University of York Department of Biology B. Sc Stage 3 Degree Examinations Human Molecular Parasitology. Submission deadline: 12 noon

Size: px
Start display at page:

Download "University of York Department of Biology B. Sc Stage 3 Degree Examinations Human Molecular Parasitology. Submission deadline: 12 noon"

Transcription

1 Examination Candidate Number: University of York Department of Biology B. Sc Stage 3 Degree Examinations Human Molecular Parasitology Submission deadline: 12 noon Work should be submitted via the Yorkshare VLE Total marks available for this paper: 100 Your assignment will be put through turnitin on submission. We recommend you also put your work through turnitin prior to submission. All questions should be answered on this question paper. All questions should be answered using Arial font size 11 or larger Question 1: It has been postulated that exosomes may be produced by some parasites. Cite references where appropriate. LO1, LO2 a) How has the discovery of exosomes impacted the field of parasitology? (300 word limit) (6 marks) It has provided an alternative pathway of parasite factor transfer to host cellular/tissue compartments beyond what the parasite itself occupies (1) and independent of the necessary markers and receptors from traditional characterized pathways (1). Thus expanding current models of host manipulation and opening the field to additional functions and renewed interest in parasite-derived proteins and ncrnas (1). Virulence factors involved in host:parasite interactions; host manipulation by parasites. Multitude of proposed roles offered up for specific molecules along these lines; host mimicry to compete with endogenous factors and block signaling, translational arrest, protease degradation of host cell response pathways. b) Outline an experimental design strategy to isolate, identify and functionally characterise exosomes from a specific parasite culture. (300 word limit) (10 marks) Any workable strategy accurately described and outlined will suffice. Grow human-infective stage Plasmodium, Leishmania, helminths or Trypanosomes at high density in culture. Stimulate cultures as appropriate to parasites. Precipitate vesicles. Stack a light gradient. Ultracentrifuge and fractionate gradient with a spectrophotometer running concurrently or spec each fraction individually to isolate page 1 of 7

2 fractions with high nucleotide and protein content. Isolate exosomes and expose host cells to them independent of parasites and look for gene/protein expression. DNA, ncrnas, mrnas, mrbps, proteins, enzymes - factors which can alter host cell behaviour. Many correct answers possible. Ex. By isolating exosomes from parasite-derived culture and exposing host immune cells to exosomes independent of parasites. c) Evaluate potential strengths and weaknesses of using culture-derived parasites for your exosomal analyses. (200 word limit) (5 marks) +s Culture-derived can increase concentrations of factors for better isolation and identification efficiency. No animals necessarily sacrificed. Higher yields and replicates possible. Lower costs. -s Exosomes released from parasites grown in culture may not be representative of those produced in vivo (in a patient)(1). Growing parasites in culture may miss important parasite:host interaction dynamics which may alter appropriate stimulation, formation, composition or function of parasite-derived exosomes (2). This answer relates to the use of parasites grown in culture (students were told to do this) not the answer provided by the student (precipitation, centrifugation etc). d) Compare obstacles to exosomal function for an extracellular versus an intracellular parasite. Provide specific examples. (200 word limit) (4 marks) Exosomes in helminths or T.brucei (extracellular) vs. L.mexicana, T.cruzi or Plasmodium (intracellular). Discussion of distinctions in compartmental obstacles, immune cellular/genetic system targeted and molecules involved in parasite:host communication and manipulation. Multiple combinations possible, all correct answers accepted. Question 2: Paper analysis (25 marks). The following questions refer to Valentim et al. Science, 2013 (doi: /science ); the pdf is supplied on the VLE. LO1, LO3 page 2 of 7

3 a) Summarise the significance of this paper to the research field. (200 word limit) (4 marks) In the field of human helminth parasitology this paper is significant in that, by using a genetic mapping approach and a variety of biochemical techniques, the authors determine the molecular basis by which Schistosoma mansoni displays OXA resistance. However, it could be argued that it is less important to know the molecular basis of OXA resistance than, say, praziquantel (PZQ) resistance. This is because OXA was only previously used in Brazil (as not active against S. haematobium or japonicum) and has now been replaced as the drug of choice by PZQ in worldwide efforts to eliminate schistosomiasis (PZQ active against all human-infective schistosomes). Nevertheless, this paper showcases a successful approach that can be used in the future to understand PZQ resistance (which may become widespread, especially as mass drug administration efforts intensify). It is an open question as to whether this approach will work for PZQ resistance if it is caused by mutations in multiple genes. Also significantly, this study provides a framework to re-design OXA in a rational manner such that it can be improved to target all species of human infective schistosomes (e.g. Taylor J et al Biol Chem 2017; /jbc.M ). This study also allowed Chevalier et al (2016 Int J Parasitol; /j.ijpara ), to infer that OXA resistance has emerged independently several times (i.e. distinct mutations in same gene). b) Why are all F1 progeny of the LE x HR cross sensitive to OXA? Were the frequencies of resistant and susceptible F2 parasites expected and why? (100 word limit) (3 marks) - Schistosomes have diploid genomes page 3 of 7

4 - OXA resistance is recessive so SS x RR cross (susceptible x resistant) generates susceptible F1 = SR. - F1 x F1 cross generates SS, SR, RS and RR = ¼ resistant c) Compare and contrast the implications of the data from Fig. 2A and Fig. 2C. (200 word limit) (4 marks) Experiment presented in Fig. 2A involves expressing 6 candidate genes (from 16 present in QTL) as bacterially-expressed recombinant proteins. These proteins are then tested for their ability to activate OXA in a biochemical assay (i.e. to promote OXA binding to soluble extracts obtained from OXA-resistant adult worms). This experiment shows that the recombinant sulfotransferase Smp_89320 is capable of activating OXA binding in this acellular assay. Extracts from susceptible and resistant worms are included as positive and negative controls, respectively. The susceptible extract is included as it is likely to contain native (correctly folded) parasite proteins that activate OXA. This experiment establishes that Smp_89320 is a good candidate for the OXA-activating protein and so should be tested in live worms. Experiment presented in Fig. 2C shows that knockdown of Smp_89320 in live worms converts an OXA-susceptible parasite into a resistant parasite. As such, this experiment reveals that Smp_89320 is the OXA-activating protein in intact worms. So, whilst 2A establishes that Smp_89320 can activate OXA in a biochemical assay, 2C shows that this is the only (or at least predominant) molecule that does so in live worms. The authors do not demonstrate that Smp_89320 is the OXA-activating protein in vivo (i.e. in the mammalian host). d) Design an experiment to test why oxamniquine shows variable activity against different species of schistosome. Explain your rationale. (200 word limit) (4 marks) - Mutate specific sulfotransferase residues in S. mansoni Smp_ to that those present in S. haematobium Sha_ Prediction is mutant Sm protein will not activate OXA. page 4 of 7

5 - Mutate specific sulfotransferase residues in S. haematobium Sha_ to those in S. mansoni Smp_ Prediction mutant Sh protein will activate OXA e) Parasite drug resistance is prevalent in veterinary helminth infections whilst OXO and PZQ resistance is observed in laboratory and field schistosome isolates. Explain why widespread resistance has not developed despite mass drug administration programs. (200 word limit) (4 marks) - Veterinary resistance likely consequence of high level sustained use of anthelminthics (i.e. treat all animals for sustained period; all surviving worms are drug resistant). - OXA and PZQ resistance in schistosomes are thought to be associated with a fitness cost i.e. they are only selected for/expanded in a population following drug selection. - Schistosome MDA programmes target w school aged children. This leaves large untreatead populations i.e. adults and pre-school children. As such, larger reservoirs of non-selected parasites remain and resistance does not spread. Increased drug treatment may lead to increased field resistance. f) Describe a molecular mechanism through which OXA might kill susceptible schistosomes. (100 word limit) (3 marks) The authors suggest the sulfotransferase sulfonates OXA to generate an unstable intermediate. This decays to generate an electrophilic alkylating agent that binds and damages parasite DNA, ultimately leading to parasite death. g) What is the evidence that OXA resistance has evolved more than once? (100 word limit) (3 marks) This paper reveals two independent SULT mutations (E142 and C35R) that cause loss of function. Whilst E142 originally characterized in this paper using a laboratory isolate, a more recent study has shown that this also occurs in field isolates (Chevalier et al, Int J Parasitol 2016). Chevalier 2016 also show two further page 5 of 7

6 inactivating mutations = 4 distinct mutations in total. This is suggestive of multiple independent origins. Question 3: Essay. Answer either question A or B. Word limit 1,000 (50 marks) A. What factors have been instrumental in the success of a phenotypic screening approach to malaria drug discovery?. LO1, LO3 Factors Search for new drug candidates facilitated by high throughput screening of chemical libraries. Factors: high quality compound libraries available, many in pharmaceutical companies. Open innovation developments allow shared IP. Access to funding through MMV, availability of high quality in vitro and in vivo assays to test compounds. Engagement of both academic and pharmaceutical (industry) partners. Greater understanding of plasmodium biology allows mode of action and mechanism of resistance studies. Examples of phenotypic screens o Asexual blood stages of plasmodium o Spiroindolone target deconvolution identified ATPase4 as the target o MMV08138 targets IspD in the apicoplast o Hexahydroquinalones o Proteasome inhibitors o Protein synthesis inhibitors o PI(4)K inhibitors o Malaria box of compounds MMV have extensive portfolio most come from phenotypic screens First class students will realise that new target based drug discovery can arise from phenotypic following successful target deconvolution (but not the other way round). Very good students will discuss PK-PD and the quality of compound libraries. page 6 of 7

7 B. Compare and contrast the gene expression and function of surface proteins of mammalian stage Trypanosoma brucei vs Trypanosoma cruzi parasites. LO1, LO2 T.brucei - Pol I drives VSG gene expression with only 1 VSG expression site driven at a time. Antigenic variation of VSG permits survival of extracellular T.brucei in mammalian bloodstream. Variable Surface Glycoprotein host immune cell evasion due to VSG remodeling, recycling and surface coat switching. VSG protein switches with each wave of parasitemia (SL-ST differentiation). 4 mechanisms of recombination enable switching, known transcriptional repressors of quiescent Expression Sites, VSG switching triggers; role of camp pathway. Expression Site Associated Genes (ESAGs) role in survival. ESAG6/7 Fe++ receptor transport, susceptibility to TLF of humans. T.cruzi - All surface proteins are Pol II-driven and upregulated via gene duplication; trans-sialidases (TS), mucins, MASP genes represent 50% of total genome content. Surface proteins are necessary for host complement-mediated triggering of endocytic update, enables infectivity of all mammalian cell types. Contribute to immune evasion, host cell invasion and infection. page 7 of 7

Lecture 11. Immunology and disease: parasite antigenic diversity

Lecture 11. Immunology and disease: parasite antigenic diversity Lecture 11 Immunology and disease: parasite antigenic diversity RNAi interference video and tutorial (you are responsible for this material, so check it out.) http://www.pbs.org/wgbh/nova/sciencenow/3210/02.html

More information

Chapter 6. Antigen Presentation to T lymphocytes

Chapter 6. Antigen Presentation to T lymphocytes Chapter 6 Antigen Presentation to T lymphocytes Generation of T-cell Receptor Ligands T cells only recognize Ags displayed on cell surfaces These Ags may be derived from pathogens that replicate within

More information

Antigenic variation as adaptive process: the case of Trypanosoma brucei

Antigenic variation as adaptive process: the case of Trypanosoma brucei Antigenic variation as adaptive process: the case of Trypanosoma brucei African trypanosomes infect a wide spectrum of mammalian hosts, including humans Mechanisms of adaptation: I. Antigenic variation

More information

محاضرة مناعت مدرس المادة :ا.م. هدى عبدالهادي علي النصراوي Immunity to Infectious Diseases

محاضرة مناعت مدرس المادة :ا.م. هدى عبدالهادي علي النصراوي Immunity to Infectious Diseases محاضرة مناعت مدرس المادة :ا.م. هدى عبدالهادي علي النصراوي Immunity to Infectious Diseases Immunity to infection depends on a combination of innate mechanisms (phagocytosis, complement, etc.) and antigen

More information

Course Title Form Hours subject

Course Title Form Hours subject Course Title Form Hours subject Types, and structure of chromosomes L 1 Histology Karyotyping and staining of human chromosomes L 2 Histology Chromosomal anomalies L 2 Histology Sex chromosomes L 1 Histology

More information

PMC ATM and ATR activities maintain replication fork integrity during SV40 chromatin replication. PLoS Pathog. 2013;9(4):e PMC

PMC ATM and ATR activities maintain replication fork integrity during SV40 chromatin replication. PLoS Pathog. 2013;9(4):e PMC Class Date Instructors Topic Papers Scott Hensley and Jianxin You Vaccine Induced Antibodies that Neutralize Group 1 and Group 2 Influenza A Viruses. Cell. 2016 Jul 28;166(3):609 23. doi:10.1016/j.cell.2016.06.043.

More information

7.012 Problem Set 6 Solutions

7.012 Problem Set 6 Solutions Name Section 7.012 Problem Set 6 Solutions Question 1 The viral family Orthomyxoviridae contains the influenza A, B and C viruses. These viruses have a (-)ss RNA genome surrounded by a capsid composed

More information

COURSE: Medical Microbiology, MBIM 650/720 - Fall TOPIC: Antigen Processing, MHC Restriction, & Role of Thymus Lecture 12

COURSE: Medical Microbiology, MBIM 650/720 - Fall TOPIC: Antigen Processing, MHC Restriction, & Role of Thymus Lecture 12 COURSE: Medical Microbiology, MBIM 650/720 - Fall 2008 TOPIC: Antigen Processing, MHC Restriction, & Role of Thymus Lecture 12 FACULTY: Dr. Mayer Office: Bldg. #1, Rm B32 Phone: 733-3281 Email: MAYER@MED.SC.EDU

More information

General information. Cell mediated immunity. 455 LSA, Tuesday 11 to noon. Anytime after class.

General information. Cell mediated immunity. 455 LSA, Tuesday 11 to noon. Anytime after class. General information Cell mediated immunity 455 LSA, Tuesday 11 to noon Anytime after class T-cell precursors Thymus Naive T-cells (CD8 or CD4) email: lcoscoy@berkeley.edu edu Use MCB150 as subject line

More information

Glycolysis - Plasmodium

Glycolysis - Plasmodium Apicomplexan Biochemistry Basics Toxoplasma Good cell biology model Genome sequencing not completed Virtual pathways Cryptosporidium The strange one Genome sequence completed Virtual pathways Plasmodium

More information

Virus and Prokaryotic Gene Regulation - 1

Virus and Prokaryotic Gene Regulation - 1 Virus and Prokaryotic Gene Regulation - 1 We have discussed the molecular structure of DNA and its function in DNA duplication and in transcription and protein synthesis. We now turn to how cells regulate

More information

Chapter 19: The Genetics of Viruses and Bacteria

Chapter 19: The Genetics of Viruses and Bacteria Chapter 19: The Genetics of Viruses and Bacteria What is Microbiology? Microbiology is the science that studies microorganisms = living things that are too small to be seen with the naked eye Microorganisms

More information

Polyomaviridae. Spring

Polyomaviridae. Spring Polyomaviridae Spring 2002 331 Antibody Prevalence for BK & JC Viruses Spring 2002 332 Polyoma Viruses General characteristics Papovaviridae: PA - papilloma; PO - polyoma; VA - vacuolating agent a. 45nm

More information

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication DEFINITIONS OF TERMS Eukaryotic: Non-bacterial cell type (bacteria are prokaryotes).. LESSON 4.4 WORKBOOK How viruses make us sick: Viral Replication This lesson extends the principles we learned in Unit

More information

Lecture 2: Virology. I. Background

Lecture 2: Virology. I. Background Lecture 2: Virology I. Background A. Properties 1. Simple biological systems a. Aggregates of nucleic acids and protein 2. Non-living a. Cannot reproduce or carry out metabolic activities outside of a

More information

Principles of Adaptive Immunity

Principles of Adaptive Immunity Principles of Adaptive Immunity Chapter 3 Parham Hans de Haard 17 th of May 2010 Agenda Recognition molecules of adaptive immune system Features adaptive immune system Immunoglobulins and T-cell receptors

More information

Helminth worm, Schistosomiasis Trypanosomes, sleeping sickness Pneumocystis carinii. Ringworm fungus HIV Influenza

Helminth worm, Schistosomiasis Trypanosomes, sleeping sickness Pneumocystis carinii. Ringworm fungus HIV Influenza Helminth worm, Schistosomiasis Trypanosomes, sleeping sickness Pneumocystis carinii Ringworm fungus HIV Influenza Candida Staph aureus Mycobacterium tuberculosis Listeria Salmonella Streptococcus Levels

More information

BCHM3972 Human Molecular Cell Biology (Advanced) 2013 Course University of Sydney

BCHM3972 Human Molecular Cell Biology (Advanced) 2013 Course University of Sydney BCHM3972 Human Molecular Cell Biology (Advanced) 2013 Course University of Sydney Page 2: Immune Mechanisms & Molecular Biology of Host Defence (Prof Campbell) Page 45: Infection and Implications for Cell

More information

[3]... [2]... [1]

[3]... [2]... [1] 1 Malaria is a disease that is estimated to kill around 80 people every hour worldwide. (a) The symptoms of malaria are caused by a single-celled organism belonging to the genus Plasmodium. (i) Plasmodium

More information

MCB130 Midterm. GSI s Name:

MCB130 Midterm. GSI s Name: 1. Peroxisomes are small, membrane-enclosed organelles that function in the degradation of fatty acids and in the degradation of H 2 O 2. Peroxisomes are not part of the secretory pathway and peroxisomal

More information

Introduction to Cancer Biology

Introduction to Cancer Biology Introduction to Cancer Biology Robin Hesketh Multiple choice questions (choose the one correct answer from the five choices) Which ONE of the following is a tumour suppressor? a. AKT b. APC c. BCL2 d.

More information

GPI-anchored glycoproteins Mike Ferguson

GPI-anchored glycoproteins Mike Ferguson GPI-Anchored Glycoproteins Prof. College of Life Sciences University of Dundee UK 1 What are GPI membrane anchors? GPI stands for glycosylphosphatidylinositol In other words, a phosphatidylinositol (PI)

More information

KINETOPLASTIDS. Kinetoplast. Nucleus

KINETOPLASTIDS. Kinetoplast. Nucleus KINETOPLASTIDS Kinetoplast Nucleus widespread parasites animals (fish humans) insects plants monophyletic group related to euglenoids unifying feature = kinetoplast Giemsa staining structure KINETOPLAST

More information

7.012 Quiz 3 Answers

7.012 Quiz 3 Answers MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel Friday 11/12/04 7.012 Quiz 3 Answers A > 85 B 72-84

More information

Plasma membranes. Plasmodesmata between plant cells. Gap junctions between animal cells Cell junctions. Cell-cell recognition

Plasma membranes. Plasmodesmata between plant cells. Gap junctions between animal cells Cell junctions. Cell-cell recognition Cell Communication Cell Signaling Cell-to-cell communication is essential for multicellular organisms Communicate by chemical messengers Animal and plant cells have cell junctions that directly connect

More information

Page 32 AP Biology: 2013 Exam Review CONCEPT 6 REGULATION

Page 32 AP Biology: 2013 Exam Review CONCEPT 6 REGULATION Page 32 AP Biology: 2013 Exam Review CONCEPT 6 REGULATION 1. Feedback a. Negative feedback mechanisms maintain dynamic homeostasis for a particular condition (variable) by regulating physiological processes,

More information

1. Parasitology Protozoa 4

1. Parasitology Protozoa 4 Contents 1. Parasitology 1 Host Parasite Relationship 2 Mode of Transmission 2 2. Protozoa 4 Classification 4 Reproduction 5 Immunity 5 Pathogenesis 6 Laboratory Diagnosis 6 Treatment 8 Entamoeba 8 Classification

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics Table of contents Chromosome DNA Protein synthesis Mutation Genetic disorder Relationship between genes and cancer Genetic testing Technical concern 2 All living organisms consist

More information

Ch. 18 Regulation of Gene Expression

Ch. 18 Regulation of Gene Expression Ch. 18 Regulation of Gene Expression 1 Human genome has around 23,688 genes (Scientific American 2/2006) Essential Questions: How is transcription regulated? How are genes expressed? 2 Bacteria regulate

More information

UCSF-CDD Community Meeting. Panel Introduction One example: Applying Open Collaborative Drug Discovery to Malaria Drug Resistance

UCSF-CDD Community Meeting. Panel Introduction One example: Applying Open Collaborative Drug Discovery to Malaria Drug Resistance UCSF-CDD Community Meeting Panel Introduction One example: Applying Open Collaborative Drug Discovery to Malaria Drug Resistance Acknowledgements Chibale Group, University of Cape Town Rosenthal Group,

More information

Supplementary information. MARCH8 inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins

Supplementary information. MARCH8 inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins Supplementary information inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins Takuya Tada, Yanzhao Zhang, Takayoshi Koyama, Minoru Tobiume, Yasuko Tsunetsugu-Yokota, Shoji

More information

VIRUSES. Biology Applications Control. David R. Harper. Garland Science Taylor & Francis Group NEW YORK AND LONDON

VIRUSES. Biology Applications Control. David R. Harper. Garland Science Taylor & Francis Group NEW YORK AND LONDON VIRUSES Biology Applications Control David R. Harper GS Garland Science Taylor & Francis Group NEW YORK AND LONDON vii Chapter 1 Virus Structure and 2.2 VIRUS MORPHOLOGY 26 Infection 1 2.3 VIRAL CLASSIFICATION

More information

Global Burden of Infectious Disease. Immune Response to Infectious Diseases Lecture 21 April 12 and Lecture 22 April 17

Global Burden of Infectious Disease. Immune Response to Infectious Diseases Lecture 21 April 12 and Lecture 22 April 17 Immune Response to Infectious Diseases Lecture 21 April 12 and Lecture 22 April 17 Global Burden of Infectious Disease Robert Beatty MCB150 Infection versus disease Immuncompetent vs Immunocompromised

More information

Chapter 13 Viruses, Viroids, and Prions. Biology 1009 Microbiology Johnson-Summer 2003

Chapter 13 Viruses, Viroids, and Prions. Biology 1009 Microbiology Johnson-Summer 2003 Chapter 13 Viruses, Viroids, and Prions Biology 1009 Microbiology Johnson-Summer 2003 Viruses Virology-study of viruses Characteristics: acellular obligate intracellular parasites no ribosomes or means

More information

Early Embryonic Development

Early Embryonic Development Early Embryonic Development Maternal effect gene products set the stage by controlling the expression of the first embryonic genes. 1. Transcription factors 2. Receptors 3. Regulatory proteins Maternal

More information

Antigen Presentation to T lymphocytes

Antigen Presentation to T lymphocytes Antigen Presentation to T lymphocytes Immunology 441 Lectures 6 & 7 Chapter 6 October 10 & 12, 2016 Jessica Hamerman jhamerman@benaroyaresearch.org Office hours by arrangement Antibodies and T cell receptors

More information

General aspects of this review - specific examples were addressed in class.

General aspects of this review - specific examples were addressed in class. General aspects of this review - specific examples were addressed in class. 1 Exam 1 Lecture 2: Discussed intracellular killing mechanisms Important maturation steps Rapid development into a microbicidal

More information

Immunity to Malaria Immunity to sporozoites injected by mosquito Mediated by antibody that prevents infection of liver cells

Immunity to Malaria Immunity to sporozoites injected by mosquito Mediated by antibody that prevents infection of liver cells IMMUNITY TO PARASITIC AND FUNGAL INFECTIONS Chapter 20 Topics Covered Overview of parasitic diseases Immune response to parasitic infections Immunity to malaria Immunity to schistosomiasis Immune effectors

More information

Viral reproductive cycle

Viral reproductive cycle Lecture 29: Viruses Lecture outline 11/11/05 Types of viruses Bacteriophage Lytic and lysogenic life cycles viruses viruses Influenza Prions Mad cow disease 0.5 µm Figure 18.4 Viral structure of capsid

More information

Status of Vaccine Research and Development of Vaccines for Schistosomiasis Prepared for WHO PD-VAC

Status of Vaccine Research and Development of Vaccines for Schistosomiasis Prepared for WHO PD-VAC Status of Vaccine Research and Development of Vaccines for Schistosomiasis Prepared for WHO PD-VAC I. About the Disease and Pathogen Basic information on pathogen, including transmission, estimated global

More information

Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases. Abul K. Abbas UCSF

Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases. Abul K. Abbas UCSF Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases Abul K. Abbas UCSF Balancing lymphocyte activation and control Activation Effector T cells Tolerance Regulatory T cells

More information

1. Virus 2. Capsid 3. Envelope

1. Virus 2. Capsid 3. Envelope VIRUSES BIOLOGY II VOCABULARY- VIRUSES (22 Words) 1. Virus 2. Capsid 3. Envelope 4. Provirus 5. Retrovirus 6. Reverse transcriptase 7. Bacteriophage 8. Lytic Cycle 9. Virulent 10. Lysis 11. Lysogenic Cycle

More information

Immunobiology 7. The Humoral Immune Response

Immunobiology 7. The Humoral Immune Response Janeway Murphy Travers Walport Immunobiology 7 Chapter 9 The Humoral Immune Response Copyright Garland Science 2008 Tim Worbs Institute of Immunology Hannover Medical School 1 The course of a typical antibody

More information

19 Viruses BIOLOGY. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Structural Features and Characteristics

19 Viruses BIOLOGY. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Structural Features and Characteristics 9 Viruses CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Viruses A. Structure of viruses B. Common Characteristics of Viruses C. Viral replication D. HIV Lecture Presentation

More information

C) The graph should look exactly like the graph on the left (Mut1 cells + Mating Pheromone for 3 hours at 25 degrees). The cells arrest in G1.

C) The graph should look exactly like the graph on the left (Mut1 cells + Mating Pheromone for 3 hours at 25 degrees). The cells arrest in G1. 706-2000-Exam 4 Answer Key 1) The question asks you to explain peaks A and B in the top graph. The other two graphs were there to give you hints. The question did not ask for these other two graphs to

More information

11/15/2011. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Viral Genomes. Structural Features and Characteristics

11/15/2011. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Viral Genomes. Structural Features and Characteristics Chapter 19 - Viruses Outline I. Viruses A. Structure of viruses B. Common Characteristics of Viruses C. Viral replication D. HIV II. Prions The Good the Bad and the Ugly Viruses fit into the bad category

More information

Introduction. Cancer Biology. Tumor-suppressor genes. Proto-oncogenes. DNA stability genes. Mechanisms of carcinogenesis.

Introduction. Cancer Biology. Tumor-suppressor genes. Proto-oncogenes. DNA stability genes. Mechanisms of carcinogenesis. Cancer Biology Chapter 18 Eric J. Hall., Amato Giaccia, Radiobiology for the Radiologist Introduction Tissue homeostasis depends on the regulated cell division and self-elimination (programmed cell death)

More information

Faculty and Department: Faculty of Science and Technology, Biomedical Sciences. Status: Option, BSc Biomedical Sciences, Westminster elective module

Faculty and Department: Faculty of Science and Technology, Biomedical Sciences. Status: Option, BSc Biomedical Sciences, Westminster elective module MODULE PROFORMA Full module title: Human Parasitology Module code: 5BIOM009W Credit level: 5 Length: One semester UK credit value: 20 ECTS value: 10 Faculty and Department: Faculty of Science and Technology,

More information

numbe r Done by Corrected by Doctor

numbe r Done by Corrected by Doctor numbe r 5 Done by Mustafa Khader Corrected by Mahdi Sharawi Doctor Ashraf Khasawneh Viral Replication Mechanisms: (Protein Synthesis) 1. Monocistronic Method: All human cells practice the monocistronic

More information

Principles of Molecular Virology STAGE / YEAR: 3 CREDITS: 10. PROGRAMME COMMITTEE: Biomedical Sciences. VERSION: 4th March 2015

Principles of Molecular Virology STAGE / YEAR: 3 CREDITS: 10. PROGRAMME COMMITTEE: Biomedical Sciences. VERSION: 4th March 2015 MODULE: MODULE NUMBER: JACS CODE: Principles of Molecular Virology BIO00041H C540 STAGE / YEAR: 3 CREDITS: 10 ORGANISER: Nathalie Signoret PROGRAMME COMMITTEE: Biomedical Sciences VERSION: 4th March 2015

More information

Chapter 7 Conclusions

Chapter 7 Conclusions VII-1 Chapter 7 Conclusions VII-2 The development of cell-based therapies ranging from well-established practices such as bone marrow transplant to next-generation strategies such as adoptive T-cell therapy

More information

Name Section Problem Set 6

Name Section Problem Set 6 Name Section 7.012 Problem Set 6 Question 1 The viral family Orthomyxoviridae contains the influenza A, B and C viruses. These viruses have a (-)ss RNA genome surrounded by a capsid composed of lipids

More information

MedChem 401~ Retroviridae. Retroviridae

MedChem 401~ Retroviridae. Retroviridae MedChem 401~ Retroviridae Retroviruses plus-sense RNA genome (!8-10 kb) protein capsid lipid envelop envelope glycoproteins reverse transcriptase enzyme integrase enzyme protease enzyme Retroviridae The

More information

Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment

Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment In multicellular eukaryotes, gene expression regulates development

More information

Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions

Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions 11/20/2017 MDufilho 1 Characteristics of Viruses Viruses Minuscule, acellular, infectious agent having either DNA or RNA Cause infections

More information

Eukaryotic Gene Regulation

Eukaryotic Gene Regulation Eukaryotic Gene Regulation Chapter 19: Control of Eukaryotic Genome The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different,

More information

Ex. Schistosoma species (blood flukes) and Fasciola hepatica.

Ex. Schistosoma species (blood flukes) and Fasciola hepatica. TREMATODES: INTRODUCTION: Ex. Schistosoma species (blood flukes) and Fasciola hepatica. The life cycle of trematodes involves a sexual cycle in humans and asexual reproduction in freshwater snails (intermediate

More information

Chapter 6- An Introduction to Viruses*

Chapter 6- An Introduction to Viruses* Chapter 6- An Introduction to Viruses* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. 6.1 Overview of Viruses

More information

Don t Freak Out. Test on cell organelle on Friday!

Don t Freak Out. Test on cell organelle on Friday! Cell Structure 1 Don t Freak Out Test on cell organelle on Friday! This test should be a buffer test and help raise your overall test score. All information will come from this week! 2 Cells Provide Compartments

More information

AP Biology Reading Guide. Concept 19.1 A virus consists of a nucleic acid surrounded by a protein coat

AP Biology Reading Guide. Concept 19.1 A virus consists of a nucleic acid surrounded by a protein coat AP Biology Reading Guide Name Chapter 19: Viruses Overview Experimental work with viruses has provided important evidence that genes are made of nucleic acids. Viruses were also important in working out

More information

2013 W. H. Freeman and Company. 12 Signal Transduction

2013 W. H. Freeman and Company. 12 Signal Transduction 2013 W. H. Freeman and Company 12 Signal Transduction CHAPTER 12 Signal Transduction Key topics: General features of signal transduction Structure and function of G protein coupled receptors Structure

More information

Parasitic Protozoa, Helminths, and Arthropod Vectors

Parasitic Protozoa, Helminths, and Arthropod Vectors PowerPoint Lecture Slides for MICROBIOLOGY ROBERT W. BAUMAN Chapter 23 Parasitic Protozoa, Helminths, and Arthropod Vectors Parasitic Diseases Protozoan and helminthic parasites are emerging as serious

More information

Production of Exosomes in a Hollow Fiber Bioreactor

Production of Exosomes in a Hollow Fiber Bioreactor Production of Exosomes in a Hollow Fiber Bioreactor John J S Cadwell, President and CEO, FiberCell Systems Inc INTRODUCTION Exosomes are small lipid membrane vesicles (80-120 nm) of endocytic origin generated

More information

Structure and Function of Antigen Recognition Molecules

Structure and Function of Antigen Recognition Molecules MICR2209 Structure and Function of Antigen Recognition Molecules Dr Allison Imrie allison.imrie@uwa.edu.au 1 Synopsis: In this lecture we will examine the major receptors used by cells of the innate and

More information

Cell Mediated Immunity CELL MEDIATED IMMUNITY. Basic Elements of Cell Mediated Immunity (CMI) Antibody-dependent cell-mediated cytotoxicity (ADCC)

Cell Mediated Immunity CELL MEDIATED IMMUNITY. Basic Elements of Cell Mediated Immunity (CMI) Antibody-dependent cell-mediated cytotoxicity (ADCC) Chapter 16 CELL MEDIATED IMMUNITY Cell Mediated Immunity Also known as Cellular Immunity or CMI The effector phase T cells Specificity for immune recognition reactions TH provide cytokines CTLs do the

More information

The Adaptive Immune Responses

The Adaptive Immune Responses The Adaptive Immune Responses The two arms of the immune responses are; 1) the cell mediated, and 2) the humoral responses. In this chapter we will discuss the two responses in detail and we will start

More information

Phenomena first observed in petunia

Phenomena first observed in petunia Vectors for RNAi Phenomena first observed in petunia Attempted to overexpress chalone synthase (anthrocyanin pigment gene) in petunia. (trying to darken flower color) Caused the loss of pigment. Bill Douherty

More information

Intrinsic cellular defenses against virus infection

Intrinsic cellular defenses against virus infection Intrinsic cellular defenses against virus infection Detection of virus infection Host cell response to virus infection Interferons: structure and synthesis Induction of antiviral activity Viral defenses

More information

BACTERIAL PATHOGENESIS

BACTERIAL PATHOGENESIS BACTERIAL PATHOGENESIS A pathogen is a microorganism that is able to cause disease. Pathogenicity is the ability to produce disease in a host organism. Virulence a term which refers to the degree of pathogenicity

More information

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes: Interactions between innate immunity & adaptive immunity What happens to T cells after they leave the thymus? Naïve T cells exit the thymus and enter the bloodstream. If they remain in the bloodstream,

More information

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes: Interactions between innate immunity & adaptive immunity What happens to T cells after they leave the thymus? Naïve T cells exit the thymus and enter the bloodstream. If they remain in the bloodstream,

More information

PROJECT TRICALS AN INTERNATIONAL COLLABORATION TO FIND EFFECTIVE TREATMENTS FOR AMYOTROPHIC LATERAL SCLEROSIS

PROJECT TRICALS AN INTERNATIONAL COLLABORATION TO FIND EFFECTIVE TREATMENTS FOR AMYOTROPHIC LATERAL SCLEROSIS PROJECT TRICALS AN INTERNATIONAL COLLABORATION TO FIND EFFECTIVE TREATMENTS FOR AMYOTROPHIC LATERAL SCLEROSIS BACKGROUND Amyotrophic Lateral Sclerosis (ALS), also known as Motor Neurone Disease (MND) is

More information

Pathogenicity of Infectious Diseases

Pathogenicity of Infectious Diseases Pathogenicity of Infectious Diseases Pathogenicity of Infectious Diseases HOST DISEASE TRIAD PATHOGEN ENVIRONMENT OTHER MICROBES Microbial Interactions KOCH'S POSTULATES Four criteria that were established

More information

Biology of Neisseria meningitidis: implications for vaccine development Richard Moxon: University of Oxford

Biology of Neisseria meningitidis: implications for vaccine development Richard Moxon: University of Oxford Biology of Neisseria meningitidis: implications for vaccine development Richard Moxon: University of Oxford Biology of N.meningitidis infection Within hours, the disease may progress to shock with multi-organ

More information

Dr. Ahmed K. Ali. Outcomes of the virus infection for the host

Dr. Ahmed K. Ali. Outcomes of the virus infection for the host Lec. 9 Dr. Ahmed K. Ali Outcomes of the virus infection for the host In the previous few chapters we have looked at aspects of the virus replication cycle that culminate in the exit of infective progeny

More information

Bi 8 Lecture 17. interference. Ellen Rothenberg 1 March 2016

Bi 8 Lecture 17. interference. Ellen Rothenberg 1 March 2016 Bi 8 Lecture 17 REGulation by RNA interference Ellen Rothenberg 1 March 2016 Protein is not the only regulatory molecule affecting gene expression: RNA itself can be negative regulator RNA does not need

More information

Cell Communication. Local and Long Distance Signaling

Cell Communication. Local and Long Distance Signaling Cell Communication Cell to cell communication is essential for multicellular organisms Some universal mechanisms of cellular regulation providing more evidence for the evolutionary relatedness of all life

More information

Bioscience For Global Health (6 UC quarter units)

Bioscience For Global Health (6 UC quarter units) Bioscience For Global Health (6 UC quarter units) Aims of the Course Infection Biology Aims The course describes the process of infection by the major human pathogens viruses, bacteria, protozoans and

More information

Chapter 15: Signal transduction

Chapter 15: Signal transduction Chapter 15: Signal transduction Know the terminology: Enzyme-linked receptor, G-protein linked receptor, nuclear hormone receptor, G-protein, adaptor protein, scaffolding protein, SH2 domain, MAPK, Ras,

More information

Omnis cellula e cellula

Omnis cellula e cellula Chapter 12 The Cell Cycle Omnis cellula e cellula 1855- Rudolf Virchow German scientist all cells arise from a previous cell Every cell from a cell In order for this to be true, cells must have the ability

More information

Virus Basics. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities. Can infect organisms of every domain

Virus Basics. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities. Can infect organisms of every domain Virus Basics Chapter 13 & 14 General Characteristics of Viruses Non-living entities Not considered organisms Can infect organisms of every domain All life-forms Commonly referred to by organism they infect

More information

Driving access to medicine

Driving access to medicine Driving access to medicine An example from the Novartis Malaria Initiative Hans Rietveld Director, Market Access & Capacity Building Novartis Malaria Initiative Social Forum - Geneva February 20, 2015

More information

The Biology and Genetics of Cells and Organisms The Biology of Cancer

The Biology and Genetics of Cells and Organisms The Biology of Cancer The Biology and Genetics of Cells and Organisms The Biology of Cancer Mendel and Genetics How many distinct genes are present in the genomes of mammals? - 21,000 for human. - Genetic information is carried

More information

Schistosomiasis. Li Qian Department of Infectious Diseases, Huashan Hospital, Fudan University

Schistosomiasis. Li Qian Department of Infectious Diseases, Huashan Hospital, Fudan University Schistosomiasis Li Qian Department of Infectious Diseases, Huashan Hospital, Fudan University Topics Definition The Pathogen Epidemiology Etiology and Life Cycle Pathobiology Clinical manifestations Diagnosis

More information

General Parasitology (BIOL 4104) Fall Semester 2017 Texts: Instructor: Teaching Assistant: Lecture: Laboratory: Website: Attendance:

General Parasitology (BIOL 4104) Fall Semester 2017 Texts: Instructor: Teaching Assistant: Lecture: Laboratory: Website: Attendance: General Parasitology (BIOL 4104) Fall Semester 2017 This course will cover the biology of some important parasitic organisms (protozoa, helminths, and arthropods) of medical and veterinary importance.

More information

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol HLA and antigen presentation Department of Immunology Charles University, 2nd Medical School University Hospital Motol MHC in adaptive immunity Characteristics Specificity Innate For structures shared

More information

Cancer. October is National Breast Cancer Awareness Month

Cancer. October is National Breast Cancer Awareness Month Cancer October is National Breast Cancer Awareness Month Objectives 1: Gene regulation Explain how cells in all the different parts of your body develop such different characteristics and functions. Contrast

More information

7.014 Problem Set 7 Solutions

7.014 Problem Set 7 Solutions MIT Department of Biology 7.014 Introductory Biology, Spring 2005 7.014 Problem Set 7 Solutions Question 1 Part A Antigen binding site Antigen binding site Variable region Light chain Light chain Variable

More information

Biodiversity: prokaryotes & viruses

Biodiversity: prokaryotes & viruses Biodiversity: prokaryotes & viruses All three domains contain microscopic organisms. Focus now: Prokaryotes Prokaryotes in general Asexual, single-celled, no nucleus or organelles, circular DNA Can live

More information

The Adaptive Immune Response. B-cells

The Adaptive Immune Response. B-cells The Adaptive Immune Response B-cells The innate immune system provides immediate protection. The adaptive response takes time to develop and is antigen specific. Activation of B and T lymphocytes Naive

More information

Virus Basics. General Characteristics of Viruses 5/9/2011. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities

Virus Basics. General Characteristics of Viruses 5/9/2011. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities Virus Basics Chapter 13 & 14 General Characteristics of Viruses Non-living entities Not considered organisms Can infect organisms of every domain All life-formsf Commonly referred to by organism they infect

More information

AP Biology Cells: Chapters 4 & 5

AP Biology Cells: Chapters 4 & 5 AP Biology Cells: Chapters 4 & 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The was the first unifying principle of biology. a. spontaneous generation

More information

BIT 120. Copy of Cancer/HIV Lecture

BIT 120. Copy of Cancer/HIV Lecture BIT 120 Copy of Cancer/HIV Lecture Cancer DEFINITION Any abnormal growth of cells that has malignant potential i.e.. Leukemia Uncontrolled mitosis in WBC Genetic disease caused by an accumulation of mutations

More information

supplementary information

supplementary information DOI: 10.1038/ncb1875 Figure S1 (a) The 79 surgical specimens from NSCLC patients were analysed by immunohistochemistry with an anti-p53 antibody and control serum (data not shown). The normal bronchi served

More information

Prokaryotes and eukaryotes alter gene expression in response to their changing environment

Prokaryotes and eukaryotes alter gene expression in response to their changing environment Chapter 18 Prokaryotes and eukaryotes alter gene expression in response to their changing environment In multicellular eukaryotes, gene expression regulates development and is responsible for differences

More information

Overview: Chapter 19 Viruses: A Borrowed Life

Overview: Chapter 19 Viruses: A Borrowed Life Overview: Chapter 19 Viruses: A Borrowed Life Viruses called bacteriophages can infect and set in motion a genetic takeover of bacteria, such as Escherichia coli Viruses lead a kind of borrowed life between

More information

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol HLA and antigen presentation Department of Immunology Charles University, 2nd Medical School University Hospital Motol MHC in adaptive immunity Characteristics Specificity Innate For structures shared

More information

Blood Smears Only 6 October Sample Preparation and Quality Control 15B-K

Blood Smears Only 6 October Sample Preparation and Quality Control 15B-K NEW YORK STATE Parasitology Proficiency Testing Program Blood Smears Only 6 October 5 The purpose of the New York State Proficiency Testing Program in the category of Parasitology - Blood Smears Only is

More information

This summary outlines the burden of targeted diseases and program implementation outcomes in Malawi. AFRICAN REGION LDC LIC

This summary outlines the burden of targeted diseases and program implementation outcomes in Malawi. AFRICAN REGION LDC LIC Malawi The control of neglected tropical diseases represents a major challenge to those providing healthcare services in the endemic countries. The purpose of this country profile is to provide public

More information

Innate Immunity & Inflammation

Innate Immunity & Inflammation Innate Immunity & Inflammation The innate immune system is an evolutionally conserved mechanism that provides an early and effective response against invading microbial pathogens. It relies on a limited

More information