Therapy-Related Myelodysplastic Syndrome Morphologic Subclassification May Not Be Clinically Relevant

Size: px
Start display at page:

Download "Therapy-Related Myelodysplastic Syndrome Morphologic Subclassification May Not Be Clinically Relevant"

Transcription

1 Hematopathology / T-MDS SUBCLASSIFICATION Therapy-Related Myelodysplastic Syndrome Morphologic Subclassification May Not Be Clinically Relevant Zeba N. Singh, MD, 1 Dezheng Huo, PhD, 3 John Anastasi, MD, 1,4 Sonali M. Smith, MD, 2,4 Theodore Karrison, PhD, 3 Michelle M. Le Beau, PhD, 2,4 Richard A. Larson, MD, 2,4 and James W. Vardiman, MD 1,4 Key Words: Therapy-related leukemia; Therapy-related myelodysplasia; World Health Organization classification Abstract In practice, cases of therapy-related myelodysplastic syndrome (t-mds) are often classified according to morphologic schemes used for de novo MDS. However, there are few data addressing the appropriateness of such classification. We studied 155 patients with therapy-related acute myeloid leukemia (t- AML)/t-MDS to determine whether subclassification by the World Health Organization (WHO) criteria for de novo MDS provides prognostic information in t-mds. In addition, we assessed whether cytogenetic stratification by the International Prognostic Scoring System (IPSS) guidelines or karyotypic complexity was prognostically important. We found no differences in median survival times among patients classified into the different WHO subgroup of MDS or according to their bone marrow blast percentage; our results indicate a uniformly poor outcome in t-mds regardless of morphologic classification. However, significant survival differences correlated with cytogenetic stratification according to IPSS guidelines and/or karyotypic complexity. We found only a borderline difference in median survival of patients with an initial t-mds diagnosis compared with patients with an initial t-aml diagnosis. Numerous studies have documented the prognostic usefulness of the morphologic classification of de novo myelodysplastic syndromes (MDSs). 1-6 The subgroups of the French-American-British (FAB) 7,8 and the World Health Organization (WHO) 9 classification schemes for MDS correlate with overall survival and with the rate of transformation to overt acute leukemia. The prognostic impact of these schemes is not unexpected because the subgroups of each system are defined in part by the percentage of bone marrow blasts, which is itself an independent predictor of prognosis in de novo MDS. 10 The International Prognostic Scoring System (IPSS) generated by the International MDS Risk Analysis Workshop demonstrated that apart from the blast count and the number of peripheral blood cytopenias, stratification according to good-, intermediate-, and poor-risk cytogenetic abnormalities further separates patients with de novo MDS into distinct prognostic groups. 10 For patients with therapy-related MDS (t-mds), nomenclature has historically been a problem, and the value of morphologic subclassification and risk assignment by cytogenetic findings are not clear The FAB system made no distinction between de novo MDS and t-mds. 7,8 However, some authors reported it difficult to classify therapy-related disease by FAB criteria, mainly because many cases show marked multilineage dysplasia but fewer than 5% blasts in the blood or bone marrow, findings that do not fit well into any of the FAB subgroups Such cases could be classified by the WHO criteria as refractory cytopenia with multilineage dysplasia (RCMD), yet in that classification scheme, therapy-related acute myeloid leukemia (t-aml) and t-mds are simply grouped together as a single syndrome (t-aml/mds) and included with AML. 9 The WHO system further recognizes 2 subtypes of t-aml and t-mds Am J Clin Pathol 2007;127:

2 Singh et al / T-MDS SUBCLASSIFICATION depending on the previous chemotherapy received by the patient (alkylating agent related vs topoisomerase-ii inhibitor related disease). However, the WHO guidelines do not clearly state whether further subclassification of t-mds should be done using the same criteria as for de novo MDS or whether such classification is clinically relevant. Instead, they merely indicate these types of AML and MDS may be classified if appropriate in a specific morphologic or genetic category with the qualifying term, therapy-related. 9 In practice, pathologists and clinicians often use the same classification for t-aml and for t-mds that is used for their de novo counterparts, with the assumption that it provides prognostic information and that it can be used for treatment planning In the case of cytogenetic stratification, patients with t-mds were excluded from study at the International MDS Risk Analysis workshop, 10 and whether the cytogenetic risk groups as defined in the IPSS or other stratification methods are relevant to patients with t-mds has not been fully explored. It has been our impression that patients with t-mds have almost uniformly poor outcomes with rapid progression to acute leukemia or bone marrow failure regardless of the initial morphologic classification of their disease. To determine whether this was so, we took advantage of a well-studied cohort of patients with t-mds and asked whether subclassification of t-mds according to the WHO guidelines for de novo MDS was clinically useful and whether cytogenetic stratification has the same prognostic value for t-mds as for de novo MDS. Our results demonstrate that outcome has little relation to the morphologic subclassification in patients with t-mds but that cytogenetic stratification predicts outcome. Materials and Methods Cases The computerized patient files in the Section of Hematology/Oncology, University of Chicago, Chicago, IL, were searched for all cases diagnosed as t-aml or t-mds between July 1972 and July Of the 306 cases identified, the bone marrow specimen diagnostic for t-aml or t- MDS had been obtained at our institution in 166 cases, and in the remaining 140 cases, the diagnosis had been made on slides obtained from outside institutions. Our study was limited to the former group for whom the diagnostic bone marrow material was still available in our files for review. In 11 of these cases, the bone marrow specimens were inadequate, precluding morphologic assessment. These 11 cases were excluded from further analyses. Clinical and follow-up data were obtained from the clinical files and have been previously reported in detail. 25 Treatments given to patients after the development of t-mds/t-aml were individualized and variable in most cases, ranging from supportive care only to intensive chemotherapy and, rarely, bone marrow transplantation. Furthermore, treatment options varied considerably during the 30 years that cases were accrued for this study. Thus, response data were not assessed for this report. Treatment, however, was never based on the morphologic subclassification of MDS. Morphologic Evaluation of Specimens All diagnostic material, including peripheral blood, bone marrow aspirate, and bone core biopsy specimens, was reviewed by 3 of us (Z.N.S., J.A., and J.W.V.), and a 500-cell differential count was performed on the bone marrow aspirates to enumerate blasts and other cellular elements. The granulocytic, erythroid, and megakaryocytic lineages were considered dysplastic when 10% or more of the cells in the lineage showed unequivocal dyspoiesis. The core biopsy specimen was reviewed for cellularity, an estimated blast percentage, and reticulin fibrosis. In most cases, the blast percentage evaluated on the bone marrow aspirate smears agreed with the finding on the core biopsy specimen. In the few discrepant cases, the specimen with the higher blast count was considered more representative of the disease status. An iron stain (Perls Prussian blue) on the aspirate smear or clot section was reviewed in all cases, and ringed sideroblasts were enumerated as a percentage of the total erythroid component. The bone marrow was also assessed for involvement by the initial malignancy. By using the WHO classification system and the 20% blast threshold for a diagnosis of AML, we divided cases into those with an initial diagnosis of t-aml and those with an initial diagnosis of t-mds. The t-mds group was further subclassified according to the WHO guidelines for de novo MDS. Cytogenetic Analysis Cytogenetic analysis was performed with quinacrine fluorescence and trypsin-giemsa-banding techniques on bone marrow cells from aspirates or biopsy specimens and on peripheral blood cells obtained at the time of diagnosis. Metaphase cells were examined from direct preparations and from 24- or 48-hour unstimulated cultures. Chromosomal abnormalities are described according to the International System for Human Cytogenetic Nomenclature. Cases were grouped into the following cytogenetic subgroups: (1) as defined for prognostic evaluation of de novo MDS by the IPSS: good risk, ie, sole del(5q), sole del(20q), Y, or normal; poor risk, ie, complex ( 3 abnormalities) or abnormalities of chromosome 7; and intermediate risk, ie, all other abnormalities 10 ; and (2) according to the complexity of the cytogenetic abnormalities. Statistical Analysis Associations between categorical variables were analyzed by using the Fisher exact test. Kruskal-Wallis nonparametric 198 Am J Clin Pathol 2007;127: Downloaded 198 from

3 Hematopathology / ORIGINAL ARTICLE tests were used to compare latency intervals between groups. Overall survival rates were estimated by the Kaplan-Meier method, and comparisons between groups were performed using the log-rank test and the generalized Wilcoxon test for equality of survival functions. 26 The Wilcoxon test weights early deaths more than later deaths and, thus, is sensitive to early differences, whereas the log-rank weights all deaths equally. Hazard ratios and corresponding 95% confidence intervals were calculated from Cox proportional hazards model. P values of.05 or less were regarded as statistically significant. Results The study included 155 cases. The clinical features of the cases are similar to the larger group from which they were derived. 25 Briefly, 89 patients had a primary hematologic malignancy (Hodgkin lymphoma, 41; non-hodgkin lymphoma, 36; precursor B-lymphoblastic lymphoma, 1; light chain disease, 1; and multiple myeloma, 10), whereas 62 patients had nonhematologic malignancies, and 4 patients had received cytotoxic therapy for a nonneoplastic disease. Chemotherapy had been given to 129 patients. The majority of patients (70) received topoisomerase-ii inhibitors and alkylating or antimetabolite therapy; only 3 patients received topoisomerase-ii inhibitors as the single chemotherapeutic agent. Radiotherapy was given to 98 patients, and, of these, 25 received radiotherapy alone and 73 received combined modality therapy with radiotherapy and chemotherapy. Of the 155 cases, 81 (52.3%) initially were diagnosed as t-mds and 69 (44.5%) as t-aml. The remaining 5 (3.2%) cases had laboratory and morphologic features that overlapped MDS and myeloproliferative disorders (MPDs) and were designated as therapy-related MDS/MPD (t- MDS/MPD). There was no relationship between the type of primary disease and initial diagnosis as t-mds or t-aml. The average latency period from onset of therapy for the primary disorder to the development of bone marrow dysfunction was 62 months for t-mds and 63 months for t-aml. The latency period was not different between patients with primary hematologic malignancies and nonhematologic malignancies, nor was it different among patients who received chemotherapy only, radiotherapy only, or combined modality therapy. Table 1 shows the distribution of initial diagnoses in the 155 cases classified according to the WHO criteria. According to the WHO criteria for de novo MDS, 78 of 81 cases could be subclassified as follows: 6 as refractory anemia (RA), 29 as RCMD, 4 as RCMD and ringed sideroblasts (RCMD-RS), 19 as RA with excess blasts-1 (RAEB-1), and 20 as RAEB-2. Three cases with dysplastic features limited to one lineage other than erythroid or with insufficient numbers of dysplastic cells in multiple lineages Table 1 Distribution of Initial Diagnoses in 155 Patients With t-aml/ t-mds Classified According to WHO Criteria for De Novo MDS Initial Diagnosis No. (%) of Cases t-mds 81 (52.3) RA 6 RARS 0 RCMD 29 RCMD-RS 4 RAEB-1 19 RAEB-2 20 MDS-U 3 t-mds/mpd 5 (3.2) CMML 3 a-cml 1 MDS/MPD, unclassifiable 1 t-aml 69 (44.5) a-cml, atypical chronic myeloid leukemia; AML, acute myeloid leukemia; CMML, chronic myelomonocytic leukemia; MDS, myelodysplastic syndrome; MPD, myeloproliferative disorder; RA, refractory anemia; RAEB, refractory anemia with excess blasts; RARS, RA with ringed sideroblasts; RCMD, refractory cytopenia with multilineage dysplasia; RS, ringed sideroblasts; t, therapy-related; U, unclassified; WHO, World Health Organization. to qualify for multilineage dysplasia fell into the unclassified category (MDS-U). Of the 5 cases in the t-mds/mpd subgroup, 3 had chronic myelomonocytic leukemia, 1 had atypical chronic myeloid leukemia, and 1 had extreme thrombocytosis with ringed sideroblasts (MDS/MPD, unclassifiable). For the purpose of analysis, the t-mds and t-mds/mpd subgroups were combined, and hereafter are described as t-mds. Examination of the bone marrow aspirate smears and core biopsy specimens revealed persistent primary malignancy in 18 cases ranging from small foci of involvement to nearly 70% involvement of the marrow by the primary tumor. Cytogenetic Analysis Table 2 shows the overall distribution of cytogenetic abnormalities in the t-mds and t-aml cases. Except for the balanced translocations t(8;21), t(15;17), inv(16), and t(11q23), Table 2 Distribution of Cytogenetic Abnormalities in t-mds and t-aml Karyotype t-mds t-aml Normal 10 6 Abnormalities of chromosome 5, 7, or both 64 3 (with or without other abnormalities) 8 Balanced translocations 11 t(11q23) 6 t(8;21) 2 inv(16) 2 t(15;17) 1 Other abnormalities Complex karyotype ( 3 abnormalities) * Yes 41 (48%) 35 (51%) No 45 (52%) 34 (49%) AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; t, therapy-related. * Data are given as number (percentage). Am J Clin Pathol 2007;127:

4 Singh et al / T-MDS SUBCLASSIFICATION abnormalities that by definition were found only in the t-aml category, the cytogenetic abnormalities (chromosome 5 and/or 7, other abnormalities, complex karyotype, and normal karyotype) were similarly distributed in the t-mds and t-aml groups. The majority (76/86 [88%]) of the t-mds cases had 1 or more cytogenetic abnormalities. Overall, abnormalities of chromosome 5 and/or 7 were most commonly observed (64/86 [74%]). Complex karyotypes ( 3 abnormalities) were observed in about half (41/86 [48%]) of the cases. When stratified within the good-, intermediate-, and poor-risk IPSS-cytogenetic categories, most t-mds cases (70%) had poor risk cytogenetic abnormalities, followed by the intermediate-risk (16%) and good-risk (14%) categories. Table 3 shows the distribution of cytogenetic abnormalities in the t-mds subgroups with respect to IPSS cytogenetic categories, the complexity of the karyotype, and the overall distribution of chromosome 5 and/or 7 abnormalities and other abnormalities vs normal karyotype. Survival All patients were followed up for at least 24 months or until death. By January 2005, 149 (96.1%) of the patients had died. Figure 1A shows there was no difference in the overall survival (OS) among the subgroups of t-mds (P =.78, Wilcoxon test; P =.54, log-rank test). Table 4 provides survival probabilities and hazard ratios for the 3 large subgroups of t-mds. The hazard of death was similar among the RCMD, RAEB-1, and RAEB-2 subgroups. To analyze whether the percentage of bone marrow blasts has similar prognostic importance in t-mds as proven in de novo MDS, cases with fewer than 5% and 5% or more bone marrow blasts were compared Figure 1B (Table 4). The survival times for the fewer than 5% and 5% or more blast categories were virtually identical (medians, 7.9 months and 8.7 months, respectively; P =.99, Wilcoxon test; P =.37, log-rank test). Relative to patients with fewer than 5% blasts, patients with 5% or more blasts had similar risks of dying (hazard ratio, 1.22; 95% confidence interval, ). The presence of the primary malignancy in the bone marrow at the time of the diagnosis of therapy-related disease did not impact the survival of patients in comparison with those in whom there was no tumor present (data not shown). The OS of patients with t-mds with cytogenetic abnormalities of chromosome 5 and/or 7 or other abnormalities vs a normal karyotype is depicted in Figure 2A. Patients with a normal cytogenetic pattern had borderline significantly better survival compared with patients with cytogenetic abnormalities (median survival time: chromosome 5/7 abnormalities, 7.6 months; others, 8.6 months; normal karyotype, 11.4 months) (P =.053, log-rank test; P =.18, Wilcoxon test). However, when analyzed according to the IPSS cytogenetic subgroups Figure 2B, there was a significant difference in median survival: good-risk subgroup, 11.4 months; intermediate-risk subgroup, 11.7 months; poor-risk subgroup, 7.1 months (P =.02, Wilcoxon test; P =.007, log-rank test). We also found that patients with t-mds with complex karyotypes had a shorter survival time (median, 5.5 months) than patients without complex karyotypes (11.7 months), and the difference was statistically significant (P <.001, Wilcoxon test; P =.001, log-rank test) Figure 2C. Of 86 cases of t-mds, 30 progressed to t-aml, and 27 remained as t-mds at the time of death. In the remaining 29 cases, information regarding progression to t-aml before death or last follow-up was not available. Among the cases Table 3 Distribution of Cytogenetic Abnormalities in t-mds Subgroups * t-mds Subgroup RA RCMD RCMD-RS MDS-U RAEB-1 RAEB-2 MPD/MDS (n = 6) (n = 29) (n = 4) (n = 3) (n = 19) (n = 20) (n = 5) Cytogenetic abnormality Abnormalities 5, 7, or both 2 (33) 19 (66) 4 (100) 2 (67) 17 (89) 17 (85) 3 (60) Other clonal abnormalities 1 (17) 6 (21) 0 (0) 1 (33) 1 (5) 2 (10) 1 (20) Normal 3 (50) 4 (14) 0 (0) 0 (0) 1 (5) 1 (5) 1 (20) Complex karyotype Yes 2 (33) 13 (45) 4 (100) 1 (33) 9 (47) 10 (50) 2 (40) No 4 (67) 16 (55) 0 (0) 2 (67) 10 (53) 10 (50) 3 (60) IPSS cytogenetic categories Good risk 3 (50) 4 (14) 0 (0) 0 (0) 2 (11) 1 (5) 2 (40) Intermediate risk 1 (17) 8 (28) 0 (0) 1 (33) 3 (16) 1 (5) 0 (0) Poor risk 2 (33) 17 (59) 4 (100) 2 (67) 14 (74) 18 (90) 3 (60) IPSS, International Prognostic Scoring System; MDS, myelodysplastic syndrome; MPD, myeloproliferative disorder; RA, refractory anemia; RAEB, refractory anemia with excess blasts; RCMD, refractory cytopenia with multilineage dysplasia; RS, ringed sideroblasts; t, therapy-related; U, unclassified. * Data are given as number (percentage). P =.053, log-rank test; P =.18, Wilcoxon test. P =.001, log-rank test; P <.001, Wilcoxon test. P =.02, log-rank test; P =.007, Wilcoxon test. 200 Am J Clin Pathol 2007;127: Downloaded 200 from

5 Hematopathology / ORIGINAL ARTICLE A B MDS-U (n = 3) MDS/MPD (n = 5) RA (n = 6) RAEB-1 (n = 19) RAEB-2 (n = 20) RCMD (n = 29) RCMD-RS (n = 4) Blasts <5% (n = 46) Blasts 5%-19% (n = 40) Figure 1 Overall survival in therapy-related myelodysplastic syndrome (t-mds) subgroups classified by the World Health Organization criteria for de novo MDS (A) and with <5% and 5%-19% bone marrow blasts (B). There is no statistically significant difference (A) in the median overall survival between the t-mds morphologic subgroups: refractory anemia (RA), 7.9 months; refractory cytopenia with multilineage dysplasia (RCMD), 8.5 months; RCMD with ringed sideroblasts (RCMD-RS), 3.9 months; refractory anemia with excess blasts (RAEB)-1, 5.5 months; RAEB-2, 9.3 months; MDS unclassified (MDS-U), 15.8 months; MDS/myeloproliferative disorder (MPD), 10.8 months (P =.54, log-rank test; P =.78, Wilcoxon test). Survival time is virtually identical (B) in t-mds with <5% bone marrow blasts (median, 7.9 months) and with 5%-19% blasts (median, 8.7 months) (P =.37, log-rank test; P =.99, Wilcoxon test). that progressed, the median time for progression from t-mds to t-aml was 5.3 months; the interquartile range (25th-75th percentiles) was 2.3 to 8.7 months. As shown in Table 5, there was no significant difference among the WHO subgroups of t-mds regarding progression to t-aml (P =.53). When survival was compared between t-mds and t- AML cases Figure 3A, there was no statistically significant difference in general (P =.19, log-rank test) and only a borderline significant difference between t-mds and t-aml in the early survival period (P =.043, Wilcoxon test). The median survival time was 8.5 months for patients with an initial diagnosis of t-mds compared with 6.5 months for patients with an initial diagnosis of t-aml. To avoid confounding the analysis by cases with balanced chromosomal translocations, which were exclusively within the t-aml group, we repeated the survival analysis after exclusion of this group Figure 3B. The difference between t-mds and t-aml was still significant (P =.038, Wilcoxon test; P =.012, log-rank test). Discussion The aims of this study were 2-fold. First, we wanted to apply the WHO criteria for classification of de novo MDS to cases of t-mds to determine whether morphologic classification has similar clinical relevance in t-mds as it does in Table 4 Overall Survival by WHO Subgroups and Percentage of Bone Marrow Blasts in t-mds Cases (%) 6-mo 1-y Hazard Ratio (95% CI) (95% CI) (95% CI) t-mds subgroup RCMD (n = 29) 66 (45-80) 38 (21-55) RAEB-1 (n = 19) 47 (24-67) 42 (20-62) 1.28 ( ) RAEB-2 (n = 20) 70 (45-85) 25 (9-45) 1.28 ( ) Bone marrow blasts (%) <5 (n = 46) 63 (47-75) 37 (23-51) 5-19 (n = 40) 60 (43-73) 33 (19-47) 1.22 ( ) CI, confidence interval; RAEB, refractory anemia with excess blasts; RCMD, refractory cytopenia with multilineage dysplasia; t-mds, therapy-related myelodysplastic syndrome. de novo disease. Second, we wanted to determine whether cytogenetic stratification according to the IPSS guidelines, which are proven to be predictive of outcome in de novo MDS, or according to karyotypic complexity could also be applied to t-mds. We addressed these questions by analyzing a well-studied cohort of t-mds cases. Our results suggest that morphologic subclassification by the WHO guidelines offers no prognostic information regarding disease progression or survival but that cytogenetic abnormalities are predictive of overall outcome. Am J Clin Pathol 2007;127:

6 Singh et al / T-MDS SUBCLASSIFICATION A B Normal (n = 10) Others (n = 12) Abnormal 5 and/or 7 (n = 64) Good risk (n = 12) Intermediate risk (n = 14) Poor risk (n = 60) C <3 Abnormalities (n = 45) 3 Abnormalities (n = 41) Figure 2 Overall survival (OS) of patients with therapyrelated myelodysplastic syndrome and a normal karyotype or cytogenetic abnormalities (chromosome 5 and/or 7 or others) (A), the International Prognostic Scoring System (IPSS) cytogenetic categories (B), and the complexity of the karyotype (C). Patients with a normal karyotype (A) have borderline significantly better survival than patients with cytogenetic abnormalities (P =.053, log-rank test; P =.18, Wilcoxon test). Patients in the IPSS poor-risk category (B) have a significantly shorter OS (P =.007, log-rank test; P =.02, Wilcoxon test). Patients with complex ( 3) abnormalities (C) have a shorter median survival time than patients with <3 abnormalities (P <.001, log-rank test; P =.001, Wilcoxon test). Patients with complex abnormalities (C) overlap with the poor-risk IPSS group (B) and have a similar median OS. Table 5 Follow-up and Progression to t-aml in WHO Subgroups of t-mds * t-mds Subgroup RA RCMD RCMD-RS MDS-U RAEB-1 RAEB-2 MPD/MDS (n = 6) (n = 29) (n = 4) (n = 3) (n = 19) (n = 20) (n = 5) t-mds to t-aml 1 (17) 6 (21) 3 (75) 1 (33) 8 (42) 10 (50) 1 (20) Progression unknown 3 (50) 11 (38) 0 (0) 1 (33) 6 (32) 5 (25) 3 (60) No progression 2 (33) 12 (41) 1 (25) 1 (33) 5 (26) 5 (25) 1 (20) AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; MPD, myeloproliferative disorder; RA, refractory anemia; RAEB, refractory anemia with excess blasts; RCMD, refractory cytopenia with multilineage dysplasia; RS, ringed sideroblasts; t, therapy-related; U, unclassified. * Data are given as number (percentage). There was no difference in progression to t-aml among subgroups of t-mds (P =.53). In the present study, there were cases classified into all WHO subgroups except refractory anemia with ringed sideroblasts and the 5q syndrome, ie, MDS with isolated del(5q), categories. The largest single group was RCMD, which included 29 (34%) of the cases. There was no significant difference in OS or the incidence or rate of progression to t-aml among the WHO subgroups, indicating that morphologic subclassification is not of prognostic value in t-mds. These data for t-mds are in marked contrast with recently published studies that show WHO subgroups have prognostic significance for de novo MDS. 4-6 Because the WHO morphologic subgroups are defined largely by the percentage of blasts in the bone marrow and by the extent of morphologic dysplasia both of which have been shown to have 202 Am J Clin Pathol 2007;127: Downloaded 202 from

7 Hematopathology / ORIGINAL ARTICLE A B t-mds (n = 86) t-aml (n = 69) t-mds (n = 86) t-aml (n = 58) Balanced translocations (n = 11) Figure 3 Overall survival of patients with therapy-related myelodysplastic syndrome (t-mds) and therapy-related acute myeloid leukemia (t-aml), including (A) and separating out (B) patients with balanced translocations. The median survival differed by only 2 months between patients with t-mds (median survival time, 8.5 months) and patients with t-aml (median survival time, 6.5 months) (A, P =.043, Wilcoxon test). This borderline difference was still significant (P =.012, log-rank test; P =.038, Wilcoxon test) when patients with balanced translocations were excluded from the t-aml group (B). independent prognostic significance in de novo MDS 10,27,28 we questioned whether these parameters had prognostic significance in t-mds. When cases were analyzed according to the percentage of bone marrow blasts, there was no difference in outcome between cases with 5% or more blasts and those with fewer than 5%. Furthermore, patients with t-mds that we classified as RA, ie, fewer than 5% marrow blasts and only dyserythropoiesis, did not fare any better than patients with multilineage dysplasia classified as RCMD or patients with more blasts classified as RAEB. Although there were only 6 patients in the RA group, their median survival time was only 7.9 months, with 5 of 6 patients dead within 24 months of diagnosis. Our study indicates that there is a significantly worse outcome for patients with t-mds than for patients with de novo MDS classified into the same WHO category. For example, the median OS for our largest group of patients, t-rcmd, was only 8.5 months, which is considerably less than the 33 months reported by Germing et al 4 and the 49 months by Malcovati et al 6 for patients with de novo RCMD. The median survival time for therapy-related RA, 7.9 months, is much worse than the reported median survival times for de novo RA classified by WHO criteria, which range from 69 to 108 months. 4-6 Our observations are more in keeping with those made by Michels et al, 19 who documented a median survival of 4 months in their group of therapy-related RAEB cases classified according to the FAB criteria and no difference in outcome in terms of evolution to AML in t-mds cases with fewer than 5% vs 5% to 20% blasts. The second goal of this study was to determine whether cytogenetic abnormalities could be used to assign t-mds cases into various risk groups. Numerous articles have documented that most patients with t-mds have poor-risk cytogenetic abnormalities, but the role that karyotypic abnormalities might have in stratification of t-mds into various risk groups has not been fully addressed. In fact, t-mds cases were specifically excluded from the International Workshop on Prognostic Factors in MDS when the IPSS system was defined. 10 The majority of our t-mds cases (88%) had 1 or more cytogenetic abnormalities, comparable to that observed in other series of t-aml/mds and more than the reported frequency for de novo MDS (~50%). 31 Overall, abnormalities of chromosome 5 and/or 7 were most commonly observed, and almost half of the cases had complex karyotypes, consistent with previous reports The distribution of the cytogenetic abnormalities (chromosome 5 and/or 7, other abnormalities, and normal karyotype) was similar among the WHO subgroups of t-mds and between t-mds and t-aml. Most cases (70%) had poor-risk cytogenetic abnormalities according to the criteria of IPSS cytogenetic stratification. A statistically significant difference in survival time was observed among patients in good-, intermediate-, and poor-risk IPSS cytogenetic categories. In addition, patients with complex karyotypes ( 3 abnormalities) had a significantly shorter survival time than patients with fewer than 3 cytogenetic abnormalities. Am J Clin Pathol 2007;127:

8 Singh et al / T-MDS SUBCLASSIFICATION These results are relevant in view of results from recent large clinical trials, which suggest that as in de novo AML, the cytogenetic pattern is also an important prognostic factor in t- AML Schoch et al 34 demonstrated karyotype as an independent prognostic parameter for t-aml. In their study, patients in the favorable karyotype group, ie, t(8;21), inv(16), and t(15;17), had a rate of complete remission comparable to that of patients with de novo AML with similar karyotypic abnormalities, but this was not true for the intermediate and unfavorable groups of t-aml. Our study indicates that the IPSS cytogenetic stratification system is clinically relevant in t-mds as well. Because many of the patients in the poor-risk IPSS category had complex karyotypes and the majority of patients with complex karyotypes had abnormalities of chromosome 5 and/or 7, it may be reasonable to infer that the presence of abnormalities of chromosome 5 and/or 7 is the major determining factor for the poor outcome in t-mds overall and that additional abnormalities further contribute to the unfavorable prognosis. There was only a borderline difference in survival between cases initially diagnosed as t-mds or t-aml (Figure 3A, median, 8.5 vs 6.5 months, respectively). Although statistically significant, the median survival times for both are dismal. The distribution of cytogenetic abnormalities in t-mds and t-aml cases was similar except that the recurring balanced translocations were, by definition, included only in the latter group. In view of a better outcome reported in t-aml cases with recurring balanced translocations, 34 we reanalyzed the t-aml cases after exclusion of this group. In the resulting analysis (Figure 3B), there was a borderline improved longterm survival in t-mds cases compared with t-aml cases. However, there was no clinically significant difference at 6 months (t-mds, 62%; t-aml, 52%) or at 24 months (t-mds, 35%; t-aml, 26%). Furthermore, the median time to transformation from t-mds to t-aml was only 5.3 months. These data suggest that t-mds and t-aml without the recurring balanced chromosomal translocations are biologically similar, and it is reasonable to consider them together as a single syndrome (t-aml/mds), as recommended by the WHO. Poor survival of patients with t-aml/mds is a function of multiple competing risk factors, including the persistence of primary malignant disease, significant organ dysfunction from previous therapies, prolonged immunocompromised status, and lack of uniformly effective treatment. The presence of persistent primary disease in the bone marrow at the time of diagnosis of t-mds did not, however, correlate with poorer outcome in our study, but we did not evaluate the impact of persistent extramedullary disease. Patchy distribution of the residual primary disease and the influence of other comorbid conditions could make this finding more problematic. Treatment regimens for most cases of t-aml/mds have not been very successful. At present, donor hematopoietic stem cell transplantation offers the greatest potential for cure, particularly for younger patients and when patients undergo transplantation earlier in the disease course. 23,35,36 Risk stratification provides a framework to plan therapy and assess response. The results of our study indicate that morphologic subclassification of t-mds is not clinically useful for risk stratification and that t-mds as a group has an ominous outcome, similar to that of t-aml. Therefore, although the bone marrow blast counts are important for assessing response to treatment and should be performed, further classification of t- MDS using the same criteria as used for de novo MDS may not be necessary and, in fact, may provide misleading information for planning therapy, particularly for patients with low blast counts. Nevertheless, the number of patients in some subgroups in our study (eg, RA and MDS-U) is somewhat small, so that additional studies are needed to confirm our data. On the other hand, our results demonstrate that cytogenetic stratification based on the IPSS system or the complexity of cytogenetic abnormalities defines prognostic groups in t- MDS and is clinically relevant. From the 1 Section of Hematopathology, Department of Pathology, 2 Section of Hematology/Oncology, Department of Medicine, 3 Department of Health Studies, and the 4 Cancer Research Center, University of Chicago, Chicago, IL. Supported in part by grants CA14906, CALGB, and CA40046 from the National Cancer Institute, Bethesda, MD (M.M.L. and R.A.L.). Address reprint requests to Dr Vardiman: Section of Hematopathology, Dept of Pathology, University of Chicago, 5841 S Maryland Ave, MC 0008, Chicago, IL Acknowledgments: We thank the members of the Cancer Cytogenetics Laboratory for the excellent technical assistance and data management. References 1. Foucar K, Langdon RM II, Armitage JO, et al. Myelodysplastic syndromes: a clinical and pathologic analysis of 109 cases. Cancer. 1985;56: Kerkhofs H, Hermanns J, Haak HL, et al. Utility of the FAB classification for myelodysplastic syndromes: investigation of prognostic factors in 237 cases. Br J Haematol. 1987;65: Economopoulos T, Stathakis N, Foudoulakis A, et al. Myelodysplastic syndromes: analysis of 131 cases according to the FAB classification. Eur J Haematol. 1987;38: Germing U, Gattermann N, Strupp C, et al. Validation of the WHO proposals for a new classification of primary myelodysplastic syndromes: a retrospective analysis of 1600 patients. Leuk Res. 2000;24: Howe RB, Porwit-MacDonald A, Wanat R, et al. The WHO Classification of MDS does make a difference. Blood. 2004;103: Malcovati L, Della Porta MG, Pascutto C, et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol. 2005;23: Am J Clin Pathol 2007;127: Downloaded 204 from

9 Hematopathology / ORIGINAL ARTICLE 7. Bennett JM, Catovsky D, Daniel MT, et al. French-American- British (FAB) co-operative group: proposals for the classification of myelodysplastic syndromes. Br J Haematol.1982;51: Bennett JM, Catovsky D, Daniel MT, et al. Proposed revised criteria for the classification of acute myeloid leukemia: a report of the French-American-British Cooperative Group. Ann Intern Med. 1985;103: Brunning RD, Bennett JM, Flandrin G, et al. Myelodysplastic syndromes. In: Jaffe ES, Harris NL, Stein H, et al, eds. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2001: World Health Organization Classification of Tumours. 10. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89: Vardiman JW, Golomb HM, Rowley JD, et al. Acute nonlymphocytic leukemia in malignant lymphoma: a morphological study. Cancer. 1978;42: Smit CGS, Meyler L. Acute myeloid leukaemia after treatment with cytostatic agents. Lancet. 1970;2: Cardamone JM, Kimmerle RI, Marshall EY. Development of acute erythroleukemia in B-cell immunoproliferative disorders after prolonged therapy with alkylating agents. Am J Med. 1974;57: Rappaport AH, Cohen RJ, Castro JR. Erythroleukemia following total-body radiation for advanced lymphocytic lymphoma. Radiology. 1975;115: Steigbigel RT, Kim H, Potolsky A, et al. Acute myeloproliferative disorder following long-term chlorambucil therapy. Arch Intern Med. 1974;134: Foucar K, McKenna RN, Bloomfield CD, et al. Therapyrelated leukemia: a panmyelosis. Cancer. 1979;43: Khaleeli M, Keane WM, Lee GR. Sideroblastic anemia in multiple myeloma: a preleukemic change. Blood. 1973;41: Fisher WB, Armentrout SA, Weisman R Jr, et al. Preleukemia : a myelodysplastic syndrome often terminating in acute leukemia. Arch Intern Med. 1973;132: Michels SD, McKenna RW, Arthur DC, et al. Therapy-related acute myeloid leukemia and myelodysplastic syndrome: a clinical and morphological study of 65 cases. Blood. 1985;65: Selby P, Horwich A. Secondary leukaemia in Hodgkin s disease [letter]. Lancet. 1986;1: Brusamolino E, Papa G, Valagussa P, et al. Treatment-related leukemia in Hodgkin s disease: a multi-institution study on 75 cases. Hematol Oncol. 1987;5: Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the Cancer and Leukemia Group B. J Clin Oncol. 2002;20: Kroger N, Brand R, van Biezen A, et al. Autologous stem cell transplantation for therapy-related acute myeloid leukemia and myelodysplastic syndrome. Bone Marrow Transplant. 2006;37: Raza A, Lisak L, Billmeier J, et al. Phase II study of topotecan and thalidomide in patients with high-risk myelodysplastic syndromes. Leuk Lymphoma. 2006;47: Smith SM, Le Beau MM, Huo D, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 2003;102: Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. New York, NY: John Wiley and Sons; Matsuda A, Jinnai I, Yagasaki F, et al. Refractory anemia with severe dysplasia: clinical significance of morphological features in refractory anemia. Leukemia. 1998;12: Rosati S, Mick R, Xu F, et al. Refractory cytopenia with multilineage dysplasia: further characterization of an unclassifiable myelodysplastic syndrome. Leukemia. 1996;10: Kantarjian HM, Keating MJ, Walters RS, et al. Therapyrelated leukemia and myelodysplastic syndrome: clinical, cytogenetic, and prognostic features. J Clin Oncol. 1986;4: Pedersen-Bjergaard J, Philip P, Larsen SO, et al. Therapyrelated myelodysplasia and acute myeloid leukemia: cytogenetic characteristics of 115 consecutive cases and risk in seven cohorts of patients treated intensively for malignant diseases in the Copenhagen series. Leukemia. 1993;7: Mauritzson N, Albin M, Rylander L, et al. Pooled analysis of clinical and cytogenetic features in treatment-related and de novo adult acute myeloid leukemia and myelodysplastic syndromes based on a consecutive series of 761 patients analyzed and on 5098 unselected cases reported in the literature Leukemia. 2002;16: Leith CP, Kopecky KJ, Godwin J, et al. Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy: a Southwest Oncology Group study. Blood. 1997;89: Grimwade D, Walker H, Oliver F, et al, for the Medical Research Council Adult and Children s Leukaemia Working Parties. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. Blood. 1998;92: Schoch C, Kern W, Schnittger S, et al. Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-aml): an analysis of 93 patients with t-aml in comparison to 1091 patients with de novo AML. Leukemia. 2004;18: Ballen KK, Gilliland DG, Guinan EC, et al. Bone marrow transplantation for therapy-related myelodysplasia: comparison with primary myelodysplasia. Bone Marrow Transplant. 1997;20: Witherspoon RP, Deeg HJ, Storer B, et al. Hematopoietic stem-cell transplantation for treatment-related leukemia or myelodysplasia. J Clin Oncol. 2001;19: Am J Clin Pathol 2007;127:

What is MDS? Epidemiology, Diagnosis, Classification & Risk Stratification

What is MDS? Epidemiology, Diagnosis, Classification & Risk Stratification What is MDS? Epidemiology, Diagnosis, Classification & Risk Stratification Rami Komrokji, MD Clinical Director Malignant Hematology Moffitt Cancer Center Normal Blood and Bone Marrow What is MDS Myelodysplastic

More information

Hematology Measure #1: Myelodysplastic Syndrome (MDS) and Acute Leukemias: Baseline Cytogenetic Testing Performed on Bone Marrow

Hematology Measure #1: Myelodysplastic Syndrome (MDS) and Acute Leukemias: Baseline Cytogenetic Testing Performed on Bone Marrow Hematology Measure #1: Myelodysplastic Syndrome (MDS) and Acute Leukemias: Baseline Cytogenetic Testing Performed on Bone Marrow This measure may be used as an Accountability measure Clinical Performance

More information

Myelodysplastic Syndromes: Everyday Challenges and Pitfalls

Myelodysplastic Syndromes: Everyday Challenges and Pitfalls Myelodysplastic Syndromes: Everyday Challenges and Pitfalls Kathryn Foucar, MD kfoucar@salud.unm.edu Henry Moon lecture May 2007 Outline Definition Conceptual overview; pathophysiologic mechanisms Incidence,

More information

myelodysplastic syndrome MDS MDS MDS

myelodysplastic syndrome MDS MDS MDS myelodysplastic syndrome MDS MDS 15 10 3 2004 15 MDS 400 2 65 61 70 MDS MDS 1 1 2 3 3 4 1 4 2 3 4 MDS 1982 Bennett French- American-BritishFAB 1 2 WHO 1999 3 2001 4 2002 Vardiman MDS 5 2WHO FAB refractory

More information

Allogeneic Hematopoietic Stem-Cell Transplantation for Myelodysplastic Syndromes and Myeloproliferative Neoplasms. Policy Specific Section:

Allogeneic Hematopoietic Stem-Cell Transplantation for Myelodysplastic Syndromes and Myeloproliferative Neoplasms. Policy Specific Section: Medical Policy Allogeneic Hematopoietic Stem-Cell Transplantation for Myelodysplastic Syndromes and Myeloproliferative Type: Medical Necessity and Investigational / Experimental Policy Specific Section:

More information

NOVEL APPROACHES IN THE CLASSIFICATION AND RISK ASSESSMENT OF PATIENTS WITH MYELODYSPLASTIC SYNDROMES-CLINICAL IMPLICATION

NOVEL APPROACHES IN THE CLASSIFICATION AND RISK ASSESSMENT OF PATIENTS WITH MYELODYSPLASTIC SYNDROMES-CLINICAL IMPLICATION ORIGINAL ARTICLES NOVEL APPROACHES IN THE CLASSIFICATION AND RISK ASSESSMENT OF PATIENTS WITH MYELODYSPLASTIC SYNDROMES-CLINICAL IMPLICATION Ilina Micheva 1, Rosen Rachev 1, Hinco Varbanov 1, Vladimir

More information

HEMATOLOGIC MALIGNANCIES BIOLOGY

HEMATOLOGIC MALIGNANCIES BIOLOGY HEMATOLOGIC MALIGNANCIES BIOLOGY Failure of terminal differentiation Failure of differentiated cells to undergo apoptosis Failure to control growth Neoplastic stem cell FAILURE OF TERMINAL DIFFERENTIATION

More information

Myelodysplastic syndromes in adults aged less than 50 years: Incidence and clinicopathological data

Myelodysplastic syndromes in adults aged less than 50 years: Incidence and clinicopathological data JBUON 2014; 19(4): 999-1005 ISSN: 1107-0625, online ISSN: 2241-6293 www.jbuon.com E-mail: editorial_office@jbuon.com ORIGINAL ARTICLE Myelodysplastic syndromes in adults aged less than 50 years: Incidence

More information

MYELODYSPLASTIC SYNDROMES: A diagnosis often missed

MYELODYSPLASTIC SYNDROMES: A diagnosis often missed MYELODYSPLASTIC SYNDROMES: A diagnosis often missed D R. EMMA W YPKEMA C O N S U LTA N T H A E M AT O L O G I S T L A N C E T L A B O R AT O R I E S THE MYELODYSPLASTIC SYNDROMES DEFINITION The Myelodysplastic

More information

Changes to the 2016 WHO Classification for the Diagnosis of MDS

Changes to the 2016 WHO Classification for the Diagnosis of MDS Changes to the 2016 WHO Classification for the Diagnosis of MDS Welcome to Managing MDS. I am Dr. Ulrich Germing, and today, I will provide highlights from the 14th International Symposium on MDS in Valencia,

More information

NUMERATOR: Patients who had baseline cytogenetic testing performed on bone marrow

NUMERATOR: Patients who had baseline cytogenetic testing performed on bone marrow Quality ID #67 (NQF 0377): Hematology: Myelodysplastic Syndrome (MDS) and Acute Leukemias: Baseline Cytogenetic Testing Performed on Bone Marrow National Quality Strategy Domain: Effective Clinical Care

More information

Overview of guidelines on iron chelation therapy in patients with myelodysplastic syndromes and transfusional iron overload

Overview of guidelines on iron chelation therapy in patients with myelodysplastic syndromes and transfusional iron overload Int J Hematol (2008) 88:24 29 DOI 10.1007/s12185-008-0118-z PROGRESS IN HEMATOLOGY Transfusional iron overload and iron chelation therapy Overview of guidelines on iron chelation therapy in patients with

More information

RAEB-2 2 Transforming to Acute Erythroleukemia Case # 165

RAEB-2 2 Transforming to Acute Erythroleukemia Case # 165 RAEB-2 2 Transforming to Acute Erythroleukemia Case # 165 Sebastian J. Sasu, M.D. UCLA Medical Center, Hematopathology Los Angeles, CA and Saint John s s Health Center Santa Monica, CA Clinical History

More information

2007 Workshop of SH/EAHP. Session 5 Therapy-related myeloid neoplasms

2007 Workshop of SH/EAHP. Session 5 Therapy-related myeloid neoplasms 2007 Workshop of SH/EAHP Session 5 Therapy-related myeloid neoplasms Classification: Key issues MDS vs. AML-M6 MDS vs. MDS/MPD Genetically defined entities Relevance of morphologic classification Clinical

More information

SWOG ONCOLOGY RESEARCH PROFESSIONAL (ORP) MANUAL LEUKEMIA FORMS CHAPTER 16A REVISED: DECEMBER 2017

SWOG ONCOLOGY RESEARCH PROFESSIONAL (ORP) MANUAL LEUKEMIA FORMS CHAPTER 16A REVISED: DECEMBER 2017 LEUKEMIA FORMS The guidelines and figures below are specific to Leukemia studies. The information in this manual does NOT represent a complete set of required forms for any leukemia study. Please refer

More information

Daniel A. Arber, MD, 1 Anthony S. Stein, MD, 2 Nora H. Carter, MS, 3 David Ikle, PhD, 3 Stephen J. Forman, MD, 2 and Marilyn L.

Daniel A. Arber, MD, 1 Anthony S. Stein, MD, 2 Nora H. Carter, MS, 3 David Ikle, PhD, 3 Stephen J. Forman, MD, 2 and Marilyn L. Hematopathology / ACUTE MYELOID LEUKEMIA CLASSIFICATION Prognostic Impact of Acute Myeloid Leukemia Classification Importance of Detection of Recurring Cytogenetic Abnormalities and Multilineage Dysplasia

More information

Myelodysplastic syndromes

Myelodysplastic syndromes Myelodysplastic syndromes Robert P Hasserjian Massachusetts General Hospital, Boston, MA Disclosure of Relevant Financial Relationships Dr. Hasserjian declares he has no conflict(s) of interest to disclose.

More information

Case Presentation No. 075

Case Presentation No. 075 Case Presentation No. 075 Session 4. Myelodysplastic Syndrome Cristina Montalvo, MD Baylor College of Medicine Houston, Texas 2007 Workshop of Society for Hematopathology and European Association for Haematopathology

More information

Better Prognosis for Patients With Del(7q) Than for Patients With Monosomy 7 in Myelodysplastic Syndrome

Better Prognosis for Patients With Del(7q) Than for Patients With Monosomy 7 in Myelodysplastic Syndrome Better Prognosis for Patients With Del(7q) Than for Patients With Monosomy 7 in Myelodysplastic Syndrome Iris Cordoba, MD 1 ; José R. González-Porras, MD 1 ; Benet Nomdedeu, MD 2 ; Elisa Luño, MD 3 ; Raquel

More information

INTRODUCTION TO CYTOGENETICS AND MOLECULAR TESTING IN MDS

INTRODUCTION TO CYTOGENETICS AND MOLECULAR TESTING IN MDS INTRODUCTION TO CYTOGENETICS AND MOLECULAR TESTING IN MDS Saturday, September 29, 2018 Cyrus C. Hsia, HBSc, MD, FRCPC Associate Professor of Medicine, Schulich School of Medicine and Dentistry, Western

More information

Hematology Unit Lab 2 Review Material

Hematology Unit Lab 2 Review Material Objectives Hematology Unit Lab 2 Review Material - 2018 Laboratory Instructors: 1. Assist students during lab session Students: 1. Review the introductory material 2. Study the case histories provided

More information

Impact of Comorbidity on Quality of Life and Clinical Outcomes in MDS

Impact of Comorbidity on Quality of Life and Clinical Outcomes in MDS Current Therapeutic and Biologic Advances in MDS A Symposium of The MDS Foundation ASH 2014 Impact of Comorbidity on Quality of Life and Clinical Outcomes in MDS Peter Valent Medical University of Vienna

More information

A prospective, multicenter European Registry for newly diagnosed patients with Myelodysplastic Syndromes of IPSS low and intermediate-1 subtypes.

A prospective, multicenter European Registry for newly diagnosed patients with Myelodysplastic Syndromes of IPSS low and intermediate-1 subtypes. Protocol Synopsis Study Title A prospective, multicenter European Registry for newly diagnosed patients with Myelodysplastic Syndromes of IPSS low and intermediate-1 subtypes. Short Title European MDS

More information

CME/SAM. Mixed Phenotype Acute Leukemia

CME/SAM. Mixed Phenotype Acute Leukemia AJCP / Original Article Mixed Phenotype Acute Leukemia A Study of 61 Cases Using World Health Organization and European Group for the Immunological Classification of Leukaemias Criteria Olga K. Weinberg,

More information

Myelodysplastic Syndrome Case 158

Myelodysplastic Syndrome Case 158 Myelodysplastic Syndrome Case 158 Dong Chen MD PhD Division of Hematopathology Mayo Clinic Clinical History 86 year old man Persistent borderline anemia and thrombocytopenia. His past medical history was

More information

Bone Marrow. Procedures Blood Film Aspirate, Cell Block Trephine Biopsy, Touch Imprint

Bone Marrow. Procedures Blood Film Aspirate, Cell Block Trephine Biopsy, Touch Imprint Bone Marrow Protocol applies to acute leukemias, myelodysplastic syndromes, myeloproliferative disorders, chronic lymphoproliferative disorders, malignant lymphomas, plasma cell dyscrasias, histiocytic

More information

Myeloproliferative Disorders: Diagnostic Enigmas, Therapeutic Dilemmas. James J. Stark, MD, FACP

Myeloproliferative Disorders: Diagnostic Enigmas, Therapeutic Dilemmas. James J. Stark, MD, FACP Myeloproliferative Disorders: Diagnostic Enigmas, Therapeutic Dilemmas James J. Stark, MD, FACP Medical Director, Cancer Program and Palliative Care Maryview Medical Center Professor of Medicine, EVMS

More information

Clinical features and prognosis of patients with myelodysplastic syndromes who were exposed to atomic bomb radiation in Nagasaki

Clinical features and prognosis of patients with myelodysplastic syndromes who were exposed to atomic bomb radiation in Nagasaki Clinical features and prognosis of patients with myelodysplastic syndromes who were exposed to atomic bomb radiation in Nagasaki Masatoshi Matsuo, 1,2 Masako Iwanaga, 3 Hisayoshi Kondo, 4 Midori Soda,

More information

CLINICAL STUDY REPORT SYNOPSIS

CLINICAL STUDY REPORT SYNOPSIS CLINICAL STUDY REPORT SYNOPSIS Document No.: EDMS-PSDB-5412862:2.0 Research & Development, L.L.C. Protocol No.: R115777-AML-301 Title of Study: A Randomized Study of Tipifarnib Versus Best Supportive Care

More information

Integrated Diagnostic Approach to the Classification of Myeloid Neoplasms. Daniel A. Arber, MD Stanford University

Integrated Diagnostic Approach to the Classification of Myeloid Neoplasms. Daniel A. Arber, MD Stanford University Integrated Diagnostic Approach to the Classification of Myeloid Neoplasms Daniel A. Arber, MD Stanford University What is an integrated approach? What is an integrated approach? Incorporating all diagnostic

More information

Classification of Hematologic Malignancies. Patricia Aoun MD MPH

Classification of Hematologic Malignancies. Patricia Aoun MD MPH Classification of Hematologic Malignancies Patricia Aoun MD MPH Objectives Know the basic principles of the current classification system for hematopoietic and lymphoid malignancies Understand the differences

More information

Acute myeloid leukemia. M. Kaźmierczak 2016

Acute myeloid leukemia. M. Kaźmierczak 2016 Acute myeloid leukemia M. Kaźmierczak 2016 Acute myeloid leukemia Malignant clonal disorder of immature hematopoietic cells characterized by clonal proliferation of abnormal blast cells and impaired production

More information

Table 1: biological tests in SMD

Table 1: biological tests in SMD Table 1: biological tests in SMD Tests Mandatory Recommended Under validation Morphology Marrow aspirate Marrow biopsy 1 Iron staining Quantification of dysplasia WHO 2008 Classification Cytogenetics Conventional

More information

Myelodysplastic Syndromes: Challenges to Improving Patient and Caregiver Satisfaction

Myelodysplastic Syndromes: Challenges to Improving Patient and Caregiver Satisfaction Supplement issue Myelodysplastic Syndromes: Challenges to Improving B. Douglas Smith, MD Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins

More information

Impact of Cytogenetics on Outcome of De Novo and Therapy-Related AML and MDS after Allogeneic Transplantation

Impact of Cytogenetics on Outcome of De Novo and Therapy-Related AML and MDS after Allogeneic Transplantation Biology of Blood and Marrow Transplantation 13:655-664 (2007) 2007 American Society for Blood and Marrow Transplantation 1083-8791/07/1306-0001$32.00/0 doi:10.1016/j.bbmt.2007.01.079 Impact of Cytogenetics

More information

Myelodysplasia/Myeloproliferative Neoplasms (MDS/MPN) Post-HCT Data

Myelodysplasia/Myeloproliferative Neoplasms (MDS/MPN) Post-HCT Data Instructions for Myelodysplasia/Myeloproliferative Neoplasms (MDS/MPN) Post-HCT Data (Form 2114) This section of the CIBMTR Forms Instruction Manual is intended to be a resource for completing the Myelodysplasia/Myeloproliferative

More information

June 11, Ella Noel, D.O., FACOI 1717 West Broadway Madison, WI

June 11, Ella Noel, D.O., FACOI 1717 West Broadway Madison, WI June 11, 2018 Ella Noel, D.O., FACOI 1717 West Broadway Madison, WI 53713 policycomments@wpsic.com RE: Draft Local Coverage Determination: MolDX: MDS FISH (DL37772) Dear Dr. Noel Thank you for the opportunity

More information

original article introduction original article

original article introduction original article original article Annals of Oncology 21: 114 119, 2010 doi:10.1093/annonc/mdp258 Published online 15 July 2009 Comorbidity as prognostic variable in MDS: comparative evaluation of the HCT-CI and CCI in

More information

National Horizon Scanning Centre. Azacitidine (Vidaza) for myelodysplastic syndrome. September 2007

National Horizon Scanning Centre. Azacitidine (Vidaza) for myelodysplastic syndrome. September 2007 Azacitidine (Vidaza) for myelodysplastic syndrome September 2007 This technology summary is based on information available at the time of research and a limited literature search. It is not intended to

More information

Guidelines for diagnosis and management of Adult Myelodysplastic Syndromes (MDS)

Guidelines for diagnosis and management of Adult Myelodysplastic Syndromes (MDS) Guidelines for diagnosis and management of Adult Myelodysplastic Syndromes (MDS) Author: Dr A Pillai, Consultant Haematologist On behalf of the Haematology CNG Re- Written: February 2011, Version 2 Revised:

More information

Recommended Timing for Transplant Consultation

Recommended Timing for Transplant Consultation REFERRAL GUIDELINES Recommended Timing for Transplant Consultation Published jointly by the National Marrow Donor Program /Be The Match and the American Society for Blood and Marrow Transplantation BeTheMatchClinical.org

More information

MDS - Diagnosis and Treatments. Dr Helen Enright, Adelaide and Meath Hospital Dr Catherine Flynn, St James Hospital

MDS - Diagnosis and Treatments. Dr Helen Enright, Adelaide and Meath Hospital Dr Catherine Flynn, St James Hospital MDS - Diagnosis and Treatments Dr Helen Enright, Adelaide and Meath Hospital Dr Catherine Flynn, St James Hospital Overview What is myelodysplasia? Symptoms Diagnosis and prognosis Myelodysplasia therapy

More information

MYELODYSPLASTIC SYNDROME. Vivienne Fairley Clinical Nurse Specialist Sheffield

MYELODYSPLASTIC SYNDROME. Vivienne Fairley Clinical Nurse Specialist Sheffield MYELODYSPLASTIC SYNDROME Vivienne Fairley Clinical Nurse Specialist Sheffield MDS INCIDENCE 1/100,000/YEAR 3,250/YEAR MEDIAN AGE 70 MDS HYPO OR HYPERCELLULAR BONE MARROW BLOOD CYTOPENIAS (EARLY STAGES

More information

MYELODYSPLASTIC SYNDROMES

MYELODYSPLASTIC SYNDROMES MYELODYSPLASTIC SYNDROMES Babak Tamizi Far MD. Assistant professor of internal medicine Al-zahra university hospital, Isfahan university of medical sciences Key Features ESSENTIALS OF DIAGNOSIS Cytopenias

More information

About Myelodysplastic Syndromes

About Myelodysplastic Syndromes About Myelodysplastic Syndromes Overview and Types If you have been diagnosed with a myelodysplastic syndrome or are worried about it, you likely have a lot of questions. Learning some basics is a good

More information

RESEARCH ARTICLE. Introduction Wiley Periodicals, Inc.

RESEARCH ARTICLE. Introduction Wiley Periodicals, Inc. De novo acute myeloid leukemia with 20 29% blasts is less aggressive than acute myeloid leukemia with 30% blasts in older adults: a Bone Marrow Pathology Group study AJH Robert Paul Hasserjian, 1 * Federico

More information

2 nd step do Bone Marrow Study If possible both the aspiration and

2 nd step do Bone Marrow Study If possible both the aspiration and Blood Malignancies-I Prof. Herman Hariman,SpPK a (KH). Ph.D.(U.K) Prof. Dr. Adikoesoema Aman, SpPK (KH) Dept. Clinpath, FK-USU First do the Full Blood Count Hb, WBCS, Platelets Morphology!! Such as blasts,

More information

Myelodysplastic syndromes

Myelodysplastic syndromes Haematology 601 Myelodysplastic syndromes The myelodysplastic syndromes are a group of disorders predominantly affecting elderly people, leading to ineffective haematopoiesis, and they have the potential

More information

Treatment of low risk MDS

Treatment of low risk MDS Treatment of low risk MDS Matteo G Della Porta Cancer Center IRCCS Humanitas Research Hospital & Humanitas University Rozzano Milano, Italy matteo.della_porta@hunimed.eu International Prognostic Scoring

More information

CME/SAM. Acute Myeloid Leukemia With Monosomal Karyotype. Morphologic, Immunophenotypic, and Molecular Findings

CME/SAM. Acute Myeloid Leukemia With Monosomal Karyotype. Morphologic, Immunophenotypic, and Molecular Findings AJCP / Original Article Acute Myeloid Leukemia With Monosomal Karyotype Morphologic, Immunophenotypic, and Molecular Findings Olga K. Weinberg, MD, 1 Robert S. Ohgami, MD, PhD, 2 Lisa Ma, 2 Katie Seo,

More information

Outline. Case Study 5/17/2010. Treating Lower-Risk Myelodysplastic Syndrome (MDS) Tapan M. Kadia, MD Department of Leukemia MD Anderson Cancer Center

Outline. Case Study 5/17/2010. Treating Lower-Risk Myelodysplastic Syndrome (MDS) Tapan M. Kadia, MD Department of Leukemia MD Anderson Cancer Center Treating Lower-Risk Myelodysplastic Syndrome (MDS) Tapan M. Kadia, MD Department of Leukemia MD Anderson Cancer Center Outline Case Study What is lower-risk MDS? Classification systems Prognosis Treatment

More information

BONE MARROW EXAMINATION FINDINGS OF A SINGLE CENTRE- AN ORIGINAL ARTICLE.

BONE MARROW EXAMINATION FINDINGS OF A SINGLE CENTRE- AN ORIGINAL ARTICLE. BONE MARROW EXAMINATION FINDINGS OF A SINGLE CENTRE- AN ORIGINAL ARTICLE. ISHRAT JAHAN SHIMU¹, M. MEHFUZ-E- KHODA², M. A. SATTAR SARKER 3, FATEMA AHMED 4, PALASH MITRA 5, FAKHRUDDIN BHUIYAN 6, ALAMGIR

More information

Bone Marrow Mast Cell Morphologic Features and Hematopoietic Dyspoiesis in Systemic Mast Cell Disease

Bone Marrow Mast Cell Morphologic Features and Hematopoietic Dyspoiesis in Systemic Mast Cell Disease Hematopathology / SYSTEMIC MAST CELL DISEASE Bone Marrow Mast Cell Morphologic Features and Hematopoietic Dyspoiesis in Systemic Mast Cell Disease Eric C. Stevens, MD, and Nancy S. Rosenthal, MD Key Words:

More information

Leukaemia Section Review

Leukaemia Section Review Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Leukaemia Section Review Classification of myelodysplasic syndromes Georges Flandrin Laboratoire d'hématologie,

More information

Practical Diagnosis of Hematologic Disorders. Vol 2 Malignant Disorders

Practical Diagnosis of Hematologic Disorders. Vol 2 Malignant Disorders 5 th ed Practical Diagnosis of Hematologic Disorders Vol 2 Malignant Disorders Vol2_FrontMatter_v03_0804 final.indd i 8/6/2009 10:00:11 PM Authors Carl R Kjeldsberg, MD Professor of Pathology, University

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/81636

More information

Hematology 101. Blanche P Alter, MD, MPH, FAAP Clinical Genetics Branch Division of Cancer Epidemiology and Genetics Bethesda, MD

Hematology 101. Blanche P Alter, MD, MPH, FAAP Clinical Genetics Branch Division of Cancer Epidemiology and Genetics Bethesda, MD Hematology 101 Blanche P Alter, MD, MPH, FAAP Clinical Genetics Branch Division of Cancer Epidemiology and Genetics Bethesda, MD Hematocrits Plasma White cells Red cells Normal, Hemorrhage, IDA, Leukemia,

More information

Chronic Idiopathic Myelofibrosis (CIMF)

Chronic Idiopathic Myelofibrosis (CIMF) Chronic Idiopathic Myelofibrosis (CIMF) CIMF Synonyms Agnogenic myeloid metaplasia Myelosclerosis with myeloid metaplasia Chronic granulocytic-megakaryocytic myelosis CIMF Megakaryocytic proliferation

More information

Cause of Death in Patients With Lower-Risk Myelodysplastic Syndrome

Cause of Death in Patients With Lower-Risk Myelodysplastic Syndrome Original Article Cause of Death in Patients With Lower-Risk Myelodysplastic Syndrome Farshid Dayyani, MD, PhD 1 ; Anthony P. Conley, MD 1 ; Sara S. Strom, PhD 2 ; William Stevenson, MBBS, PhD 3 ; Jorge

More information

Blast transformation in chronic myelomonocytic leukemia: Risk factors, genetic features, survival, and treatment outcome

Blast transformation in chronic myelomonocytic leukemia: Risk factors, genetic features, survival, and treatment outcome RESEARCH ARTICLE Blast transformation in chronic myelomonocytic leukemia: Risk factors, genetic features, survival, and treatment outcome AJH Mrinal M. Patnaik, 1 Emnet A. Wassie, 1 Terra L. Lasho, 2 Curtis

More information

Should lower-risk myelodysplastic syndrome patients be transplanted upfront? YES Ibrahim Yakoub-Agha France

Should lower-risk myelodysplastic syndrome patients be transplanted upfront? YES Ibrahim Yakoub-Agha France Should lower-risk myelodysplastic syndrome patients be transplanted upfront? YES Ibrahim Yakoub-Agha France Myelodysplastic syndromes (MDS) are heterogeneous disorders that range from conditions with a

More information

Juvenile Myelomonocytic Leukemia (JMML)

Juvenile Myelomonocytic Leukemia (JMML) Juvenile Myelomonocytic Leukemia (JMML) JMML: Definition Monoclonal hematopoietic disorder of childhood characterized by proliferation of the granulocytic and monocytic lineages Erythroid and megakaryocytic

More information

CYTOGENETIC STUDY OF 50 DE NOVO CASES OF ANLL FROM ARGENTINA. Susana Acevedo, Irma Slavutsky, Gabriela Andreoli, Irene Larripa

CYTOGENETIC STUDY OF 50 DE NOVO CASES OF ANLL FROM ARGENTINA. Susana Acevedo, Irma Slavutsky, Gabriela Andreoli, Irene Larripa original paper Haematologica 1994; 79:40-5 CYTOGENETIC STUDY OF 50 DE NOVO CASES OF ANLL FROM ARGENTINA Susana Acevedo, Irma Slavutsky, Gabriela Andreoli, Irene Larripa Departamento de Genética, División

More information

Appendix 6: Indications for adult allogeneic bone marrow transplant in New Zealand

Appendix 6: Indications for adult allogeneic bone marrow transplant in New Zealand Appendix 6: Indications for adult allogeneic bone marrow transplant in New Zealand This list provides indications for the majority of adult BMTs that are performed in New Zealand. A small number of BMTs

More information

High p53 protein expression in therapy-related myeloid neoplasms is associated with adverse karyotype and poor outcome

High p53 protein expression in therapy-related myeloid neoplasms is associated with adverse karyotype and poor outcome & 2014 USCAP, Inc. All rights reserved 0893-3952/14 $32.00 1 High p53 protein expression in therapy-related myeloid neoplasms is associated with adverse karyotype and poor outcome Arjen HG Cleven 1, Valentina

More information

MDS: Who gets it and how is it diagnosed?

MDS: Who gets it and how is it diagnosed? MDS: Who gets it and how is it diagnosed? October 16, 2010 Gail J. Roboz, M.D. Director, Leukemia Program Associate Professor of Medicine Weill Medical College of Cornell University The New York Presbyterian

More information

Myelodysplastic Syndrome: Let s build a definition

Myelodysplastic Syndrome: Let s build a definition 1 MDS: Diagnosis and Treatment Update Gail J. Roboz, M.D. Director, Leukemia Program Associate Professor of Medicine Weill Medical College of Cornell University The New York Presbyterian Hospital Myelodysplastic

More information

Myelodysplastic Syndromes: Hematopathology. Analysis of SHIP1 as a potential biomarker of Disease Progression

Myelodysplastic Syndromes: Hematopathology. Analysis of SHIP1 as a potential biomarker of Disease Progression Myelodysplastic Syndromes: Hematopathology. Analysis of SHIP1 as a potential biomarker of Disease Progression Carlos E. Bueso-Ramos, M.D., Ph.D Department of Hematopathology The University of Texas M.

More information

Adult Acute leukemia. Matthew Seftel. August

Adult Acute leukemia. Matthew Seftel. August Adult Acute leukemia Matthew Seftel August 21 2007 mseftel@cancercare.mb.ca Principles 3 cases Diagnosis and classification of acute leukemia (AL) Therapy Emergencies Remission induction BMT Complications

More information

New system for assessing the prognosis of refractory anemia patients

New system for assessing the prognosis of refractory anemia patients Leukemia (1999) 13, 1727 1734 1999 Stockton Press All rights reserved 0887-6924/99 $15.00 http://www.stockton-press.co.uk/leu New system for assessing the prognosis of refractory anemia patients A Matsuda

More information

N Engl J Med Volume 373(12): September 17, 2015

N Engl J Med Volume 373(12): September 17, 2015 Review Article Acute Myeloid Leukemia Hartmut Döhner, M.D., Daniel J. Weisdorf, M.D., and Clara D. Bloomfield, M.D. N Engl J Med Volume 373(12):1136-1152 September 17, 2015 Acute Myeloid Leukemia Most

More information

Scottish Medicines Consortium

Scottish Medicines Consortium Scottish Medicines Consortium azacitidine 100mg powder for suspension for injection (Vidaza ) No. (589/09) Celgene Ltd 05 March 2010 The Scottish Medicines Consortium (SMC) has completed its assessment

More information

Background CPX-351. Lancet J, et al. J Clin Oncol. 2017;35(suppl): Abstract 7035.

Background CPX-351. Lancet J, et al. J Clin Oncol. 2017;35(suppl): Abstract 7035. Overall Survival (OS) With Versus in Older Adults With Newly Diagnosed, Therapy-Related Acute Myeloid Leukemia (taml): Subgroup Analysis of a Phase 3 Study Abstract 7035 Lancet JE, Rizzieri D, Schiller

More information

Molecular Pathology Evaluation Panel and Molecular Pathology Consortium Advice Note

Molecular Pathology Evaluation Panel and Molecular Pathology Consortium Advice Note Molecular Pathology Evaluation Panel and Molecular Pathology Consortium Advice Note MPEP/MPC Advice Note 2016-02 June 2016 Test evaluated: Tumour Protein p53 (TP53) Molecular Pathology Evaluation Panel

More information

Myelodysplastic syndromes: revised WHO classification and distinction from non-neoplastic conditions

Myelodysplastic syndromes: revised WHO classification and distinction from non-neoplastic conditions Myelodysplastic syndromes: revised WHO classification and distinction from non-neoplastic conditions Robert P Hasserjian, MD Associate Professor Massachusetts General Hospital and Harvard Medical School

More information

Diagnostic challenge: Acute leukemia with biphenotypic blasts and BCR-ABL1 translocation

Diagnostic challenge: Acute leukemia with biphenotypic blasts and BCR-ABL1 translocation Case Study Diagnostic challenge: Acute leukemia with biphenotypic blasts and BCR-ABL1 translocation Ling Wang 1 and Xiangdong Xu 1,2,* 1 Department of Pathology, University of California, San Diego; 2

More information

Extramedullary precursor T-lymphoblastic transformation of CML at presentation

Extramedullary precursor T-lymphoblastic transformation of CML at presentation Extramedullary precursor T-lymphoblastic transformation of CML at presentation Neerja Vajpayee, Constance Stein, Bernard Poeisz & Robert E. Hutchison Clinical History 30 year old man presented to the emergency

More information

Case Report Blasts-more than meets the eye: evaluation of post-induction day 21 bone marrow in CBFB rearranged acute leukemia

Case Report Blasts-more than meets the eye: evaluation of post-induction day 21 bone marrow in CBFB rearranged acute leukemia Int J Clin Exp Pathol 2014;7(7):4498-4502 www.ijcep.com /ISSN:1936-2625/IJCEP0000851 Case Report Blasts-more than meets the eye: evaluation of post-induction day 21 bone marrow in CBFB rearranged acute

More information

Supplemental Material. The new provisional WHO entity RUNX1 mutated AML shows specific genetics without prognostic influence of dysplasia

Supplemental Material. The new provisional WHO entity RUNX1 mutated AML shows specific genetics without prognostic influence of dysplasia Supplemental Material The new provisional WHO entity RUNX1 mutated AML shows specific genetics without prognostic influence of dysplasia Torsten Haferlach, 1 Anna Stengel, 1 Sandra Eckstein, 1 Karolína

More information

Myelodyplastic Syndromes Paul J. Shami, M.D.

Myelodyplastic Syndromes Paul J. Shami, M.D. Myelodyplastic Syndromes Paul J. Shami, M.D. Professor of Hematology, University of Utah Member, Huntsman Cancer Institute Objectives Define Myelodysplastic Syndromes (MDS) Explain how MDS are diagnosed

More information

New treatment strategies in myelodysplastic syndromes and acute myeloid leukemia van der Helm, Lidia Henrieke

New treatment strategies in myelodysplastic syndromes and acute myeloid leukemia van der Helm, Lidia Henrieke University of Groningen New treatment strategies in myelodysplastic syndromes and acute myeloid leukemia van der Helm, Lidia Henrieke IMPORTANT NOTE: You are advised to consult the publisher's version

More information

Clinical Prognostic Factors in 86 Chinese Patients with Primary Myelodysplastic Syndromes and Trisomy 8: A Single Institution Experience

Clinical Prognostic Factors in 86 Chinese Patients with Primary Myelodysplastic Syndromes and Trisomy 8: A Single Institution Experience Original Article Yonsei Med J 2016 Mar;57(2):358-364 pissn: 0513-5796 eissn: 1976-2437 Clinical Prognostic Factors in 86 Chinese Patients with Primary Myelodysplastic Syndromes and Trisomy 8: A Single

More information

Participants Identification No. % Evaluation. Mitotic figure Educational Erythrocyte precursor, abnormal 1 0.

Participants Identification No. % Evaluation. Mitotic figure Educational Erythrocyte precursor, abnormal 1 0. Cell Identification Mitotic figure 212 99.5 Educational Erythrocyte precursor, abnormal BMD-02 The arrowed cell is a mitotic figure. It was correctly identified by 99.5% of the participants. A cell containing

More information

Beyond the CBC Report: Extended Laboratory Testing in the Evaluation for Hematologic Neoplasia Disclosure

Beyond the CBC Report: Extended Laboratory Testing in the Evaluation for Hematologic Neoplasia Disclosure Beyond the CBC Report: Extended Laboratory Testing in the Evaluation for Hematologic Neoplasia Disclosure I am receiving an honorarium from Sysmex for today s presentation. 1 Determining the Etiology for

More information

WHO Update to Myeloproliferative Neoplasms

WHO Update to Myeloproliferative Neoplasms WHO Update to Myeloproliferative Neoplasms Archana M Agarwal, MD, Associate Professor of Pathology University of Utah Department of Pathology/ARUP Laboratories Myeloproliferative Neoplasms The categories

More information

Myelodysplastic Syndromes: WHO 2008

Myelodysplastic Syndromes: WHO 2008 Myelodysplastic Syndromes: WHO 2008 Attilio Orazi, M.D., FRCPath. (Engl.) Weill Medical College of Cornell University New York, NY Congresso Nazionale SIE - Società Italiana di Ematologia - MIC Milano

More information

HEMATOPATHOLOGY (SHANDS HOSPITAL AT THE UNIVERSITY OF FLORIDA): Rotation Director: Ying Li, M.D., Ph.D., Assistant Professor

HEMATOPATHOLOGY (SHANDS HOSPITAL AT THE UNIVERSITY OF FLORIDA): Rotation Director: Ying Li, M.D., Ph.D., Assistant Professor HEMATOPATHOLOGY (SHANDS HOSPITAL AT THE UNIVERSITY OF FLORIDA): Rotation Director: Ying Li, M.D., Ph.D., Assistant Professor I. Description of the rotation: During this rotation, the resident will gain

More information

Myelodysplastic Syndromes

Myelodysplastic Syndromes Myelodysplastic Syndromes Attilio Orazi, MD, FRCPath, 1 and Magdalena B. Czader, MD, PhD 2 Key Words: Myelodysplastic syndrome; Refractory cytopenia with unilineage dysplasia; Refractory anemia with ring

More information

WHO Classification 7/2/2009

WHO Classification 7/2/2009 Least Malignant Myeloproliferative Disorders Myelodysplastic Syndromes Most Malignant Acute Leukemia Classifying Hematopoietic Disorders French-American-British (FAB) World Health Organization (WHO) Thanks

More information

Clinical Roundtable Monograph

Clinical Roundtable Monograph Clinical Roundtable Monograph C l i n i c a l A d v a n c e s i n H e m a t o l o g y & O n c o l o g y J u l y 2 0 0 9 Treatment Selection for Myelodysplastic Syndrome Patients in the Community Setting

More information

Partial and total monosomal karyotypes in myelodysplastic syndromes: Comparative prognostic relevance among 421 patients

Partial and total monosomal karyotypes in myelodysplastic syndromes: Comparative prognostic relevance among 421 patients Research Article Partial and total monosomal karyotypes in myelodysplastic syndromes: Comparative prognostic relevance among 421 patients Carolina B. Belli, 1 * y Raquel Bengió, 1 Pedro Negri Aranguren,

More information

NUP214-ABL1 Fusion: A Novel Discovery in Acute Myelomonocytic Leukemia

NUP214-ABL1 Fusion: A Novel Discovery in Acute Myelomonocytic Leukemia Case 0094 NUP214-ABL1 Fusion: A Novel Discovery in Acute Myelomonocytic Leukemia Jessica Snider, MD Medical University of South Carolina Case Report - 64 year old Caucasian Male Past Medical History Osteoarthritis

More information

Donor Lymphocyte Infusion for Malignancies Treated with an Allogeneic Hematopoietic Stem-Cell Transplant

Donor Lymphocyte Infusion for Malignancies Treated with an Allogeneic Hematopoietic Stem-Cell Transplant Last Review Status/Date: September 2014 Page: 1 of 8 Malignancies Treated with an Allogeneic Description Donor lymphocyte infusion (DLI), also called donor leukocyte or buffy-coat infusion is a type of

More information

Heme 9 Myeloid neoplasms

Heme 9 Myeloid neoplasms Heme 9 Myeloid neoplasms The minimum number of blasts to diagnose acute myeloid leukemia is 5% 10% 20% 50% 80% AML with the best prognosis is AML with recurrent cytogenetic abnormality AML with myelodysplasia

More information

Treating Higher-Risk MDS. Case presentation. Defining higher risk MDS. IPSS WHO IPSS: WPSS MD Anderson PSS

Treating Higher-Risk MDS. Case presentation. Defining higher risk MDS. IPSS WHO IPSS: WPSS MD Anderson PSS Treating Higher-Risk MDS Eyal Attar, M.D. Massachusetts General Hospital Cancer Center eattar@partners.org 617-724-1124 Case presentation 72 year old man, prior acoustic neuroma WBC (X10 3 /ul) 11/08 12/08

More information

Participants Identification No. % Evaluation. Mitotic figure Educational Erythrocyte precursor, abnormal/

Participants Identification No. % Evaluation. Mitotic figure Educational Erythrocyte precursor, abnormal/ Cell Identification BMD-09 Participants Identification No. % Evaluation Mitotic figure 233 96.7 Educational Erythrocyte precursor, abnormal/ 4 1.7 Educational dysplastic nuclear features Erythrocyte precursor

More information

HCT for Myelofibrosis

HCT for Myelofibrosis Allogeneic HSCT for MDS and Myelofibrosis Sunil Abhyankar, MD Professor Medicine, Medical Director, Pheresis and Cell Processing University of Kansas Hospital BMT Program April 27 th, 213 HCT for Myelofibrosis

More information

Opportunities for Optimal Testing in the Myeloproliferative Neoplasms. Curtis A. Hanson, MD

Opportunities for Optimal Testing in the Myeloproliferative Neoplasms. Curtis A. Hanson, MD Opportunities for Optimal Testing in the Myeloproliferative Neoplasms Curtis A. Hanson, MD 2013 MFMER slide-1 DISCLOSURES: Relevant Financial Relationship(s) None Off Label Usage None 2013 MFMER slide-2

More information

Cost-Effective Strategies in the Workup of Hematologic Neoplasm. Karl S. Theil, Claudiu V. Cotta Cleveland Clinic

Cost-Effective Strategies in the Workup of Hematologic Neoplasm. Karl S. Theil, Claudiu V. Cotta Cleveland Clinic Cost-Effective Strategies in the Workup of Hematologic Neoplasm Karl S. Theil, Claudiu V. Cotta Cleveland Clinic In the past 12 months, we have not had a significant financial interest or other relationship

More information

2007 Workshop of Society for Hematopathology & European Association for Hematopathology Indianapolis, IN, USA Case # 228

2007 Workshop of Society for Hematopathology & European Association for Hematopathology Indianapolis, IN, USA Case # 228 2007 Workshop of Society for Hematopathology & European Association for Hematopathology Indianapolis, IN, USA Case # 228 Vishnu V. B Reddy, MD University of Alabama at Birmingham Birmingham, AL USA 11/03/07

More information