Engineered T cells: Next-generation cancer immunotherapy

Size: px
Start display at page:

Download "Engineered T cells: Next-generation cancer immunotherapy"

Transcription

1 Engineered T cells: Next-generation cancer immunotherapy Rahul Purwar, Assistant Professor Department of Biosciences & Bioengineering Indian Institute of Technology Bombay (IIT Bombay) Mumbai, India,

2 Outline Introduction Adoptive T cell therapy: Engineered CAR-T cells Review of recent clinical trials Challenges of CAR T cell therapy Results T cell subsets: Th17 and Th9 cells in cancer immunotherapy Summary Adoptive T cell therapy: what we learnt and what we should do next

3 Overview: Adoptive T cell therapy 1.Isolation of TILs or tumor specific T-cells from blood 2.Expand and activate T-cells ex vivo 3.Infuse the "boosted" T-cells into the patient. Target therapy with Tumor specific T cells Cancer: Melanoma Autologous tumor infiltrating lymphocytes (TILs); Live drug Advantages High response rate (>50%), Long-term remission, Less toxic & gentler to the patient Limitation: Extraction of TILs, Cell manufacturing Possible alternate T cell Engineering (CAR-T cells) Rosenberg SA & Dudley ME 2009 Current Opinion of Immunology

4 Adoptive T cell therapy: CAR-T cells CAR-T cells (Chimeric antigen receptor-t cells0 T cells transduced with tumor-specific CAR CAR: Single fusion molecule with antigen specificity plus signaling domain Three types of CAR: First/second/generations Based on co-stimulatory receptors Cancer: Solid tumor & hematological malignancies Antigen specific domain Advantages of CAR T cells Live drug Tumor recognition independent of HLA (no HLA typing needed) Multiple antitumor immunomodulators can be engineered Target variety of antigens (protein, carbohydrate, glycolipid) Maus M V et al. Blood 2014;123:

5 Clinical significance of CAR-T cells Target CAR Cancer Objective response CD19 CAR:CD28-CD3ζ Lymphoma and CLL CAR:CD137-CD3ζ ALL 2CR CAR:CD28-CD3ζ ALL 5CR N=7:1CR, 5 PR & 1SD CEA CAR-CD3ζ (1 st gen) Colorectal & breast GD2 CAR-CD3ζ (1 st gen) Neuroblastoma N=19: 3CR ERBB2 CD20 CAR:CD137-CD28- NHL N=3: 1PR, 2NED CD3ζ CAR:CD28-CD137- CD3ζ Colorectal cancer N=7: minor responses in two patients N=1, patient died Kershaw et. al Nature Reviews cancer

6 Toxicities On target/off tumor toxicities Metastatic colon cancer patient died after 5 days of infusion of ERBB2+CAR-T cells Low levels of ERBB2 express on lung epithelium (lung tox) Renal cell carcinoma: 5/11 patients developed liver toxicity Cytokine syndrome Challenges of CAR-T cells Elevated levels of pro-inflammatory cytokines Treatable by anti-il-6mab and steroids

7 Determinants of successful ACT: CAR-T cells Tumor target Target antigen is critical determinant for efficacy & safety Ideal target uniquely express on tumor cells or on cells which are not essential for survival Efficacy & Long-term persistence Subtypes of CD4+T cells (Th1, Th2, Th17, Th9 cells), CD8+T cells naïve, central memory; long-term effector; active but short lived Trafficking of CAR T cells to tumor Expression of addressins Route of CAR-T cell infusion Intra-tumoral/intravenous Optimal co-stimulation of T cells Patient conditioning before ACT Reduced-intensity or nonmyeloablative Increased intensity myelo ablative

8 Outline Introduction Adoptive T cell therapy: focus on engineered CAR-T cells Overview of current & investigational CAR therapies Challenges of CAR T cell therapy Results Roles of T-helper cell subsets in cancer immunotherapy Summary ` Adoptive T cell therapy: what we learnt and what we should do next

9 Adoptive T cell therapy: Right T cell population? CD4+ T cells Zou W & Restifo NP Nature Reviews Immunology 2010 IL23R

10 Role of Th17 cells in tumor immunity is controversial Pro-tumor: - enhances vascularization/angiogenesis -promotes metastasis - promotes growth Langowski et al, Nature 2006; Murugayen 2011 J.Immunol; Wang et al. J.Exp.Med 2009 Anti-tumor: -enhances tumor immunity by promoting CD8+T cell and DC function Martin-Orcazzo et al Immunity 2010

11 Tumor growth suppression in ROR -/-mice (Th17 cell deficient) Tumor volum me (mm 3 ) Melanoma tumor growth RORγ+/+chimeric mice RORγ-/-chimeric mice ** *** Days after tumor induction % of mice (s survival) Survival of tumor bearing host RORγ+/+ chimeric mice RORγ-/- chimeric mice Days after tumor induction Abrogation of Th17 pathways promotes anti-tumor immune responses

12 Gene-expression analysis: ROR -/- CD4+T cells Slc15a2 Robo3 Robo3 Gzmc Il9 Abp1 Gzmb Foxn4 Ak1 Il28ra Zfp423 S100a4 Rhod Ckmt1 Lgr4 Apobec2 Cckbr Galntl4 Phlda3 Pgr Slc2a4 Ms4a4b Il1f9 Ly6d Mal2 Id4 Gpr81 Penk Ptger3 Psrc1 Penk Ms4a4b Il12b Ebf4 Gzmd Spib Mmp13 Serpinb9 Serpinb6b Il10 Ifng Il4 Eomes Tbx21 (Tbet) Il17re Il17f Ccr2 Malat1 Serpinb1a Pkib Ccl24 Col16a1 Ramp1 Itga7 Serpinb2 Il17a Col4a2 Serpinb2 Cysltr1 Selenbp2 Selenbp1 Il23r Num mbers of IL9+ve cells (%) ** WT RORγ-/- IL-17f IL-17a IL-9 IL-23r Increased IL-9 expression in RORγ-/-CD4+T cells CD4+T cells differentiated under Th17 conditions (RORγ-/- / RORγ +/+Fold change) Th17 genes

13 Treatment with exogenous ril-9 suppresses tumor growth Efficacy study plan Day 0 Subq B16F10 (1x10 5 /100 µl) LLC (1x10 5 /100 µl) Day 0 onwards ril µg/mouse (i.p.), Every alternate day Results Delayed tumor growth in IL-9 treated group Follow tumor development (3x/week) IL-9 mediated anti-tumor effects are not limited to melanoma tumor model Tumor volume (mm 3) Tumor volume (mm 3 ) Melanoma (B16F10) Control ril-9 treated * control Lung carcinoma ril-9 treated (LLC) Days after tumor induction *

14 Effects of ril-9 on melanoma tumor growth in Rag1-/-mice (T cell and B cell deficient host) 1,500 Control Tumor vo olume (mm 3 ) 1, ** ril-9 treated Time after tumor induction (d) IL-9 mediated tumor growth suppression is independent of T cells and B cells

15 Effects of ril-9 on tumor tumor growth in mast cell-/-mice Melanoma (B16F10) Lung carcinoma (LLC) Tumor volu ume (mm 3 ) Control 1500 ril-9 treated ns Tumor volu ume (mm 3) Days after tumor induction control ril-9 treated IL-9 mediated tumor growth suppression is dependent of mast cells

16 Engineering Th9 cells: TAA specific Tumor model Engineer tumor specific Th9 cells OT2 TCR transgenic mice (CD4 cells recognize ova) TGFβ+ IL-4 Th9 Naïve OT2 Normal WT or Rag1-/- CD4+CD25- CD62L+ TGFβ+ IL-6 Th17 B16F10-Ova cells Follow tumor development Generation of Ovalbumin expressing B16 tumor cells (Lentiviral method)

17 Treatment with Th9 cells suppresses tumor growth Immunocompetent host (Wild type) Tumor volume (mm 3 ) 2000 no T cells Th17 Th9 *** Days after tumor induction No T cells Th17 cells Th9 cells

18 Th9 cell therapy: efficacy studies in immunodeficient host Rag1-/-(T cells and B cells deficient) Tumor volume (mm 3) no T cells Th0 cells Th9 Th9 plus a-il-9 ** * Days after tumor induction Th9 cells suppresses tumor growth independent of T cell and B cell presence

19 Mechanism of anti-tumor effects of Th9 cells Effects of Th9 cells on CD8+T cells (OT-1 cells) proliferation No Th cells 90% CFSE labeled OT1-CD8-T cells irradiated B16- Ova cells + ± OT2-Th0 or OT2- Th9 cells 3 days Evaluation of OT1-CD8-T cells by flow cytometry +Th0 cells 45% Presence of Th9 cells promotes the OT1- CD8-T cells proliferation. counts + Th9 cells 5% OT1 cells: ovalbumin specific CD8+T cells CFSE: Carboxyfluorescein succinimidyl ester CFSE

20 Mechanism of anti-tumor effects of Th9 cells Examining Cytotoxic activity of Th9 cells 5mM CFSE labeled B16F10-ova cells mm CFSE labeled EL-4 cells No Th cells EL-4 B16-Ova ± OT2-Th0 or OT2-Th9 36 h. Tumor cell lysis was measured by flow cytometry. Th9 cells lyse tumor cells in antigen/ target dependent manner counts + Th0 cells (25:1) Th9 cells (25:1) Target cells: B16-Ova B16 ova specific Th cells: OT2-Th cells CFSE

21 What is the relevance of these findings in human? Translational research

22 Th9 cells are present in human skin and blood Th9 cells IL-9 PU.1 Skin Blood Gate on CD4+IFNγ-IL-4- IL-17 CD4+IL-9+ +IFNg-IL-4-IL-17- (%) * * Blood Skin T cells from metastasis IL-9 Healthy subjects Melanoma Th9 cells are not just a murine phenomenon

23 Summary CAR-T cells T cells transduced with tumor-specific Chimeric Antigen Receptor (CAR) Tumor recognition independent of HLA (no HLA typing needed) Target: variety of tumor antigens (protein, carbohydrate, glycolipid) High response rate (up to 88%): pre-clinical and clinical findings Limitation of CAR-T cells Toxicities On target/off tumor toxicities Cytokine syndrome Tumor microenvironment Presence of MDSCs & Treg in tumor Immunosuppressive agents Results & Conclusion IL-9 is a novel anti-tumor cytokine and anti-tumor effects are mediated via mast cells Th9 cells are the most superior anti-tumor Th cells Th9 cells exists in human: not just murine phenomenon Strategies that promotes IL-9 production will be a critical for the development of robust treatment for melanoma and lung carcinoma.

24 Acknowledgement Laboratory members at IIT Bombay Richa Agarwal Mukti Vats Farha Memon Sathya Atish Department of Dermatology, Brigham & Women s Hospital (BWH) Thomas S Kupper Department of Neurology, BWH Vijay K Kuchroo Wassim Elymann Sheng Xiao National Institute of Health (NIH/NIEHS) Anton J Jetten Hong Soon Kang!!Thanks a lot!!

08/02/59. Tumor Immunotherapy. Development of Tumor Vaccines. Types of Tumor Vaccines. Immunotherapy w/ Cytokine Gene-Transfected Tumor Cells

08/02/59. Tumor Immunotherapy. Development of Tumor Vaccines. Types of Tumor Vaccines. Immunotherapy w/ Cytokine Gene-Transfected Tumor Cells Tumor Immunotherapy Autologous virus Inactivation Inactivated virus Lymphopheresis Culture? Monocyte s Dendritic cells Immunization Autologous vaccine Development of Tumor Vaccines Types of Tumor Vaccines

More information

Concepts of cancer immunotherapy

Concepts of cancer immunotherapy Concepts of cancer immunotherapy History Paul Ehrlich first conceived the idea that tumor cells can be recognized as foreign and eliminated by the immune system. Subsequently, Lewis Thomas and Macfarlane

More information

Immunotherapy on the Horizon: Adoptive Cell Therapy

Immunotherapy on the Horizon: Adoptive Cell Therapy Immunotherapy on the Horizon: Adoptive Cell Therapy Joseph I. Clark, MD, FACP Professor of Medicine Loyola University Chicago Stritch School of Medicine Maywood, IL June 23, 2016 Conflicts of Interest

More information

CANCER IMMUNOTHERAPY. Cancer Research Center, Dpt. of Medicine & Service of Cytometry University of Salamanca. IBSAL

CANCER IMMUNOTHERAPY. Cancer Research Center, Dpt. of Medicine & Service of Cytometry University of Salamanca. IBSAL FARMAFORUM 2015 FACULTAD FARMACIA CANCER IMMUNOTHERAPY Cancer Research Center, Dpt. of Medicine & Service of Cytometry University of Salamanca. IBSAL The immune response to tumors Oncogenic event The immune

More information

DEVELOPMENT OF CELLULAR IMMUNOLOGY

DEVELOPMENT OF CELLULAR IMMUNOLOGY DEVELOPMENT OF CELLULAR IMMUNOLOGY 1880 s: Antibodies described (dominated studies of immunology until 1960 s) 1958: Journal of Immunology (137 papers) lymphocyte not listed in index Two papers on transfer

More information

Adoptive Cell Therapy: Treating Cancer

Adoptive Cell Therapy: Treating Cancer Adoptive Cell Therapy: Treating Cancer with Genetically Engineered T Cells Steven A. Feldman, Ph.D. Surgery Branch National Cancer Institute NCT Conference Heidelberg, Germany September 24, 2013 Three

More information

CAR T-CELLS: ENGINEERING IMMUNE CELLS TO TREAT CANCER. Roman GALETTO, PhD 17 th Club Phase 1 Annual Meeting April 5 th Paris

CAR T-CELLS: ENGINEERING IMMUNE CELLS TO TREAT CANCER. Roman GALETTO, PhD 17 th Club Phase 1 Annual Meeting April 5 th Paris CAR T-CELLS: ENGINEERING IMMUNE CELLS TO TREAT CANCER Roman GALETTO, PhD 17 th Club Phase 1 Annual Meeting April 5 th 2018 - Paris Cellectis, 05-APR-2018 2 FORWARD-LOOKING STATEMENTS THIS PRESENTATION

More information

Tumor Immunology. Wirsma Arif Harahap Surgical Oncology Consultant

Tumor Immunology. Wirsma Arif Harahap Surgical Oncology Consultant Tumor Immunology Wirsma Arif Harahap Surgical Oncology Consultant 1) Immune responses that develop to cancer cells 2) Escape of cancer cells 3) Therapies: clinical and experimental Cancer cells can be

More information

Advances in Adoptive Cellular Therapy of Cancer. Melanoma Bridge Meeting December 5, 2014

Advances in Adoptive Cellular Therapy of Cancer. Melanoma Bridge Meeting December 5, 2014 Advances in Adoptive Cellular Therapy of Cancer Melanoma Bridge Meeting December 5, 2014 David Stroncek, MD Chief, Cell Processing Section, DTM, CC, NIH Bethesda, Maryland, USA Disclosures None Focus

More information

ACTR (Antibody Coupled T-cell Receptor): A universal approach to T-cell therapy

ACTR (Antibody Coupled T-cell Receptor): A universal approach to T-cell therapy ACTR (Antibody Coupled T-cell Receptor): A universal approach to T-cell therapy European Medicines Agency Workshop on Scientific and Regulatory Challenges of Genetically Modified Cell-based Cancer Immunotherapy

More information

Novel RORg Agonists Enhance Anti-Tumor Activity of Adoptive T Cell Therapy

Novel RORg Agonists Enhance Anti-Tumor Activity of Adoptive T Cell Therapy Novel RORg Agonists Enhance Anti-Tumor Activity of Adoptive T Cell Therapy Jacques Moisan, Kinga Majchrzak, Xiao Hu, Rodney Morgan, Xikui Liu, Kellie Demock, Yahong Wang, Charles Lesch, Brian Sanchez,

More information

Emerging Concepts of Cancer Immunotherapy

Emerging Concepts of Cancer Immunotherapy Emerging Concepts of Cancer Immunotherapy Jeffrey Schlom, Ph.D. Laboratory of Tumor Immunology and Biology (LTIB) Center for Cancer Research National Cancer Institute, NIH Immune Cell Infiltrate in Primary

More information

VISTA, a novel immune checkpoint protein ligand that suppresses anti-tumor tumor T cell responses. Li Wang. Dartmouth Medical School

VISTA, a novel immune checkpoint protein ligand that suppresses anti-tumor tumor T cell responses. Li Wang. Dartmouth Medical School VISTA, a novel immune checkpoint protein ligand that suppresses anti-tumor tumor T cell responses Li Wang Dartmouth Medical School The B7 Immunoglobulin Super-Family immune regulators APC T cell Co-stimulatory:

More information

Supplementary Figure 1. mrna expression of chitinase and chitinase-like protein in splenic immune cells. Each splenic immune cell population was

Supplementary Figure 1. mrna expression of chitinase and chitinase-like protein in splenic immune cells. Each splenic immune cell population was Supplementary Figure 1. mrna expression of chitinase and chitinase-like protein in splenic immune cells. Each splenic immune cell population was sorted by FACS. Surface markers for sorting were CD11c +

More information

NKTR-255: Accessing IL-15 Therapeutic Potential through Robust and Sustained Engagement of Innate and Adaptive Immunity

NKTR-255: Accessing IL-15 Therapeutic Potential through Robust and Sustained Engagement of Innate and Adaptive Immunity NKTR-255: Accessing IL-15 Therapeutic Potential through Robust and Sustained Engagement of Innate and Adaptive Immunity Peiwen Kuo Scientist, Research Biology Nektar Therapeutics August 31 st, 2018 Emerging

More information

Overview 3/31/2016. Cell Kinetics in Adoptive Cell Therapy. March 31, 2016

Overview 3/31/2016. Cell Kinetics in Adoptive Cell Therapy. March 31, 2016 Cell Kinetics in Adoptive Cell Therapy March 31, 2016 David Stroncek, MD Chief, Cellular Processing Section DTM, CC, NIH Cellular Therapies Cell suspensions used for therapeutic purposes Examples Red Cells

More information

Cell Kinetics in Adoptive Cell Therapy. March 31, 2016

Cell Kinetics in Adoptive Cell Therapy. March 31, 2016 Cell Kinetics in Adoptive Cell Therapy March 31, 2016 David Stroncek, MD Chief, Cellular Processing Section DTM, CC, NIH 1 Cellular Therapies Cell suspensions used for therapeutic purposes Examples Red

More information

Supplemental Materials

Supplemental Materials Supplemental Materials Programmed death one homolog maintains the pool size of regulatory T cells by promoting their differentiation and stability Qi Wang 1, Jianwei He 1, Dallas B. Flies 2, Liqun Luo

More information

Novel RCC Targets from Immuno-Oncology and Antibody-Drug Conjugates

Novel RCC Targets from Immuno-Oncology and Antibody-Drug Conjugates Novel RCC Targets from Immuno-Oncology and Antibody-Drug Conjugates Christopher Turner, MD Vice President, Clinical Science 04 November 2016 Uveal Melanoma Celldex Pipeline CANDIDATE INDICATION Preclinical

More information

The Immune System. Innate. Adaptive. - skin, mucosal barriers - complement - neutrophils, NK cells, mast cells, basophils, eosinophils

The Immune System. Innate. Adaptive. - skin, mucosal barriers - complement - neutrophils, NK cells, mast cells, basophils, eosinophils Objectives - explain the rationale behind cellular adoptive immunotherapy - describe methods of improving cellular adoptive immunotherapy - identify mechanisms of tumor escape from cellular adoptive immunotherapy

More information

Radiation Therapy as an Immunomodulator

Radiation Therapy as an Immunomodulator Radiation Therapy as an Immunomodulator Yvonne Mowery, MD, PhD February 20, 2017 Tumor/Immune System Balance Kalbasi, JCI 2013 UNC-Duke-NC State-Wake Forest Spring 2017 2 RT Can Shift Balance Toward Elimination

More information

Darwinian selection and Newtonian physics wrapped up in systems biology

Darwinian selection and Newtonian physics wrapped up in systems biology Darwinian selection and Newtonian physics wrapped up in systems biology Concept published in 1957* by Macfarland Burnet (1960 Nobel Laureate for the theory of induced immune tolerance, leading to solid

More information

IMMUNOTHERAPY FOR CANCER A NEW HORIZON. Ekaterini Boleti MD, PhD, FRCP Consultant in Medical Oncology Royal Free London NHS Foundation Trust

IMMUNOTHERAPY FOR CANCER A NEW HORIZON. Ekaterini Boleti MD, PhD, FRCP Consultant in Medical Oncology Royal Free London NHS Foundation Trust IMMUNOTHERAPY FOR CANCER A NEW HORIZON Ekaterini Boleti MD, PhD, FRCP Consultant in Medical Oncology Royal Free London NHS Foundation Trust ASCO Names Advance of the Year: Cancer Immunotherapy No recent

More information

Cytotoxicity assays. Rory D. de Vries, PhD 1. Viroscience lab, Erasmus MC, Rotterdam, the Netherlands

Cytotoxicity assays. Rory D. de Vries, PhD 1. Viroscience lab, Erasmus MC, Rotterdam, the Netherlands Cytotoxicity assays Rory D. de Vries, PhD 1 1 Viroscience lab, Erasmus MC, Rotterdam, the Netherlands Anti-influenza immunity Humoral / CD4+ / CD8+ / NK? Function of CTL Elimination of virus-infected cells?

More information

Nature Medicine: doi: /nm.3922

Nature Medicine: doi: /nm.3922 Title: Glucocorticoid-induced tumor necrosis factor receptor-related protein co-stimulation facilitates tumor regression by inducing IL-9-producing helper T cells Authors: Il-Kyu Kim, Byung-Seok Kim, Choong-Hyun

More information

COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16

COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16 COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16 Tumor Immunology M. Nagarkatti Teaching Objectives: Introduction to Cancer Immunology Know the antigens expressed by cancer cells Understand

More information

Restoring Immune Function of Tumor-Specific CD4 + T Cells during Recurrence of Melanoma

Restoring Immune Function of Tumor-Specific CD4 + T Cells during Recurrence of Melanoma Restoring Immune Function of Tumor-Specific CD4 + T Cells during Recurrence of Melanoma Goding SR et al. J Immunol 2013; 190:4899-4909 C. Nikolowsky Christian Doppler Laboratory for Cardiac and Thoracic

More information

Supplementary Figure 1. Characterization of basophils after reconstitution of SCID mice

Supplementary Figure 1. Characterization of basophils after reconstitution of SCID mice Supplementary figure legends Supplementary Figure 1. Characterization of after reconstitution of SCID mice with CD4 + CD62L + T cells. (A-C) SCID mice (n = 6 / group) were reconstituted with 2 x 1 6 CD4

More information

NKTR-255: Accessing The Immunotherapeutic Potential Of IL-15 for NK Cell Therapies

NKTR-255: Accessing The Immunotherapeutic Potential Of IL-15 for NK Cell Therapies NKTR-255: Accessing The Immunotherapeutic Potential Of IL-15 for NK Cell Therapies Saul Kivimäe Senior Scientist, Research Biology Nektar Therapeutics NK Cell-Based Cancer Immunotherapy, September 26-27,

More information

Engineered TCR and CAR Immunotherapeutics 2015:

Engineered TCR and CAR Immunotherapeutics 2015: : A comparative analysis of the landscape of and business opportunities with TCR and CAR antibodies, T cells, NK cells, TILs, DLIs and CTLs released by La Merie Publishing on March 10, 2015 La Merie Publishing

More information

CONTRACTING ORGANIZATION: Johns Hopkins University School of Medicine Baltimore, MD 21205

CONTRACTING ORGANIZATION: Johns Hopkins University School of Medicine Baltimore, MD 21205 AD Award Number: DAMD7---7 TITLE: Development of Artificial Antigen Presenting Cells for Prostate Cancer Immunotherapy PRINCIPAL INVESTIGATOR: Jonathan P. Schneck, M.D., Ph.D. Mathias Oelke, Ph.D. CONTRACTING

More information

Artificial Antigen Presenting Cells as a Standardized Platform for Tumor Infiltrating Lymphocyte (TIL) expansion

Artificial Antigen Presenting Cells as a Standardized Platform for Tumor Infiltrating Lymphocyte (TIL) expansion Artificial Antigen Presenting Cells as a Standardized Platform for Tumor Infiltrating Lymphocyte (TIL) expansion Concurrent Session 404: T cell Manufacturing and Potency 27 th Annual Meeting of the Society

More information

Active STAT5 promotes long lived cytotoxic CD8 T cells that induce regression of autochthonous mouse melanoma.

Active STAT5 promotes long lived cytotoxic CD8 T cells that induce regression of autochthonous mouse melanoma. Active STAT5 promotes long lived cytotoxic CD8 T cells that induce regression of autochthonous mouse melanoma. SITC 211 Grégory Verdeil No relationships to disclose T cell adoptive transfer for cancer

More information

Abstract #163 Michael Kalos, PhD

Abstract #163 Michael Kalos, PhD LONG TERM FUNCTIONAL PERSISTENCE, B CELL APLASIA AND ANTI LEUKEMIA EFFICACY IN REFRACTORY B CELL MALIGNANCIES FOLLOWING T CELL IMMUNOTHERAPY USING CAR REDIRECTED REDIRECTED T CELLS TARGETING CD19 Abstract

More information

AN OVERVIEW OF CELLULAR THERAPY

AN OVERVIEW OF CELLULAR THERAPY AN OVERVIEW OF CELLULAR THERAPY Nicole Aqui, M.D. Chief, Transfusion and Apheresis Services Division of Transfusion Medicine Department of Pathology and Laboratory Medicine University of Pennsylvania Conflict

More information

Engineered Immune Cells for Cancer Therapy : Current Status and Prospects

Engineered Immune Cells for Cancer Therapy : Current Status and Prospects When Engineering Meets Immunology Engineered Immune Cells for Cancer Therapy : Current Status and Prospects Yong Taik Lim, Ph.D. Nanomedical Systems Laboratory (http://www.nanomedicalsystems.org) SKKU

More information

Exploring Immunotherapies: Beyond Checkpoint Inhibitors

Exploring Immunotherapies: Beyond Checkpoint Inhibitors Exploring Immunotherapies: Beyond Checkpoint Inhibitors Authored by: Jennifer Dolan Fox, PhD VirtualScopics (Now part of BioTelemetry Research) jennifer_fox@virtualscopics.com +1 585 249 6231 Introduction

More information

Immunology Lecture 4. Clinical Relevance of the Immune System

Immunology Lecture 4. Clinical Relevance of the Immune System Immunology Lecture 4 The Well Patient: How innate and adaptive immune responses maintain health - 13, pg 169-181, 191-195. Immune Deficiency - 15 Autoimmunity - 16 Transplantation - 17, pg 260-270 Tumor

More information

Overview 4/11/2013. Cell Kinetics in Adoptive Cell Therapy. April 11, 2013

Overview 4/11/2013. Cell Kinetics in Adoptive Cell Therapy. April 11, 2013 Cell Kinetics in Adoptive Cell Therapy April 11, 2013 David Stroncek, MD Chief, Cellular Processing Section DTM, CC, NIH Cellular Therapies Cell suspensions used for therapeutic purposes Examples Red Cells

More information

Tim-3 as a target for tumor immunotherapy

Tim-3 as a target for tumor immunotherapy Tim-3 as a target for tumor immunotherapy Ana Carrizosa Anderson Brigham and Women s Hospital Harvard Medical School Disclosures A portion of the work has been performed as part of a sponsored research

More information

Enhancing the Clinical Activity of HER2/neu Specific T Cells. William Gwin, MD Internal Medicine, Resident University of Washington

Enhancing the Clinical Activity of HER2/neu Specific T Cells. William Gwin, MD Internal Medicine, Resident University of Washington Enhancing the Clinical Activity of HER2/neu Specific T Cells William Gwin, MD Internal Medicine, Resident University of Washington Immunotherapy and Cancer Cancer vaccines were originally used in melanoma

More information

Regulation of anti-tumor immunity through migration of immune cell subsets within the tumor microenvironment Thomas F. Gajewski, M.D., Ph.D.

Regulation of anti-tumor immunity through migration of immune cell subsets within the tumor microenvironment Thomas F. Gajewski, M.D., Ph.D. Regulation of anti-tumor immunity through migration of immune cell subsets within the tumor microenvironment Thomas F. Gajewski, M.D., Ph.D. Professor, Departments of Pathology and Medicine Program Leader,

More information

Supplemental Figure 1

Supplemental Figure 1 Supplemental Figure 1 1a 1c PD-1 MFI fold change 6 5 4 3 2 1 IL-1α IL-2 IL-4 IL-6 IL-1 IL-12 IL-13 IL-15 IL-17 IL-18 IL-21 IL-23 IFN-α Mut Human PD-1 promoter SBE-D 5 -GTCTG- -1.2kb SBE-P -CAGAC- -1.kb

More information

NKTR-214 plus NKTR-262, a Scientifically-Guided Rational Combination Approach for Immune Oncology

NKTR-214 plus NKTR-262, a Scientifically-Guided Rational Combination Approach for Immune Oncology plus NKTR-262, a Scientifically-Guided Rational Combination Approach for Immune Oncology Jonathan Zalevsky SVP, Biology and Preclinical Development Nektar Therapeutics World Preclinical Congress, 2017

More information

Supplemental Figure 1. Protein L

Supplemental Figure 1. Protein L Supplemental Figure 1 Protein L m19delta T m1928z T Suppl. Fig 1. Expression of CAR: B6-derived T cells were transduced with m19delta (left) and m1928z (right) to generate CAR T cells and transduction

More information

Tumor responses (patients responding/ patients treated)

Tumor responses (patients responding/ patients treated) Table 1. ACT clinical trial tumor responses and toxicities. a Target antigen Cancer(s) Receptor type Tumor responses (patients responding/ patients treated) Immune-mediated toxicities (patients experiencing

More information

Tumor Immunity and Immunotherapy. Andrew Lichtman M.D., Ph.D. Brigham and Women s Hospital Harvard Medical School

Tumor Immunity and Immunotherapy. Andrew Lichtman M.D., Ph.D. Brigham and Women s Hospital Harvard Medical School Tumor Immunity and Immunotherapy Andrew Lichtman M.D., Ph.D. Brigham and Women s Hospital Harvard Medical School Lecture Outline Evidence for tumor immunity Types of tumor antigens Generation of anti-tumor

More information

Immune Checkpoints. PD Dr med. Alessandra Curioni-Fontecedro Department of Hematology and Oncology Cancer Center Zurich University Hospital Zurich

Immune Checkpoints. PD Dr med. Alessandra Curioni-Fontecedro Department of Hematology and Oncology Cancer Center Zurich University Hospital Zurich Immune Checkpoints PD Dr med. Alessandra Curioni-Fontecedro Department of Hematology and Oncology Cancer Center Zurich University Hospital Zurich Activation of T cells requires co-stimulation Science 3

More information

Transforming patients lives through cellular immunotherapy. Next Generation Cellular Immunotherapy June 2017

Transforming patients lives through cellular immunotherapy. Next Generation Cellular Immunotherapy June 2017 Transforming patients lives through cellular immunotherapy Next Generation Cellular Immunotherapy June 2017 1 Overview of Cell Medica Mission: Transform the treatment of cancer with cellular immunotherapy

More information

Therapeutic efficacy of MUC1- specific CTL and CD137 costimulation. mammary cancer model. Pinku Mukherjee & Sandra Gendler

Therapeutic efficacy of MUC1- specific CTL and CD137 costimulation. mammary cancer model. Pinku Mukherjee & Sandra Gendler Therapeutic efficacy of MUC1- specific CTL and CD137 costimulation in a spontaneous mammary cancer model Pinku Mukherjee & Sandra Gendler Goal of Immunotherapy Boosting the low level anti-tumor immune

More information

Immunity and Cancer. Doriana Fruci. Lab di Immuno-Oncologia

Immunity and Cancer. Doriana Fruci. Lab di Immuno-Oncologia Immunity and Cancer Doriana Fruci Lab di Immuno-Oncologia Immune System is a network of cells, tissues and organs that work together to defend the body against attacks of foreign invaders (pathogens, cancer

More information

Emerging Targets in Immunotherapy

Emerging Targets in Immunotherapy Emerging Targets in Immunotherapy So Jin Shin, M.D. Department of Obstetrics and Gynecology, Keimyung University, School of Medicine, Daegu, Korea no-0ncology Todays is.. ancer Immunotherapy? nd immunotherapy

More information

Trial no. Status Phase Treatment Pre-conditioning Primary endpoints Secondary endpoints Diagnosis Sponsor

Trial no. Status Phase Treatment Pre-conditioning Primary endpoints Secondary endpoints Diagnosis Sponsor Supplemental table 1. Overview of recent clinical phase I and II trials assessing the safety and efficacy of TCR-modified T cells in cancer patients as registered at clinicaltrials.gov by September 1,

More information

A fresh approach to Immuno-oncology: Ex vivo analysis of drug efficacy in fresh patient tumortissue

A fresh approach to Immuno-oncology: Ex vivo analysis of drug efficacy in fresh patient tumortissue A fresh approach to Immuno-oncology: Ex vivo analysis of drug efficacy in fresh patient tumortissue Soner Altiok, MD, PhD Chief Scientific Officer Nilogen Oncosystems Tampa, Florida - Nilogen Oncosystems,

More information

Melanoma Bridge Meeting

Melanoma Bridge Meeting Melanoma Bridge Meeting Improving Adoptive Immune Therapy with Genetically Engineered T cells David Stroncek, MD Chief, Cell Processing Section, DTM, CC, NIH 3 December 2015 Adoptive T Cell Therapy: Dose

More information

Supplementary Data. Treg phenotype

Supplementary Data. Treg phenotype Supplementary Data Additional Experiment An additional experiment was performed using cryopreserved peripheral blood mononuclear cells (PBMC) derived from five renal cell carcinoma (RCC) patients [see

More information

Adaptive (acquired) immunity. Professor Peter Delves University College London

Adaptive (acquired) immunity. Professor Peter Delves University College London Adaptive (acquired) immunity Professor Peter Delves University College London p.delves@ucl.ac.uk Haematopoiesis Haematopoiesis Lymphocytes = adaptive response Recognition of pathogens by adaptive cells,

More information

Immunology Basics Relevant to Cancer Immunotherapy: T Cell Activation, Costimulation, and Effector T Cells

Immunology Basics Relevant to Cancer Immunotherapy: T Cell Activation, Costimulation, and Effector T Cells Immunology Basics Relevant to Cancer Immunotherapy: T Cell Activation, Costimulation, and Effector T Cells Andrew H. Lichtman, M.D. Ph.D. Department of Pathology Brigham and Women s Hospital and Harvard

More information

Focused Ultrasound and Cancer Immunotherapy

Focused Ultrasound and Cancer Immunotherapy Focused Ultrasound and Cancer Immunotherapy Overview A number of therapeutic modalities including radiation, radiofrequency and laser-induced heating, cryoablation, and focused ultrasound have been shown

More information

Children s Hospital of Philadelphia Annual Progress Report: 2011 Formula Grant

Children s Hospital of Philadelphia Annual Progress Report: 2011 Formula Grant Children s Hospital of Philadelphia Annual Progress Report: 2011 Formula Grant Reporting Period January 1, 2012 June 30, 2012 Formula Grant Overview The Children s Hospital of Philadelphia received $3,521,179

More information

Supplementary Figure 1. Double-staining immunofluorescence analysis of invasive colon and breast cancers. Specimens from invasive ductal breast

Supplementary Figure 1. Double-staining immunofluorescence analysis of invasive colon and breast cancers. Specimens from invasive ductal breast Supplementary Figure 1. Double-staining immunofluorescence analysis of invasive colon and breast cancers. Specimens from invasive ductal breast carcinoma (a) and colon adenocarcinoma (b) were staining

More information

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells ICI Basic Immunology course Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells Abul K. Abbas, MD UCSF Stages in the development of T cell responses: induction

More information

Disclosure Information. Mary L. Disis

Disclosure Information. Mary L. Disis Disclosure Information Mary L. Disis I have the following financial relationships to disclose: Consultant for: VentiRx, Celgene, Emergent, EMD Serono Speaker s Bureau for: N/A Grant/Research support from:

More information

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION Scott Abrams, Ph.D. Professor of Oncology, x4375 scott.abrams@roswellpark.org Kuby Immunology SEVENTH EDITION CHAPTER 11 T-Cell Activation, Differentiation, and Memory Copyright 2013 by W. H. Freeman and

More information

Society for Immunotherapy of Cancer (SITC)

Society for Immunotherapy of Cancer (SITC) Society for Immunotherapy of Cancer (SITC) Current Status of Chimeric and Adoptive T cell Therapy Lawrence G. Lum, MD, DSc Karmanos Cancer Institute and Wayne State University Advances in Cancer Immunotherapy

More information

TITLE: Development of Antigen Presenting Cells for adoptive immunotherapy in prostate cancer

TITLE: Development of Antigen Presenting Cells for adoptive immunotherapy in prostate cancer AD Award Number: W8-XWH-5-- TITLE: Development of Antigen Presenting Cells for adoptive immunotherapy in prostate cancer PRINCIPAL INVESTIGATOR: Mathias Oelke, Ph.D. CONTRACTING ORGANIZATION: Johns Hopkins

More information

New insights into CD8+ T cell function and regulation. Pam Ohashi Princess Margaret Cancer Centre

New insights into CD8+ T cell function and regulation. Pam Ohashi Princess Margaret Cancer Centre New insights into CD8+ T cell function and regulation Pam Ohashi Princess Margaret Cancer Centre New insights into CD8+ T cell function and regulation Pam Ohashi Princess Margaret Cancer Centre No Disclosures

More information

RXi Pharmaceuticals. Immuno-Oncology World Frontiers Conference. January 23, 2018 NASDAQ: RXII. Property of RXi Pharmaceuticals

RXi Pharmaceuticals. Immuno-Oncology World Frontiers Conference. January 23, 2018 NASDAQ: RXII. Property of RXi Pharmaceuticals RXi Pharmaceuticals Immuno-Oncology World Frontiers Conference January 23, 2018 NASDAQ: RXII Forward Looking Statements This presentation contains forward-looking statements within the meaning of the Private

More information

and follicular helper T cells is Egr2-dependent. (a) Diagrammatic representation of the

and follicular helper T cells is Egr2-dependent. (a) Diagrammatic representation of the Supplementary Figure 1. LAG3 + Treg-mediated regulation of germinal center B cells and follicular helper T cells is Egr2-dependent. (a) Diagrammatic representation of the experimental protocol for the

More information

CD90 + Human Dermal Stromal Cells Are Potent Inducers of FoxP3 + Regulatory T Cells

CD90 + Human Dermal Stromal Cells Are Potent Inducers of FoxP3 + Regulatory T Cells CD90 + Human Dermal Stromal Cells Are Potent Inducers of FoxP3 + Regulatory T Cells Karin Pfisterer, Karoline M Lipnik, Erhard Hofer and Adelheid Elbe-Bürger Journal of Investigative Dermatology (2015)

More information

Developing Novel Immunotherapeutic Cancer Treatments for Clinical Use

Developing Novel Immunotherapeutic Cancer Treatments for Clinical Use Developing Novel Immunotherapeutic Cancer Treatments for Clinical Use Oncology for Scientists March 8 th, 2016 Jason Muhitch, PhD Assistant Professor Department of Urology Email: jason.muhitch@roswellpark.org

More information

Priming the Immune System to Kill Cancer and Reverse Tolerance. Dr. Diwakar Davar Assistant Professor, Melanoma and Phase I Therapeutics

Priming the Immune System to Kill Cancer and Reverse Tolerance. Dr. Diwakar Davar Assistant Professor, Melanoma and Phase I Therapeutics Priming the Immune System to Kill Cancer and Reverse Tolerance Dr. Diwakar Davar Assistant Professor, Melanoma and Phase I Therapeutics Learning Objectives Describe the role of the immune system in cancer

More information

Reprogramming Tumor Associated Dendritic Cells for Immunotherapy

Reprogramming Tumor Associated Dendritic Cells for Immunotherapy Reprogramming Tumor Associated Dendritic Cells for Immunotherapy Edgar Engleman, M.D. Professor of Pathology and Medicine Stanford University Disclosures: Founder of Dendreon, a biotechnology company that

More information

Tumor Microenvironment and Immune Suppression

Tumor Microenvironment and Immune Suppression Tumor Microenvironment and Immune Suppression Hassane M. Zarour,, MD Department of Medicine, Division of Hematology-Oncology, University of Pittsburgh Cancer Institute Hallmarks of Cancer: The Next Generation

More information

supplemental Figure 1

supplemental Figure 1 supplemental Figure 1 A T cell T1 anti-ny-eso-117-16/hla-a*:1 CDζ CH/CH scfv B T cell T1 anti-ny-eso-117-16/hla-a*:1 CDζ CH/CH scfv C T cell BW1/6 anti-cea CDζ CH/CH scfv supplemental Figure 1.79.9.87

More information

Immune surveillance hypothesis (Macfarlane Burnet, 1950s)

Immune surveillance hypothesis (Macfarlane Burnet, 1950s) TUMOR-IMMUNITÄT A.K. Abbas, A.H. Lichtman, S. Pillai (6th edition, 2007) Cellular and Molecular Immunology Saunders Elsevier Chapter 17, immunity to tumors Immune surveillance hypothesis (Macfarlane Burnet,

More information

Supplementary Figure 1. Deletion of Smad3 prevents B16F10 melanoma invasion and metastasis in a mouse s.c. tumor model.

Supplementary Figure 1. Deletion of Smad3 prevents B16F10 melanoma invasion and metastasis in a mouse s.c. tumor model. A B16F1 s.c. Lung LN Distant lymph nodes Colon B B16F1 s.c. Supplementary Figure 1. Deletion of Smad3 prevents B16F1 melanoma invasion and metastasis in a mouse s.c. tumor model. Highly invasive growth

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Complete but curtailed T-cell response to very-low-affinity antigen Dietmar Zehn, Sarah Y. Lee & Michael J. Bevan Supp. Fig. 1: TCR chain usage among endogenous K b /Ova reactive T cells. C57BL/6 mice

More information

Dendritic cells in cancer immunotherapy Aimin Jiang

Dendritic cells in cancer immunotherapy Aimin Jiang Dendritic cells in cancer immunotherapy Aimin Jiang Feb. 11, 2014 Dendritic cells at the interface of innate and adaptive immune responses Dendritic cells: initiators of adaptive immune responses Dendritic

More information

Review of Stem Cell Collection Data 2016 Ronan Foley, Professor, Director Stem Cell Laboratory, McMaster University

Review of Stem Cell Collection Data 2016 Ronan Foley, Professor, Director Stem Cell Laboratory, McMaster University 1 Review of Stem Cell Collection Data 2016 Ronan Foley, Professor, Director Stem Cell Laboratory, McMaster University Objectives 2 Review our national apheresis-based stem cell registry To evaluate the

More information

Supplemental Methods. CD107a assay

Supplemental Methods. CD107a assay Supplemental Methods CD107a assay For each T cell culture that was tested, two tubes were prepared. One tube contained BCMA-K562 cells, and the other tube contained NGFR-K562 cells. Both tubes contained

More information

CELLULAR AND MOLECULAR REQUIREMENTS FOR REJECTION OF B16 MELANOMA IN THE SETTING OF REGULATORY T CELL DEPLETION AND HOMEOSTATIC PROLIFERATION

CELLULAR AND MOLECULAR REQUIREMENTS FOR REJECTION OF B16 MELANOMA IN THE SETTING OF REGULATORY T CELL DEPLETION AND HOMEOSTATIC PROLIFERATION CELLULAR AND MOLECULAR REQUIREMENTS FOR REJECTION OF B16 MELANOMA IN THE SETTING OF REGULATORY T CELL DEPLETION AND HOMEOSTATIC PROLIFERATION Justin Kline 1, Long Zhang 1, and Thomas F. Gajewski 1,2 Departments

More information

Determinants of Immunogenicity and Tolerance. Abul K. Abbas, MD Department of Pathology University of California San Francisco

Determinants of Immunogenicity and Tolerance. Abul K. Abbas, MD Department of Pathology University of California San Francisco Determinants of Immunogenicity and Tolerance Abul K. Abbas, MD Department of Pathology University of California San Francisco EIP Symposium Feb 2016 Why do some people respond to therapeutic proteins?

More information

Ibrutinib treatment improves T cell number and function in CLL patients

Ibrutinib treatment improves T cell number and function in CLL patients Ibrutinib treatment improves T cell number and function in CLL patients Meixiao Long,, Natarajan Muthusamy, John C. Byrd J Clin Invest. 2017;127(8):3052-3064. https://doi.org/10.1172/jci89756. Clinical

More information

Vaccine Therapy for Cancer

Vaccine Therapy for Cancer Vaccine Therapy for Cancer Lawrence N Shulman, MD Chief Medical Officer Senior Vice President for Medical Affairs Chief, Division of General Oncology Dana-Farber Cancer Institute Disclosures for Lawrence

More information

Richard P Junghans, PhD, MD

Richard P Junghans, PhD, MD CANCER GENE THERAPY WITH DESIGNER T CELLS: TOXICITY VERSUS ACTIVITY Richard P Junghans, PhD, MD Director, Biotherapeutics Development Lab Associate Professor of Surgery and Medicine Boston University School

More information

5% of patients with genetic immunodeficiency develop a cancer during their lifetime (200x)

5% of patients with genetic immunodeficiency develop a cancer during their lifetime (200x) Immune surveillance 5% of patients with genetic immunodeficiency develop a cancer during their lifetime (200x) Transplanted patients following an immunosuppressor therapy are 80 times more likely to develop

More information

Professor Mark Bower Chelsea and Westminster Hospital, London

Professor Mark Bower Chelsea and Westminster Hospital, London Professor Mark Bower Chelsea and Westminster Hospital, London Cancer immunotherapy & HIV Disclosures: None Lessons for oncology from HIV Awareness and advocacy Activism Rational drug design Prescribing

More information

Peli1 negatively regulates T-cell activation and prevents autoimmunity

Peli1 negatively regulates T-cell activation and prevents autoimmunity Peli1 negatively regulates T-cell activation and prevents autoimmunity Mikyoung Chang 1,*, Wei Jin 1,5,*, Jae-Hoon Chang 1, Yi-chuan Xiao 1, George Brittain 1, Jiayi Yu 1, Xiaofei Zhou 1, Yi-Hong Wang

More information

The Adaptive Immune Responses

The Adaptive Immune Responses The Adaptive Immune Responses The two arms of the immune responses are; 1) the cell mediated, and 2) the humoral responses. In this chapter we will discuss the two responses in detail and we will start

More information

Engineering T Cells. Mack Cash

Engineering T Cells. Mack Cash Engineering T Cells Mack Cash Background Info T Cells Determine a response to antigens in the body Differentiate into different subsets of T cells Ex: Memory, Helper, Regulatory, etc. Regulate and kill

More information

Supplementary Figure 1 IL-27 IL

Supplementary Figure 1 IL-27 IL Tim-3 Supplementary Figure 1 Tc0 49.5 0.6 Tc1 63.5 0.84 Un 49.8 0.16 35.5 0.16 10 4 61.2 5.53 10 3 64.5 5.66 10 2 10 1 10 0 31 2.22 10 0 10 1 10 2 10 3 10 4 IL-10 28.2 1.69 IL-27 Supplementary Figure 1.

More information

Immunotherapy: The Newest Treatment Route

Immunotherapy: The Newest Treatment Route Immunotherapy: The Newest Treatment Route IWMF Patient Forum, Phoenix, AZ Madhav Dhodapkar, MD Professor of Medicine and Immunobiology Chief, Section of Hematology Yale University or the Oldest William

More information

Immuno-Oncology Clinical Trials Update: Therapeutic Anti-Cancer Vaccines Issue 7 April 2017

Immuno-Oncology Clinical Trials Update: Therapeutic Anti-Cancer Vaccines Issue 7 April 2017 Delivering a Competitive Intelligence Advantage Immuno-Oncology Clinical Trials Update: Therapeutic Anti-Cancer Vaccines Issue 7 April 2017 Immuno-Oncology CLINICAL TRIALS UPDATE The goal of this MONTHLY

More information

Adoptive Cellular Therapy SITC Primer October 2012

Adoptive Cellular Therapy SITC Primer October 2012 Adoptive Cellular Therapy SITC Primer October 2012 Cassian Yee MD Member Fred Hutchinson Cancer Research Center Program in Immunology Clinical Research Division Professor University of Washington Division

More information

CANCER IMMUNOPATHOLOGY. Eryati Darwin Faculty of Medicine Andalas University

CANCER IMMUNOPATHOLOGY. Eryati Darwin Faculty of Medicine Andalas University CANCER IMMUNOPATHOLOGY Eryati Darwin Faculty of Medicine Andalas University Padang 18 Mei 2013 INTRODUCTION Tumor: cells that continue to replicate, fail to differentiate into specialized cells, and become

More information

TITLE: MODULATION OF T CELL TOLERANCE IN A MURINE MODEL FOR IMMUNOTHERAPY OF PROSTATIC ADENOCARCINOMA

TITLE: MODULATION OF T CELL TOLERANCE IN A MURINE MODEL FOR IMMUNOTHERAPY OF PROSTATIC ADENOCARCINOMA AD Award Number: DAMD17-01-1-0085 TITLE: MODULATION OF T CELL TOLERANCE IN A MURINE MODEL FOR IMMUNOTHERAPY OF PROSTATIC ADENOCARCINOMA PRINCIPAL INVESTIGATOR: ARTHUR A HURWITZ, Ph.d. CONTRACTING ORGANIZATION:

More information

Supplementary information. Characterization of c-maf + Foxp3 - Regulatory T Cells Induced by. Repeated Stimulation of Antigen-Presenting B Cells

Supplementary information. Characterization of c-maf + Foxp3 - Regulatory T Cells Induced by. Repeated Stimulation of Antigen-Presenting B Cells Chien 1 Supplementary information Manuscript: SREP-16-42480A Characterization of c-maf + Foxp3 - Regulatory T Cells Induced by Repeated Stimulation of Antigen-Presenting B Cells Chien-Hui Chien 1, Hui-Chieh

More information

Supplementary. presence of the. (c) mrna expression. Error. in naive or

Supplementary. presence of the. (c) mrna expression. Error. in naive or Figure 1. (a) Naive CD4 + T cells were activated in the presence of the indicated cytokines for 3 days. Enpp2 mrna expression was measured by qrt-pcrhr, infected with (b, c) Naive CD4 + T cells were activated

More information

CBER Regulatory Considerations for Clinical Development of Immunotherapies in Oncology

CBER Regulatory Considerations for Clinical Development of Immunotherapies in Oncology CBER Regulatory Considerations for Clinical Development of Immunotherapies in Oncology Peter Bross, MD Office of Cellular, Tissue and Gene Therapies, CBER FDA IOM Policy Issues in the Clinical Development

More information