantic Veterinary College, PEI Henrik Stryhn Introduction to Bayesian Analysis 1 Little known outside the statistical science, there exist two different approaches

More information

Bayesian Statistics Estimation of a Single Mean and Variance MCMC Diagnostics and Missing Data

Bayesian Statistics Estimation of a Single Mean and Variance MCMC Diagnostics and Missing Data Bayesian Statistics Estimation of a Single Mean and Variance MCMC Diagnostics and Missing Data Michael Anderson, PhD Hélène Carabin, DVM, PhD Department of Biostatistics and Epidemiology The University

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 Exam policy: This exam allows two one-page, two-sided cheat sheets (i.e. 4 sides); No other materials. Time: 2 hours. Be sure to write

More information

Artificial Intelligence Programming Probability

Artificial Intelligence Programming Probability Artificial Intelligence Programming Probability Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/25 17-0: Uncertainty

More information

Chapter 19. Confidence Intervals for Proportions. Copyright 2010 Pearson Education, Inc.

Chapter 19. Confidence Intervals for Proportions. Copyright 2010 Pearson Education, Inc. Chapter 19 Confidence Intervals for Proportions Copyright 2010 Pearson Education, Inc. Standard Error Both of the sampling distributions we ve looked at are Normal. For proportions For means SD pˆ pq n

More information

A Case Study: Two-sample categorical data

A Case Study: Two-sample categorical data A Case Study: Two-sample categorical data Patrick Breheny January 31 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/43 Introduction Model specification Continuous vs. mixture priors Choice

More information

MIDTERM EXAM. Total 150. Problem Points Grade. STAT 541 Introduction to Biostatistics. Name. Spring 2008 Ismor Fischer

MIDTERM EXAM. Total 150. Problem Points Grade. STAT 541 Introduction to Biostatistics. Name. Spring 2008 Ismor Fischer STAT 541 Introduction to Biostatistics Spring 2008 Ismor Fischer Name MIDTERM EXAM Instructions: This exam is worth 150 points ( 1/3 of your course grade). Answer Problem 1, and any two of the remaining

More information

Reasoning with Uncertainty. Reasoning with Uncertainty. Bayes Rule. Often, we want to reason from observable information to unobservable information

Reasoning with Uncertainty. Reasoning with Uncertainty. Bayes Rule. Often, we want to reason from observable information to unobservable information Reasoning with Uncertainty Reasoning with Uncertainty Often, we want to reason from observable information to unobservable information We want to calculate how our prior beliefs change given new available

More information

Bayesian Networks Representation. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University

Bayesian Networks Representation. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University Bayesian Networks Representation Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University March 16 th, 2005 Handwriting recognition Character recognition, e.g., kernel SVMs r r r a c r rr

More information

Ordinal Data Modeling

Ordinal Data Modeling Valen E. Johnson James H. Albert Ordinal Data Modeling With 73 illustrations I ". Springer Contents Preface v 1 Review of Classical and Bayesian Inference 1 1.1 Learning about a binomial proportion 1 1.1.1

More information

Chapter 19. Confidence Intervals for Proportions. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Chapter 19. Confidence Intervals for Proportions. Copyright 2010, 2007, 2004 Pearson Education, Inc. Chapter 19 Confidence Intervals for Proportions Copyright 2010, 2007, 2004 Pearson Education, Inc. Standard Error Both of the sampling distributions we ve looked at are Normal. For proportions For means

More information

Lecture 9 Internal Validity

Lecture 9 Internal Validity Lecture 9 Internal Validity Objectives Internal Validity Threats to Internal Validity Causality Bayesian Networks Internal validity The extent to which the hypothesized relationship between 2 or more variables

More information

CPS331 Lecture: Coping with Uncertainty; Discussion of Dreyfus Reading

CPS331 Lecture: Coping with Uncertainty; Discussion of Dreyfus Reading CPS331 Lecture: Coping with Uncertainty; Discussion of Dreyfus Reading Objectives: 1. To discuss ways of handling uncertainty (probability; Mycin CF) 2. To discuss Dreyfus views on expert systems Materials:

More information

Signalling, shame and silence in social learning. Arun Chandrasekhar, Benjamin Golub, He Yang Presented by: Helena, Jasmin, Matt and Eszter

Signalling, shame and silence in social learning. Arun Chandrasekhar, Benjamin Golub, He Yang Presented by: Helena, Jasmin, Matt and Eszter Signalling, shame and silence in social learning Arun Chandrasekhar, Benjamin Golub, He Yang Presented by: Helena, Jasmin, Matt and Eszter Motivation Asking is an important information channel. But the

More information

ADENIYI MOFOLUWAKE MPH APPLIED EPIDEMIOLOGY WEEK 5 CASE STUDY ASSIGNMENT APRIL

ADENIYI MOFOLUWAKE MPH APPLIED EPIDEMIOLOGY WEEK 5 CASE STUDY ASSIGNMENT APRIL ADENIYI MOFOLUWAKE MPH 510 - APPLIED EPIDEMIOLOGY WEEK 5 CASE STUDY ASSIGNMENT APRIL 4 2013 Question 1: What makes the first study a case-control study? The first case study is a case-control study because

More information

Att vara eller inte vara (en Bayesian)?... Sherlock-conundrum

Att vara eller inte vara (en Bayesian)?... Sherlock-conundrum Att vara eller inte vara (en Bayesian)?... Sherlock-conundrum (Thanks/blame to Google Translate) Gianluca Baio University College London Department of Statistical Science g.baio@ucl.ac.uk http://www.ucl.ac.uk/statistics/research/statistics-health-economics/

More information

Knowledge is rarely absolutely certain. In expert systems we need a way to say that something is probably but not necessarily true.

Knowledge is rarely absolutely certain. In expert systems we need a way to say that something is probably but not necessarily true. CmSc310 Artificial Intelligence Expert Systems II 1. Reasoning under uncertainty Knowledge is rarely absolutely certain. In expert systems we need a way to say that something is probably but not necessarily

More information

Seminar Thesis: Efficient Planning under Uncertainty with Macro-actions

Seminar Thesis: Efficient Planning under Uncertainty with Macro-actions Seminar Thesis: Efficient Planning under Uncertainty with Macro-actions Ragnar Mogk Department of Computer Science Technische Universität Darmstadt ragnar.mogk@stud.tu-darmstadt.de 1 Introduction This

More information

What is a probability? Two schools in statistics: frequentists and Bayesians.

What is a probability? Two schools in statistics: frequentists and Bayesians. Faculty of Life Sciences Frequentist and Bayesian statistics Claus Ekstrøm E-mail: ekstrom@life.ku.dk Outline 1 Frequentists and Bayesians What is a probability? Interpretation of results / inference 2

More information

Logistic Regression and Bayesian Approaches in Modeling Acceptance of Male Circumcision in Pune, India

Logistic Regression and Bayesian Approaches in Modeling Acceptance of Male Circumcision in Pune, India 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Logistic Regression and Bayesian Approaches in Modeling Acceptance of Male Circumcision

More information

Signal Detection Theory and Bayesian Modeling

Signal Detection Theory and Bayesian Modeling Signal Detection Theory and Bayesian Modeling COGS 202: Computational Modeling of Cognition Omar Shanta, Shuai Tang, Gautam Reddy, Reina Mizrahi, Mehul Shah Detection Theory and Psychophysics: A Review

More information

An Exercise in Bayesian Econometric Analysis Probit and Linear Probability Models

An Exercise in Bayesian Econometric Analysis Probit and Linear Probability Models Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 5-1-2014 An Exercise in Bayesian Econometric Analysis Probit and Linear Probability Models Brooke Jeneane

More information

Bayesian Logistic Regression Modelling via Markov Chain Monte Carlo Algorithm

Bayesian Logistic Regression Modelling via Markov Chain Monte Carlo Algorithm Journal of Social and Development Sciences Vol. 4, No. 4, pp. 93-97, Apr 203 (ISSN 222-52) Bayesian Logistic Regression Modelling via Markov Chain Monte Carlo Algorithm Henry De-Graft Acquah University

More information

Lecture 3: Bayesian Networks 1

Lecture 3: Bayesian Networks 1 Lecture 3: Bayesian Networks 1 Jingpeng Li 1 Content Reminder from previous lecture: Bayes theorem Bayesian networks Why are they currently interesting? Detailed example from medical diagnostics Bayesian

More information

Bayesian Concepts in Software Testing: An Initial Review

Bayesian Concepts in Software Testing: An Initial Review Bayesian Concepts in Software Testing: An Initial Review Daniel Rodríguez Universidad de Alcalá Javier Dolado U. País Vasco/Euskal Herriko Unibertsitatea Javier Tuya Universidad de Oviedo PRESI TIN2013-46928-C3-1-R,

More information

ST440/550: Applied Bayesian Statistics. (10) Frequentist Properties of Bayesian Methods

ST440/550: Applied Bayesian Statistics. (10) Frequentist Properties of Bayesian Methods (10) Frequentist Properties of Bayesian Methods Calibrated Bayes So far we have discussed Bayesian methods as being separate from the frequentist approach However, in many cases methods with frequentist

More information

Using historical data for Bayesian sample size determination

Using historical data for Bayesian sample size determination Using historical data for Bayesian sample size determination Author: Fulvio De Santis, J. R. Statist. Soc. A (2007) 170, Part 1, pp. 95 113 Harvard Catalyst Journal Club: December 7 th 2016 Kush Kapur,

More information

STAT 200. Guided Exercise 4

STAT 200. Guided Exercise 4 STAT 200 Guided Exercise 4 1. Let s Revisit this Problem. Fill in the table again. Diagnostic tests are not infallible. We often express a fale positive and a false negative with any test. There are further

More information

Bayesian Mediation Analysis

Bayesian Mediation Analysis Psychological Methods 2009, Vol. 14, No. 4, 301 322 2009 American Psychological Association 1082-989X/09/$12.00 DOI: 10.1037/a0016972 Bayesian Mediation Analysis Ying Yuan The University of Texas M. D.

More information

A simple introduction to Markov Chain Monte Carlo sampling

A simple introduction to Markov Chain Monte Carlo sampling DOI 10.3758/s13423-016-1015-8 BRIEF REPORT A simple introduction to Markov Chain Monte Carlo sampling Don van Ravenzwaaij 1,2 Pete Cassey 2 Scott D. Brown 2 The Author(s) 2016. This article is published

More information

Sawtooth Software. MaxDiff Analysis: Simple Counting, Individual-Level Logit, and HB RESEARCH PAPER SERIES. Bryan Orme, Sawtooth Software, Inc.

Sawtooth Software. MaxDiff Analysis: Simple Counting, Individual-Level Logit, and HB RESEARCH PAPER SERIES. Bryan Orme, Sawtooth Software, Inc. Sawtooth Software RESEARCH PAPER SERIES MaxDiff Analysis: Simple Counting, Individual-Level Logit, and HB Bryan Orme, Sawtooth Software, Inc. Copyright 009, Sawtooth Software, Inc. 530 W. Fir St. Sequim,

More information

Module 5: Introduction to Stochastic Epidemic Models with Inference

Module 5: Introduction to Stochastic Epidemic Models with Inference Module 5: Introduction to Stochastic Epidemic Models with Inference Instructors:, Dept. Mathematics, Stockholm University Ira Longini, Dept. Biostatistics, University of Florida Jonathan Sugimoto, Vaccine

More information

Improving stochastic local search for SAT with a new probability distribution

Improving stochastic local search for SAT with a new probability distribution Adrian Balint July 13, 2010 Andreas Fröhlich Improving stochastic local search for SAT with a new probability distribution Page 2 Improving stochastic local search for SAT with a new probability distribution

More information

Module 5: Introduction to Stochastic Epidemic Models with Inference

Module 5: Introduction to Stochastic Epidemic Models with Inference Module 5: Introduction to Stochastic Epidemic Models with Inference Instructors: Tom Britton, Dept. Mathematics, Stockholm University Ira Longini, Dept. Biostatistics, University of Florida Jonathan Sugimoto,

More information

Using Bayesian Networks to Analyze Expression Data. Xu Siwei, s Muhammad Ali Faisal, s Tejal Joshi, s

Using Bayesian Networks to Analyze Expression Data. Xu Siwei, s Muhammad Ali Faisal, s Tejal Joshi, s Using Bayesian Networks to Analyze Expression Data Xu Siwei, s0789023 Muhammad Ali Faisal, s0677834 Tejal Joshi, s0677858 Outline Introduction Bayesian Networks Equivalence Classes Applying to Expression

More information

Computer Age Statistical Inference. Algorithms, Evidence, and Data Science. BRADLEY EFRON Stanford University, California

Computer Age Statistical Inference. Algorithms, Evidence, and Data Science. BRADLEY EFRON Stanford University, California Computer Age Statistical Inference Algorithms, Evidence, and Data Science BRADLEY EFRON Stanford University, California TREVOR HASTIE Stanford University, California ggf CAMBRIDGE UNIVERSITY PRESS Preface

More information

(ii) The effective population size may be lower than expected due to variability between individuals in infectiousness.

(ii) The effective population size may be lower than expected due to variability between individuals in infectiousness. Supplementary methods Details of timepoints Caió sequences were derived from: HIV-2 gag (n = 86) 16 sequences from 1996, 10 from 2003, 45 from 2006, 13 from 2007 and two from 2008. HIV-2 env (n = 70) 21

More information

A Taxonomy of Decision Models in Decision Analysis

A Taxonomy of Decision Models in Decision Analysis This section is cortesy of Prof. Carlos Bana e Costa Bayesian Nets lecture in the Decision Analysis in Practice Course at the LSE and of Prof. Alec Morton in the Bayes Nets and Influence Diagrams in the

More information

Chapter 23. Inference About Means. Copyright 2010 Pearson Education, Inc.

Chapter 23. Inference About Means. Copyright 2010 Pearson Education, Inc. Chapter 23 Inference About Means Copyright 2010 Pearson Education, Inc. Getting Started Now that we know how to create confidence intervals and test hypotheses about proportions, it d be nice to be able

More information

Explaining Inferences in Bayesian Networks

Explaining Inferences in Bayesian Networks Explaining Inferences in Bayesian Networks Ghim-Eng Yap Ah-Hwee Tan School of Computer Engineering, Nanyang Technological University Nanyang Avenue, Singapore 639798 yapg0001@ntu.edu.sg asahtan@ntu.edu.sg

More information

Review: Logistic regression, Gaussian naïve Bayes, linear regression, and their connections

Review: Logistic regression, Gaussian naïve Bayes, linear regression, and their connections Review: Logistic regression, Gaussian naïve Bayes, linear regression, and their connections New: Bias-variance decomposition, biasvariance tradeoff, overfitting, regularization, and feature selection Yi

More information

Bayesians methods in system identification: equivalences, differences, and misunderstandings

Bayesians methods in system identification: equivalences, differences, and misunderstandings Bayesians methods in system identification: equivalences, differences, and misunderstandings Johan Schoukens and Carl Edward Rasmussen ERNSI 217 Workshop on System Identification Lyon, September 24-27,

More information

Reasoning with Bayesian Belief Networks

Reasoning with Bayesian Belief Networks Reasoning with Bayesian Belief Networks Overview Bayesian Belief Networks (BBNs) can reason with networks of propositions and associated probabilities Useful for many AI problems Diagnosis Expert systems

More information

BAYESIAN HYPOTHESIS TESTING WITH SPSS AMOS

BAYESIAN HYPOTHESIS TESTING WITH SPSS AMOS Sara Garofalo Department of Psychiatry, University of Cambridge BAYESIAN HYPOTHESIS TESTING WITH SPSS AMOS Overview Bayesian VS classical (NHST or Frequentist) statistical approaches Theoretical issues

More information

Application of Multinomial-Dirichlet Conjugate in MCMC Estimation : A Breast Cancer Study

Application of Multinomial-Dirichlet Conjugate in MCMC Estimation : A Breast Cancer Study Int. Journal of Math. Analysis, Vol. 4, 2010, no. 41, 2043-2049 Application of Multinomial-Dirichlet Conjugate in MCMC Estimation : A Breast Cancer Study Geetha Antony Pullen Mary Matha Arts & Science

More information

Propensity Score Methods to Adjust for Bias in Observational Data SAS HEALTH USERS GROUP APRIL 6, 2018

Propensity Score Methods to Adjust for Bias in Observational Data SAS HEALTH USERS GROUP APRIL 6, 2018 Propensity Score Methods to Adjust for Bias in Observational Data SAS HEALTH USERS GROUP APRIL 6, 2018 Institute Institute for Clinical for Clinical Evaluative Evaluative Sciences Sciences Overview 1.

More information

Estimating the Validity of a

Estimating the Validity of a Estimating the Validity of a Multiple-Choice Test Item Having k Correct Alternatives Rand R. Wilcox University of Southern California and University of Califarnia, Los Angeles In various situations, a

More information

Bayesian Belief Network Based Fault Diagnosis in Automotive Electronic Systems

Bayesian Belief Network Based Fault Diagnosis in Automotive Electronic Systems Bayesian Belief Network Based Fault Diagnosis in Automotive Electronic Systems Yingping Huang *, David Antory, R. Peter Jones, Craig Groom, Ross McMurran, Peter Earp and Francis Mckinney International

More information

Cognitive Modeling. Lecture 12: Bayesian Inference. Sharon Goldwater. School of Informatics University of Edinburgh

Cognitive Modeling. Lecture 12: Bayesian Inference. Sharon Goldwater. School of Informatics University of Edinburgh Cognitive Modeling Lecture 12: Bayesian Inference Sharon Goldwater School of Informatics University of Edinburgh sgwater@inf.ed.ac.uk February 18, 20 Sharon Goldwater Cognitive Modeling 1 1 Prediction

More information

Statistics and Probability

Statistics and Probability Statistics and a single count or measurement variable. S.ID.1: Represent data with plots on the real number line (dot plots, histograms, and box plots). S.ID.2: Use statistics appropriate to the shape

More information

Chapter 11: Designing experiments

Chapter 11: Designing experiments Chapter 11: Designing experiments Objective (1) Learn to distinguish between different kinds of statistical studies. (2) Learn key concepts involved in designing experiments. Concept briefs: Again there

More information

10.1 Estimating with Confidence. Chapter 10 Introduction to Inference

10.1 Estimating with Confidence. Chapter 10 Introduction to Inference 10.1 Estimating with Confidence Chapter 10 Introduction to Inference Statistical Inference Statistical inference provides methods for drawing conclusions about a population from sample data. Two most common

More information

Advanced Bayesian Models for the Social Sciences

Advanced Bayesian Models for the Social Sciences Advanced Bayesian Models for the Social Sciences Jeff Harden Department of Political Science, University of Colorado Boulder jeffrey.harden@colorado.edu Daniel Stegmueller Department of Government, University

More information

Learning from data when all models are wrong

Learning from data when all models are wrong Learning from data when all models are wrong Peter Grünwald CWI / Leiden Menu Two Pictures 1. Introduction 2. Learning when Models are Seriously Wrong Joint work with John Langford, Tim van Erven, Steven

More information

Chapter 11: Advanced Remedial Measures. Weighted Least Squares (WLS)

Chapter 11: Advanced Remedial Measures. Weighted Least Squares (WLS) Chapter : Advanced Remedial Measures Weighted Least Squares (WLS) When the error variance appears nonconstant, a transformation (of Y and/or X) is a quick remedy. But it may not solve the problem, or it

More information

Chapter 8: Estimating with Confidence

Chapter 8: Estimating with Confidence Chapter 8: Estimating with Confidence Key Vocabulary: point estimator point estimate confidence interval margin of error interval confidence level random normal independent four step process level C confidence

More information

Probability and Counting Techniques

Probability and Counting Techniques Probability and Counting Techniques 3.4-3.8 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 2 Lecture 2 1 / 44 Outline 1 Counting Techniques 2 Probability

More information

Bayesian Phylogenetics Nick Matzke

Bayesian Phylogenetics Nick Matzke IB 200A Principals of Phylogenetic Systematics Spring 2010 I. Background: Philosophy of Statistics Bayesian Phylogenetics Nick Matzke What is the point of statistics? And what are you doing when you reach

More information

Problem Set and Review Questions 2

Problem Set and Review Questions 2 Problem Set and Review Questions 2 1. (Review of what we did in class) Imagine a hypothetical college that offers only two social science majors: Economics and Sociology. The economics department has 4

More information

CSE 258 Lecture 1.5. Web Mining and Recommender Systems. Supervised learning Regression

CSE 258 Lecture 1.5. Web Mining and Recommender Systems. Supervised learning Regression CSE 258 Lecture 1.5 Web Mining and Recommender Systems Supervised learning Regression What is supervised learning? Supervised learning is the process of trying to infer from labeled data the underlying

More information

Advanced Bayesian Models for the Social Sciences. TA: Elizabeth Menninga (University of North Carolina, Chapel Hill)

Advanced Bayesian Models for the Social Sciences. TA: Elizabeth Menninga (University of North Carolina, Chapel Hill) Advanced Bayesian Models for the Social Sciences Instructors: Week 1&2: Skyler J. Cranmer Department of Political Science University of North Carolina, Chapel Hill skyler@unc.edu Week 3&4: Daniel Stegmueller

More information

Chapter 8 Estimating with Confidence

Chapter 8 Estimating with Confidence Chapter 8 Estimating with Confidence Introduction Our goal in many statistical settings is to use a sample statistic to estimate a population parameter. In Chapter 4, we learned if we randomly select the

More information

COMP90049 Knowledge Technologies

COMP90049 Knowledge Technologies COMP90049 Knowledge Technologies Introduction Classification (Lecture Set4) 2017 Rao Kotagiri School of Computing and Information Systems The Melbourne School of Engineering Some of slides are derived

More information

A Decision-Theoretic Approach to Evaluating Posterior Probabilities of Mental Models

A Decision-Theoretic Approach to Evaluating Posterior Probabilities of Mental Models A Decision-Theoretic Approach to Evaluating Posterior Probabilities of Mental Models Jonathan Y. Ito and David V. Pynadath and Stacy C. Marsella Information Sciences Institute, University of Southern California

More information

Bayes Linear Statistics. Theory and Methods

Bayes Linear Statistics. Theory and Methods Bayes Linear Statistics Theory and Methods Michael Goldstein and David Wooff Durham University, UK BICENTENNI AL BICENTENNIAL Contents r Preface xvii 1 The Bayes linear approach 1 1.1 Combining beliefs

More information

MLE #8. Econ 674. Purdue University. Justin L. Tobias (Purdue) MLE #8 1 / 20

MLE #8. Econ 674. Purdue University. Justin L. Tobias (Purdue) MLE #8 1 / 20 MLE #8 Econ 674 Purdue University Justin L. Tobias (Purdue) MLE #8 1 / 20 We begin our lecture today by illustrating how the Wald, Score and Likelihood ratio tests are implemented within the context of

More information

Math HL Chapter 12 Probability

Math HL Chapter 12 Probability Math HL Chapter 12 Probability Name: Read the notes and fill in any blanks. Work through the ALL of the examples. Self-Check your own progress by rating where you are. # Learning Targets Lesson I have

More information

A Tutorial on Bayesian Networks for System Health Management

A Tutorial on Bayesian Networks for System Health Management Carnegie Mellon University From the SelectedWorks of Ole J Mengshoel November, 2011 A Tutorial on Bayesian Networks for System Health Management Arthur Choi, University of California, Los Angeles Lu Zheng,

More information

EECS 433 Statistical Pattern Recognition

EECS 433 Statistical Pattern Recognition EECS 433 Statistical Pattern Recognition Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1 / 19 Outline What is Pattern

More information

WinBUGS : part 1. Bruno Boulanger Jonathan Jaeger Astrid Jullion Philippe Lambert. Gabriele, living with rheumatoid arthritis

WinBUGS : part 1. Bruno Boulanger Jonathan Jaeger Astrid Jullion Philippe Lambert. Gabriele, living with rheumatoid arthritis WinBUGS : part 1 Bruno Boulanger Jonathan Jaeger Astrid Jullion Philippe Lambert Gabriele, living with rheumatoid arthritis Agenda 2 Introduction to WinBUGS Exercice 1 : Normal with unknown mean and variance

More information

TESTING at any level (e.g., production, field, or on-board)

TESTING at any level (e.g., production, field, or on-board) IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 54, NO. 3, JUNE 2005 1003 A Bayesian Approach to Diagnosis and Prognosis Using Built-In Test John W. Sheppard, Senior Member, IEEE, and Mark A.

More information

MTAT Bayesian Networks. Introductory Lecture. Sven Laur University of Tartu

MTAT Bayesian Networks. Introductory Lecture. Sven Laur University of Tartu MTAT.05.113 Bayesian Networks Introductory Lecture Sven Laur University of Tartu Motivation Probability calculus can be viewed as an extension of classical logic. We use many imprecise and heuristic rules

More information

Previously, when making inferences about the population mean,, we were assuming the following simple conditions:

Previously, when making inferences about the population mean,, we were assuming the following simple conditions: Chapter 17 Inference about a Population Mean Conditions for inference Previously, when making inferences about the population mean,, we were assuming the following simple conditions: (1) Our data (observations)

More information

- Decide on an estimator for the parameter. - Calculate distribution of estimator; usually involves unknown parameter

- Decide on an estimator for the parameter. - Calculate distribution of estimator; usually involves unknown parameter General Confidence Intervals 1 - Decide on an estimator for the parameter - Calculate distribution of estimator; usually involves unknown parameter - Convert a confidence statement about where the estimate

More information

Bayesian Analysis of Data on Nest Success for Marsh Birds

Bayesian Analysis of Data on Nest Success for Marsh Birds The University of Maine DigitalCommons@UMaine Honors College 5-2013 Bayesian Analysis of Data on Nest Success for Marsh Birds Sean Hardy University of Maine - Main Follow this and additional works at:

More information

July Prepared for

July Prepared for U.S. Public Opinion About Personalized Medicine Nationally representative survey of 1,024 U.S. adults conducted for the Personalized Medicine Coalition July 2014 Prepared for 1 Objective To measure awareness

More information

Georgetown University ECON-616, Fall Macroeconometrics. URL: Office Hours: by appointment

Georgetown University ECON-616, Fall Macroeconometrics.   URL:  Office Hours: by appointment Georgetown University ECON-616, Fall 2016 Macroeconometrics Instructor: Ed Herbst E-mail: ed.herbst@gmail.com URL: http://edherbst.net/ Office Hours: by appointment Scheduled Class Time and Organization:

More information

Bayesian performance

Bayesian performance Bayesian performance In this section we will study the statistical properties of Bayesian estimates. Major topics include: The likelihood principle Decision theory/bayes rules Shrinkage estimators Frequentist

More information

Meta-analysis of few small studies in small populations and rare diseases

Meta-analysis of few small studies in small populations and rare diseases Meta-analysis of few small studies in small populations and rare diseases Christian Röver 1, Beat Neuenschwander 2, Simon Wandel 2, Tim Friede 1 1 Department of Medical Statistics, University Medical Center

More information

Nonlinear, Nongaussian Ensemble Data Assimilation with Rank Regression and a Rank Histogram Filter

Nonlinear, Nongaussian Ensemble Data Assimilation with Rank Regression and a Rank Histogram Filter Nonlinear, Nongaussian Ensemble Data Assimilation with Rank Regression and a Rank Histogram Filter Jeff Anderson, NCAR Data Assimilation Research Section pg 1 Schematic of a Sequential Ensemble Filter

More information

Probability and Counting Techniques

Probability and Counting Techniques Probability and Counting Techniques 3.4-3.8 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 2 Lecture 2 1 / 44 Outline 1 Counting Techniques 2 Probability

More information

A probabilistic method for food web modeling

A probabilistic method for food web modeling A probabilistic method for food web modeling Bayesian Networks methodology, challenges, and possibilities Anna Åkesson, Linköping University, Sweden 2 nd international symposium on Ecological Networks,

More information

The Century of Bayes

The Century of Bayes The Century of Bayes Joseph J. Retzer Ph.D., Maritz Research The Bayesian `machine together with MCMC is arguably the most powerful mechanism ever created for processing data and knowledge Berger, 2001

More information

TRIPODS Workshop: Models & Machine Learning for Causal I. & Decision Making

TRIPODS Workshop: Models & Machine Learning for Causal I. & Decision Making TRIPODS Workshop: Models & Machine Learning for Causal Inference & Decision Making in Medical Decision Making : and Predictive Accuracy text Stavroula Chrysanthopoulou, PhD Department of Biostatistics

More information

Chapter 6: Counting, Probability and Inference

Chapter 6: Counting, Probability and Inference Chapter 6: Counting, Probability and Inference 6.1 Introduction to Probability Definitions Experiment a situation with several possible results o Ex: Outcome each result of an experiment o Ex: Sample Space

More information

Simplify the expression and write the answer without negative exponents.

Simplify the expression and write the answer without negative exponents. Second Semester Final Review IMP3 Name Simplify the expression and write the answer without negative exponents. 1) (-9x3y)(-10x4y6) 1) 2) 8x 9y10 2x8y7 2) 3) x 7 x6 3) 4) 3m -4n-4 2p-5 4) 5) 3x -8 x3 5)

More information