Gene Regulation. Bacteria. Chapter 18: Regulation of Gene Expression

Size: px
Start display at page:

Download "Gene Regulation. Bacteria. Chapter 18: Regulation of Gene Expression"

Transcription

1 Chapter 18: Regulation of Gene Expression A Biology Gene Regulation rokaryotes and eukaryotes alter their gene expression in response to their changing environment In multicellular eukaryotes, gene expression regulates development and is responsible for differences in cell types molecules play a role in regulating this 2 Bacteria Feedback inhibition recursor trpe gene Natural selection favors bacteria that produce only those products needed by the cell Enzyme 1 Enzyme 2 trpd gene trpc gene Regulation of gene expression A cell can regulate the production of enzymes by feedback inhibition or by gene regulation - Enzyme 3 Tryptophan trpb gene trpa gene - In bacteria this is controlled by operons (a) Regulation of enzyme activity (b) Regulation of enzyme production Fig

2 Operons Cluster of functionally related genes under coordinated control by a single on-off switch that includes the operator, promoter, and genes they control Regulatory switch is a segment of called an operator which is usually positioned within the promoter Operon can be switched off by a protein (works by binding to the operator and blocking polymerase) Repressor is the product of a separate regulatory gene Repressor can be in an active or inactive form depending on the presence of other molecules Co is a molecule that cooperates with a protein to shut off an operon 4 trp operon Regulatory gene m rotein 5! trpr 3! Operator Start codon polymerase m 5! Inactive (a) Tryptophan absent, inactive, operon on Genes of operon trpe trpd trpc trpb trpa Stop codon E D C B A olypeptide subunits that make up enzymes for tryptophan synthesis Fig No made E. coli synthesizes the amino acid tryptophan m Trp operon is on by default rotein Tryptophan (co) (b) Tryptophan present, active, operon off Active Ex. Trp Operon When tryptophan is present, it binds to the trp protein which turns the operon off (acts as a co) 5 Repressible and Inducible Operons m 5! rotein laci polymerase 3! m 5! lac operon lacz lacy laca β-galactosidase ermease Transacetylase Fig m rotein Regulatory gene 5! laci 3! polymerase Active Allolactose (inducer) (a) Lactose absent, active, operon off (b) Lactose present, inactive, operon on Operator lacz Inactive No made Repressible operon is usually on (binding of a shuts it off) Ex. trp operon Inducible operon is usually off (binding of an inducer inactivates the and turns on transcription) Ex. lac operon - contains genes that code for enzymes used in hydrolysis and metabolism of lactose 6

3 ositive Gene Regulation ositive control caused by a stimulatory protein called an activator of transcription (ex. catabolite activator protein - CA) When glucose is scarce, CA is activated by binding with cyclic AM (cam) Activated CA attaches to the promoter of the lac operon and increases the affinity of polymerase (accelerating transcription) When glucose levels increase, CA detaches from the lac operon and transcription returns to a normal rate CA helps regulate other operons that encode enzymes used in catabolic pathways laci CA-binding site cam Active CA Inactive CA Allolactose polymerase binds and transcribes lacz Operator Inactive lac (a) Lactose present, glucose scarce (cam level high): abundant lac m synthesized laci CA-binding site Inactive CA Fig lacz Operator polymerase less likely to bind Inactive lac (b) Lactose present, glucose present (cam level low): little lac m synthesized 7 Eukaryote Gene Expression Fig All organisms must regulate which genes are expressed at any given time In multicellular organisms, regulation of gene expression is essential for cell specialization Since almost all cells in an organism are genetically identical, differences between cell types result from differential gene expression (expression of different genes by cells with the same genome) Signal Cap Degradation of m Gene NUCLEUS Chromatin Chromatin modification: unpacking involving histone acetylation and demethylation Exon Intron Gene available for transcription rimary transcript processing Tail m in nucleus Transport to cytoplasm CYTOLASM m in cytoplasm Translation olypeptide rotein processing, such as cleavage and chemical modification Abnormalities in gene expression can lead to diseases including cancer Gene expression is regulated at many stages Degradation of protein Active protein Transport to cellular destination Cellular function (such as enzymatic activity, structural support) 8 Regulation of Chromatin Structure Genes with highly packed heterochromatin are usually not expressed Fig Amino acids available for chemical modification Histone tails double helix Nucleosome (end view) (a) Histone tails protrude outward from a nucleosome Chemical modifications to histones and of chromatin influence both chromatin structure and gene expression Histone acetylation - acetyl groups are attached to positively charged lysines in histone tails which loosens chromatin structure (promoting transcription) Unacetylated histones Acetylated histones (b) Acetylation of histone tails promotes loose chromatin structure that permits transcription Adding methyl groups (methylation) condenses chromatin If phosphate groups are added to the methylated amino acid, the chromatin is loosened. 9

4 Methylation Adding methyl groups to certain bases in is associated with reduced transcription in some species methylation can cause long-term inactivation of genes in cellular differentiation In genomic imprinting, methylation regulates expression of either the maternal or paternal alleles of certain genes at the start of development 10 Epigenetic Inheritance Although chromatin modifications do not alter sequences, they can be passed on to future generations of cells Inheritance of traits transmitted by mechanisms not directly involving the nucleotide sequence is called epigenetic inheritance 11 Organization of a Typical Eukaryotic Gene Most eukaryotic genes are associated with multiple control elements (segments of noncoding that serve as binding sites for transcription factors that regulate transcription) Enhancer (distal control elements) roximal control elements oly-a start site Exon Intron Exon signal sequence Intron Exon termination region Upstream rimary transcript (pre-m) 5! Intron Downstream oly-a signal Exon Intron Exon Intron Exon Cleaved 3! end of processing primary transcript Coding segment Fig m G 5! Cap 5! UTR Start codon Stop codon 3! UTR AAA AAA 3! oly-a tail 12

5 Factors Activation domain -binding domain To initiate transcription, eukaryotic polymerase requires the assistance of proteins called transcription factors (essential for transcription of all protein-coding genes) Fig roximal control elements are located close to the promoter. Distal control elements (called enhancers) may be far away from a gene or even located in an intron. An activator binds to an enhancer and stimulates transcription of a gene. (Activator has two domains - one binds to and second activates transcription) 13 Factors Some act as s (inhibiting expression of a gene) Some activators and s act indirectly by influencing chromatin structure to promote or silence transcription Enhancer Activators Distal control element bending protein initiation complex Gene TATA box General transcription factors Group of mediator proteins polymerase II polymerase II synthesis Fig ost-al Regulation alone does not account for gene expression Regulatory mechanisms can operate at various stages after transcription (allow cell to fine-tune gene expression rapidly in response to environmental changes) 1 2 Exons Alternative Splicing - different m molecules are produced from the same primary transcript (depending on what is treated as exons and introns) m Degradation - life-span of m molecule in cytoplasm (eukaryotic m lasts longer than prokaryotic m) rimary transcript 1 2 Troponin T gene splicing m or Fig

6 ost-al Regulation rotein processing roteasomes are complexes that bind protein molecules and degrade them Ubiquitin roteasome roteasome and ubiquitin to be recycled rotein to be degraded Ubiquitinated protein rotein entering a proteasome rotein fragments (peptides) Fig Noncoding Small fraction of codes for proteins and a very small fraction of non-protein-coding consists of genes for r or t Significant amounts of the genome may be transcribed into noncoding s (ncs) which can regulate gene expression at m translation and chromatin configuration 5! 3! Hairpin (a) rimary mi transcript mi mi Hydrogen bond Dicer miprotein complex m degraded Translation blocked (b) Generation and function of mis Fig Micros (mis) are small single-stranded that can bind to m to degrade or block translation 17 Noncoding Inhibition of gene expression by molecules is called interference (i) i is caused by small interfering s (sis) - sis and mis are similar but form from different precursors An increase in the number of mis in a species may have allowed morphological complexity to increase over evolutionary time 18

7 Differential Gene Expression During embryonic development, a fertilized egg gives rise to many different cell types which are organized into tissues, organs, organ systems, and the whole organism Transformation from a zygote to adult results from cell division, cell differentiation, and morphogenesis 1 mm 2 mm (a) Fertilized eggs of a frog (b) Newly hatched tadpole Figs & Cell differentiation - process by which cells become specialized in structure and function Morphogenesis - physical processes that give an organism its shape Cytoplasmic determinants - maternal substances in the egg that influence early development (a) Cytoplasmic determinants in the egg Sperm Fertilization Zygote (fertilized egg) Two-celled embryo Mitotic cell division Unfertilized egg Nucleus Molecules of two different cytoplasmic determinants (b) Induction by nearby cells Early embryo (32 cells) NUCLEUS Signal transduction pathway Signal receptor Signaling molecule (inducer) 19 Sequential Regulation Determination commits a cell to its final fate (happens before differentiation) Differentiation is marked by the production of tissue-specific proteins Nucleus Embryonic precursor cell Master regulatory gene myod OFF Other muscle-specific genes OFF Ex. Myoblasts produce musclespecific proteins and form skeletal muscle cells Myoblast (determined) m MyoD protein (transcription factor) OFF MyoD is one of several master regulatory genes the produce proteins that commit the cell to becoming skeletal muscle MyoD protein is a transcription factor that binds to enhancers of various target genes art of a muscle fiber (fully differentiated cell) m m m m MyoD Another transcription factor Myosin, other muscle proteins, and cell cycle blocking proteins Fig Setting Up the Body lan BODY AXES Head Thorax Abdomen 0.5 mm Dorsal Right Anterior osterior Left Ventral Fig attern formation - development of spatial organization of tissues and organs (in animals begins with establishment of major axes) ositional information - molecular cues that control pattern formation, tells a cell its location relative to the body axes and to neighboring cells Ex. Drosophila melanogaster (fruit fly) - cytoplasmic determinants in the egg determine the axes before fertilization (a) Adult 1 2 Egg developing within ovarian follicle Nurse cell Unfertilized egg Depleted nurse cells 3 Fertilized egg 4 Segmented embryo 5 Larval stage Body segments Follicle cell (b) Development from egg to larva Nucleus Egg Egg shell Fertilization Laying of egg Embryonic development Hatching 0.1 mm 21

8 Fig Developmental Genes in Drosophila Head T1 T2 T3 A8 A6 A7 A1 A2 A3 A4 A5 Wild-type larva 250 µm Tail Homeotic genes - control pattern formation in late embryo, larva, and adult stages Tail A8 A7 A6 A7 A8 Tail Embryonic lethals - mutations that cause death during embryogenesis Maternal effect genes - encode for cytoplasmic determinants that establish the axes (also called egg-polarity genes) RESULTS Bicoid m in mature unfertilized egg Mutant larva (bicoid) Fertilization, translation of bicoid m Anterior end Bicoid protein in early embryo 100 µm Ex. Bicoid gene - if it is not functional, the fly will lack a front half and have duplicate posterior structures at both ends Bicoid m in mature unfertilized egg Bicoid protein in early embryo Fig Cancer Gene regulation systems that go wrong in cancer are the same systems involved in embryonic development Cancer is caused by mutations in genes that regulate cell growth and division Tumor viruses can also cause cancer in animals including humans Oncogenes - cancer-causing genes roto-oncogenes - normal cellular genes responsible for normal cell growth and division Conversion of a proto-oncogene to an oncogene can lead to abnormal stimulation of the cell cycle Conversion can be caused by movement of near a promoter, amplification of a proto-oncogene, point mutations in the proto-oncogene or its control elements 23 Conversion of a roto-oncogene roto-oncogene Fig Translocation or transposition: gene moved to new locus, under new controls Gene amplification: multiple copies of the gene within a control element oint mutation: within the gene New promoter Oncogene Oncogene Normal growthstimulating protein in excess Normal growth-stimulating protein in excess Normal growthstimulating protein in excess Hyperactive or degradationresistant protein 24

9 Tumor Suppressor Genes Help prevent uncontrolled cell growth Mutations that decrease production of tumor suppressor genes contribute to cancer onset Tumor suppressor proteins repair damaged, control cell adhesion, and inhibit the cell cycle Mutations in the ras proto-oncogene and p53 tumor suppressor gene are common in human cancers Mutations in the ras gene leads to hyperactive Ras protein and increased cell division p53 prevents a cell from passing on mutations due to damage 25 roto-oncogenes and Tumor Suppressor Genes 1 Growth factor 3 G protein GT Ras 2 Receptor 4 rotein kinases (phosphorylation cascade) (a) Cell cycle stimulating pathway 5 GT Ras factor (activator) MUTATION Hyperactive Ras protein (product of oncogene) issues signals on its own. Gene expression rotein that stimulates the cell cycle NUCLEUS UV light 2 rotein kinases 1 damage in genome (b) Cell cycle inhibiting pathway rotein overexpressed 3 Active form of p53 rotein that inhibits the cell cycle EFFECTS OF MUTATIONS MUTATION Defective or missing transcription factor, such as p53, cannot activate transcription. rotein absent Cell cycle overstimulated (c) Effects of mutations Increased cell division Cell cycle not inhibited 26 Multistep Model of Cancer Development Multiple mutations are generally needed for full-fledged cancer (this is why incidence increases with age) Usually requires at least one active oncogene and mutations in several tumorsuppressor genes Individuals can inherit oncogenes or mutant alleles of tumor suppressor genes Colon Fig Loss of tumorsuppressor gene AC (or other) 2 Activation of ras oncogene 4 Loss of tumorsuppressor gene p53 Normal colon epithelial cells Colon wall Small benign growth (polyp) 3 Loss of tumorsuppressor gene DCC Larger benign growth (adenoma) 5 Additional mutations Malignant tumor (carcinoma) 27

Regulation of Gene Expression in Eukaryotes

Regulation of Gene Expression in Eukaryotes Ch. 19 Regulation of Gene Expression in Eukaryotes BIOL 222 Differential Gene Expression in Eukaryotes Signal Cells in a multicellular eukaryotic organism genetically identical differential gene expression

More information

A Genetic Program for Embryonic Development

A Genetic Program for Embryonic Development Concept 18.4: A program of differential gene expression leads to the different cell types in a multicellular organism During embryonic development, a fertilized egg gives rise to many different cell types

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Regulation of Gene Expression

Regulation of Gene Expression LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 18 Regulation of Gene Expression

More information

Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment

Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment In multicellular eukaryotes, gene expression regulates development

More information

Chapter 18 Regulation of Gene Expression

Chapter 18 Regulation of Gene Expression Chapter 18 Regulation of Gene Expression Differential Expression of Genes Prokaryotes and eukaryotes precisely regulate gene expression in response to environmental conditions In multicellular eukaryotes,

More information

BIOLOGY. Regulation of Gene Expression CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Regulation of Gene Expression CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 18 Regulation of Gene Expression Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Differential Expression of Genes

More information

Ch. 18 Regulation of Gene Expression

Ch. 18 Regulation of Gene Expression Ch. 18 Regulation of Gene Expression 1 Human genome has around 23,688 genes (Scientific American 2/2006) Essential Questions: How is transcription regulated? How are genes expressed? 2 Bacteria regulate

More information

Campbell Biology 10. A Global Approach. Chapter 18 Control of Gene Expression

Campbell Biology 10. A Global Approach. Chapter 18 Control of Gene Expression Lecture on General Biology 2 Campbell Biology 10 A Global Approach th edition Chapter 18 Control of Gene Expression Chul-Su Yang, Ph.D., chulsuyang@hanyang.ac.kr Infection Biology Lab., Dept. of Molecular

More information

2014 Pearson Education, Inc. Select topics from Chapter 15

2014 Pearson Education, Inc. Select topics from Chapter 15 Select topics from Chapter 15 Overview: Differential Expression of Genes Prokaryotes and eukaryotes alter gene expression in response to their changing environment Multicellular eukaryotes also develop

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

BIOLOGY. Regulation of Gene Expression CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Regulation of Gene Expression CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 18 Regulation of Gene Expression Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick 2014 Pearson Education, Inc.

More information

Regulation of Gene Expression

Regulation of Gene Expression 18 Regulation of Gene Expression KEY CONCEPTS Figure 18.1 What regulates the precise pattern of gene expression in the developing wing of a fly embryo? 18.1 Bacteria often respond to environmental change

More information

Prokaryotes and eukaryotes alter gene expression in response to their changing environment

Prokaryotes and eukaryotes alter gene expression in response to their changing environment Chapter 18 Prokaryotes and eukaryotes alter gene expression in response to their changing environment In multicellular eukaryotes, gene expression regulates development and is responsible for differences

More information

Eukaryotic Genetics. Expression & Regulation

Eukaryotic Genetics. Expression & Regulation Eukaryotic Genetics Expression & Regulation Molecular Basis of Inheritance I.Main Idea: Bacteria often respond to environmental change by regulating transcription. Regulating Gene Expression A cell s genome

More information

Chapter 18. Regulation of Gene Expression. Lecture Outline. Overview: Conducting the Genetic Orchestra

Chapter 18. Regulation of Gene Expression. Lecture Outline. Overview: Conducting the Genetic Orchestra Chapter 18 Regulation of Gene Expression Lecture Outline Overview: Conducting the Genetic Orchestra Both prokaryotes and eukaryotes alter their patterns of gene expression in response to changes in environmental

More information

Chapter 11 How Genes Are Controlled

Chapter 11 How Genes Are Controlled Chapter 11 How Genes Are Controlled PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc. Lecture by Mary

More information

'''''''''''''''''Fundamental'Biology' BI'1101' ' an'interdisciplinary'approach'to'introductory'biology' Five'Levels'of'Organiza-on' Molecular'

'''''''''''''''''Fundamental'Biology' BI'1101' ' an'interdisciplinary'approach'to'introductory'biology' Five'Levels'of'Organiza-on' Molecular' '''''''''''''''''Fundamental'Biology' BI'1101' ' an'interdisciplinary'approach'to'introductory'biology' Anggraini'Barlian,' Iriawa-' Tjandra'Anggraeni' SITH4ITB' Five'Levels'of'Organiza-on' Molecular'

More information

Development, Stem Cells, and Cancer

Development, Stem Cells, and Cancer CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 16 Development, Stem Cells, and Cancer Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

General Biology 1004 Chapter 11 Lecture Handout, Summer 2005 Dr. Frisby

General Biology 1004 Chapter 11 Lecture Handout, Summer 2005 Dr. Frisby Slide 1 CHAPTER 11 Gene Regulation PowerPoint Lecture Slides for Essential Biology, Second Edition & Essential Biology with Physiology Presentation prepared by Chris C. Romero Neil Campbell, Jane Reece,

More information

Eukaryotic Gene Regulation

Eukaryotic Gene Regulation Eukaryotic Gene Regulation Chapter 19: Control of Eukaryotic Genome The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different,

More information

Gene Regulation - 4. One view of the Lactose Operon

Gene Regulation - 4. One view of the Lactose Operon Gene Regulation - 1 Regulating Genes We have been discussing the structure of DNA and that the information stored in DNA is used to direct protein synthesis. We've studied how RNA molecules are used to

More information

Chapter 11 How Genes Are Controlled

Chapter 11 How Genes Are Controlled Chapter 11 How Genes Are Controlled PowerPoint Lectures Campbell Biology: Concepts & Connections, Eighth Edition REECE TAYLOR SIMON DICKEY HOGAN Lecture by Edward J. Zalisko Introduction Well-preserved

More information

HOW AND WHY GENES ARE REGULATED HOW AND WHY GENES ARE REGULATED. Patterns of Gene Expression in Differentiated Cells

HOW AND WHY GENES ARE REGULATED HOW AND WHY GENES ARE REGULATED. Patterns of Gene Expression in Differentiated Cells HOW AND WHY GENES ARE REGULATED 5 HOW AND WHY GENES ARE REGULATED 6 Every somatic cell in an organism contains identical genetic instructions. They all share the same genome. So what makes cells different

More information

Focus on the Concepts

Focus on the Concepts Focus on the Concepts ~is chapter describes how genes are controlled and how this relates to differentiation, development, cloning, signal transduction, and what can happen when cells escape their normal

More information

Genetics and Genomics in Medicine Chapter 6 Questions

Genetics and Genomics in Medicine Chapter 6 Questions Genetics and Genomics in Medicine Chapter 6 Questions Multiple Choice Questions Question 6.1 With respect to the interconversion between open and condensed chromatin shown below: Which of the directions

More information

Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression. Chromatin Array of nuc

Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression. Chromatin Array of nuc Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression Chromatin Array of nuc 1 Transcriptional control in Eukaryotes: Chromatin undergoes structural changes

More information

Chapter 19 Eukaryotic Genomes

Chapter 19 Eukaryotic Genomes Chapter 19 Eukaryotic Genomes Lecture Outline Overview: How Eukaryotic Genomes Work and Evolve Two features of eukaryotic genomes present a major information-processing challenge. First, the typical multicellular

More information

Chapter 11. How Genes Are Controlled. Lectures by Edward J. Zalisko

Chapter 11. How Genes Are Controlled. Lectures by Edward J. Zalisko Chapter 11 How Genes Are Controlled PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey, and

More information

Chapter 11 Gene Expression

Chapter 11 Gene Expression Chapter 11 Gene Expression 11-1 Control of Gene Expression Gene Expression- the activation of a gene to form a protein -a gene is on or expressed when it is transcribed. -cells do not always need to produce

More information

Physiological Adaptation. Microbial Physiology Module 4

Physiological Adaptation. Microbial Physiology Module 4 Physiological Adaptation Microbial Physiology Module 4 Topics Coordination of Metabolic Reactions Regulation of Enzyme Activity Regulation of Gene Expression Global Control, Signal Transduction and Twocomponent

More information

Section D: The Molecular Biology of Cancer

Section D: The Molecular Biology of Cancer CHAPTER 19 THE ORGANIZATION AND CONTROL OF EUKARYOTIC GENOMES Section D: The Molecular Biology of Cancer 1. Cancer results from genetic changes that affect the cell cycle 2. Oncogene proteins and faulty

More information

I. Each cell of a multicellular eukaryote expresses only a small fraction of its genome

I. Each cell of a multicellular eukaryote expresses only a small fraction of its genome CHAPTER 18 GENOME ORGANIZATION AND EXPRESSION IN EUKARYOTES OUTLINE I. Each cell of a multicellular eukaryote expresses only a small fraction of its genome II. III. IV. The structural organization of chromatin

More information

TRANSCRIPTION. DNA à mrna

TRANSCRIPTION. DNA à mrna TRANSCRIPTION DNA à mrna Central Dogma Animation DNA: The Secret of Life (from PBS) http://www.youtube.com/watch? v=41_ne5ms2ls&list=pl2b2bd56e908da696&index=3 Transcription http://highered.mcgraw-hill.com/sites/0072507470/student_view0/

More information

Virus and Prokaryotic Gene Regulation - 1

Virus and Prokaryotic Gene Regulation - 1 Virus and Prokaryotic Gene Regulation - 1 We have discussed the molecular structure of DNA and its function in DNA duplication and in transcription and protein synthesis. We now turn to how cells regulate

More information

Study Guide for Campbell Biology: Concepts & Connections Reece Taylor Simon Dickey Liebaert Seventh Edition

Study Guide for Campbell Biology: Concepts & Connections Reece Taylor Simon Dickey Liebaert Seventh Edition tudy Guide for Campbell Biology: Concepts & Connections eece aylor imon Dickey Liebaert eventh dition Pearson ducation Limited dinburgh Gate Harlow ssex CM20 2J ngland and ssociated Companies throughout

More information

Page 32 AP Biology: 2013 Exam Review CONCEPT 6 REGULATION

Page 32 AP Biology: 2013 Exam Review CONCEPT 6 REGULATION Page 32 AP Biology: 2013 Exam Review CONCEPT 6 REGULATION 1. Feedback a. Negative feedback mechanisms maintain dynamic homeostasis for a particular condition (variable) by regulating physiological processes,

More information

Genetics. Instructor: Dr. Jihad Abdallah Transcription of DNA

Genetics. Instructor: Dr. Jihad Abdallah Transcription of DNA Genetics Instructor: Dr. Jihad Abdallah Transcription of DNA 1 3.4 A 2 Expression of Genetic information DNA Double stranded In the nucleus Transcription mrna Single stranded Translation In the cytoplasm

More information

Molecular Biology (BIOL 4320) Exam #2 May 3, 2004

Molecular Biology (BIOL 4320) Exam #2 May 3, 2004 Molecular Biology (BIOL 4320) Exam #2 May 3, 2004 Name SS# This exam is worth a total of 100 points. The number of points each question is worth is shown in parentheses after the question number. Good

More information

RNA Processing in Eukaryotes *

RNA Processing in Eukaryotes * OpenStax-CNX module: m44532 1 RNA Processing in Eukaryotes * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you

More information

You may need to shop for a new brain after this chapter

You may need to shop for a new brain after this chapter You may need to shop for a new brain after this chapter Introduction Gene expression in eukaryotes vs. prokaryotes. First, the eukaryotic genome is much larger. Second, different eukaryotic cells in multicellular

More information

Gene Regulation Part 2

Gene Regulation Part 2 Michael Cummings Chapter 9 Gene Regulation Part 2 David Reisman University of South Carolina Other topics in Chp 9 Part 2 Protein folding diseases Most diseases are caused by mutations in the DNA that

More information

34 Cancer. Lecture Outline, 11/30/05. Cancer is caused by mutant genes. Changes in growth properties of cancer cells

34 Cancer. Lecture Outline, 11/30/05. Cancer is caused by mutant genes. Changes in growth properties of cancer cells 34 Cancer Lecture Outline, 11/30/05 Review the Cell cycle Cancer is a genetic disease Oncogenes and roto-oncogenes Normally romote cell growth. Become oncogenic after oint mutations, dulications, deletion

More information

Problem Set 5 KEY

Problem Set 5 KEY 2006 7.012 Problem Set 5 KEY ** Due before 5 PM on THURSDAY, November 9, 2006. ** Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. You are studying the development

More information

Histones modifications and variants

Histones modifications and variants Histones modifications and variants Dr. Institute of Molecular Biology, Johannes Gutenberg University, Mainz www.imb.de Lecture Objectives 1. Chromatin structure and function Chromatin and cell state Nucleosome

More information

Einführung in die Genetik

Einführung in die Genetik Einführung in die Genetik Prof. Dr. Kay Schneitz (EBio Pflanzen) http://plantdev.bio.wzw.tum.de schneitz@wzw.tum.de Prof. Dr. Claus Schwechheimer (PlaSysBiol) http://wzw.tum.de/sysbiol claus.schwechheimer@wzw.tum.de

More information

Mitosis and the Cell Cycle

Mitosis and the Cell Cycle Mitosis and the Cell Cycle Chapter 12 The Cell Cycle: Cell Growth & Cell Division Where it all began You started as a cell smaller than a period at the end of a sentence Getting from there to here Cell

More information

Computational Biology I LSM5191

Computational Biology I LSM5191 Computational Biology I LSM5191 Aylwin Ng, D.Phil Lecture 6 Notes: Control Systems in Gene Expression Pulling it all together: coordinated control of transcriptional regulatory molecules Simple Control:

More information

Chapter 12. living /non-living? growth repair renew. Reproduction. Reproduction. living /non-living. fertilized egg (zygote) next chapter

Chapter 12. living /non-living? growth repair renew. Reproduction. Reproduction. living /non-living. fertilized egg (zygote) next chapter Chapter 12 How cells divide Reproduction living /non-living? growth repair renew based on cell division first mitosis - distributes identical sets of chromosomes cell cycle (life) Cell Division in Bacteria

More information

Why do cells divide? The Cell Cycle: Cell Growth, Cell Division. Making new cells. Getting the right stuff. Overview of mitosis 1/5/2015

Why do cells divide? The Cell Cycle: Cell Growth, Cell Division. Making new cells. Getting the right stuff. Overview of mitosis 1/5/2015 Why do cells divide? The Cell Cycle: Cell Growth, Cell Division For reproduction asexual reproduction one-celled organisms For growth from fertilized egg to multi-celled organism For repair & renewal replace

More information

Chapter 9. Cells Grow and Reproduce

Chapter 9. Cells Grow and Reproduce Chapter 9 Cells Grow and Reproduce DNA Replication DNA polymerase Addition of a nucleotide to the 3 end of a growing strand Use dntps as substrate Release of pyrophosphate Initiation of Replication Replication

More information

Chapter 4 Genetics and Cellular Function. The Nucleic Acids (medical history) Chromosome loci. Organization of the Chromatin. Nucleotide Structure

Chapter 4 Genetics and Cellular Function. The Nucleic Acids (medical history) Chromosome loci. Organization of the Chromatin. Nucleotide Structure Chapter 4 Genetics and Cellular Function The Nucleic Acids (medical history) Nucleus and nucleic acids Protein synthesis and secretion DNA replication and the cell cycle Chromosomes and heredity Organization

More information

Protein Synthesis

Protein Synthesis Protein Synthesis 10.6-10.16 Objectives - To explain the central dogma - To understand the steps of transcription and translation in order to explain how our genes create proteins necessary for survival.

More information

Regulation. 1. Short term control 8-1

Regulation. 1. Short term control 8-1 Regulation Several aspects of regulation have been alluded to or described in detail as we have progressed through the various sections of the course. These include: (a) compartmentation: This was not

More information

Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis

Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis Chromosomes Chromosomes were first observed by the German embryologist Walther Fleming in 1882. Chromosome number varies among organisms most

More information

Introduction to Cancer Biology

Introduction to Cancer Biology Introduction to Cancer Biology Robin Hesketh Multiple choice questions (choose the one correct answer from the five choices) Which ONE of the following is a tumour suppressor? a. AKT b. APC c. BCL2 d.

More information

Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis

Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis Prokaryotes Have a Simpler Cell Cycle Cell division in prokaryotes takes place in two stages, which together make up a simple cell cycle 1. Copy

More information

Cell Communication. Chapter 11. Overview: The Cellular Internet

Cell Communication. Chapter 11. Overview: The Cellular Internet Chapter 11 Cell Communication Overview: The Cellular Internet Cell-to-cell communication is essential for multicellular organisms Biologists have discovered some universal mechanisms of cellular regulation

More information

Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl

Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl Chapt. 18 Cancer Molecular Biology of Cancer Student Learning Outcomes: Describe cancer diseases in which cells no longer respond Describe how cancers come from genomic mutations (inherited or somatic)

More information

Chapter 8 DNA Replication, Binary Fission, and Mitosis

Chapter 8 DNA Replication, Binary Fission, and Mitosis Chapter 8 DNA Replication, Binary Fission, and Mitosis World s tallest man Frederic J. Brown/AFP/Getty Images Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without

More information

Epigenetics. Lyle Armstrong. UJ Taylor & Francis Group. f'ci Garland Science NEW YORK AND LONDON

Epigenetics. Lyle Armstrong. UJ Taylor & Francis Group. f'ci Garland Science NEW YORK AND LONDON ... Epigenetics Lyle Armstrong f'ci Garland Science UJ Taylor & Francis Group NEW YORK AND LONDON Contents CHAPTER 1 INTRODUCTION TO 3.2 CHROMATIN ARCHITECTURE 21 THE STUDY OF EPIGENETICS 1.1 THE CORE

More information

Early Embryonic Development

Early Embryonic Development Early Embryonic Development Maternal effect gene products set the stage by controlling the expression of the first embryonic genes. 1. Transcription factors 2. Receptors 3. Regulatory proteins Maternal

More information

Molecular biology :- Cancer genetics lecture 11

Molecular biology :- Cancer genetics lecture 11 Molecular biology :- Cancer genetics lecture 11 -We have talked about 2 group of genes that is involved in cellular transformation : proto-oncogenes and tumour suppressor genes, and it isn t enough to

More information

Division Ave. High School AP Biology

Division Ave. High School AP Biology Regulation of Cell Division 2008-2009 Coordination of cell division A multicellular organism needs to coordinate cell division across different tissues & organs u critical for normal growth, development

More information

OVERVIEW OF EPIGENETICS

OVERVIEW OF EPIGENETICS OVERVIEW OF EIENETICS Date: * Time: 9:00 am - 9:50 am * Room: Berryhill 103 Lecturer: Terry Magnuson 4312 MBRB trm4@med.unc.edu 843-6475 *lease consult the online schedule for this course for the definitive

More information

The Biology and Genetics of Cells and Organisms The Biology of Cancer

The Biology and Genetics of Cells and Organisms The Biology of Cancer The Biology and Genetics of Cells and Organisms The Biology of Cancer Mendel and Genetics How many distinct genes are present in the genomes of mammals? - 21,000 for human. - Genetic information is carried

More information

Life Sciences 1A Midterm Exam 2. November 13, 2006

Life Sciences 1A Midterm Exam 2. November 13, 2006 Name: TF: Section Time Life Sciences 1A Midterm Exam 2 November 13, 2006 Please write legibly in the space provided below each question. You may not use calculators on this exam. We prefer that you use

More information

number Done by Corrected by Doctor Maha Shomaf

number Done by Corrected by Doctor Maha Shomaf number 19 Done by Waseem Abo-Obeida Corrected by Abdullah Zreiqat Doctor Maha Shomaf Carcinogenesis: the molecular basis of cancer. Non-lethal genetic damage lies at the heart of carcinogenesis and leads

More information

Eukaryotic transcription (III)

Eukaryotic transcription (III) Eukaryotic transcription (III) 1. Chromosome and chromatin structure Chromatin, chromatid, and chromosome chromatin Genomes exist as chromatins before or after cell division (interphase) but as chromatids

More information

Multistep nature of cancer development. Cancer genes

Multistep nature of cancer development. Cancer genes Multistep nature of cancer development Phenotypic progression loss of control over cell growth/death (neoplasm) invasiveness (carcinoma) distal spread (metastatic tumor) Genetic progression multiple genetic

More information

mirna Dr. S Hosseini-Asl

mirna Dr. S Hosseini-Asl mirna Dr. S Hosseini-Asl 1 2 MicroRNAs (mirnas) are small noncoding RNAs which enhance the cleavage or translational repression of specific mrna with recognition site(s) in the 3 - untranslated region

More information

Bio 111 Study Guide Chapter 17 From Gene to Protein

Bio 111 Study Guide Chapter 17 From Gene to Protein Bio 111 Study Guide Chapter 17 From Gene to Protein BEFORE CLASS: Reading: Read the introduction on p. 333, skip the beginning of Concept 17.1 from p. 334 to the bottom of the first column on p. 336, and

More information

oncogenes-and- tumour-suppressor-genes)

oncogenes-and- tumour-suppressor-genes) Special topics in tumor biochemistry oncogenes-and- tumour-suppressor-genes) Speaker: Prof. Jiunn-Jye Chuu E-Mail: jjchuu@mail.stust.edu.tw Genetic Basis of Cancer Cancer-causing mutations Disease of aging

More information

Biology Developmental Biology Spring Quarter Midterm 1 Version A

Biology Developmental Biology Spring Quarter Midterm 1 Version A Biology 411 - Developmental Biology Spring Quarter 2013 Midterm 1 Version A 75 Total Points Open Book Choose 15 out the 20 questions to answer (5 pts each). Only the first 15 questions that are answered

More information

meiosis asexual reproduction CHAPTER 9 & 10 The Cell Cycle, Meiosis & Sexual Life Cycles Sexual reproduction mitosis

meiosis asexual reproduction CHAPTER 9 & 10 The Cell Cycle, Meiosis & Sexual Life Cycles Sexual reproduction mitosis meiosis asexual reproduction CHAPTER 9 & 10 The Cell Cycle, Meiosis & Sexual Sexual reproduction Life Cycles mitosis Chromosomes Consists of a long DNA molecule (represents thousands of genes) Also consists

More information

5/25/2015. Replication fork. Replication fork. Replication fork. Replication fork

5/25/2015. Replication fork. Replication fork. Replication fork. Replication fork Mutations Chapter 5 Cellular Functions Lecture 3: and Cell Division Most DNA mutations alter the protein product May Make it function better (rarely) Change its function Reduce its function Make it non-functional

More information

Regulation of Cell Division (Ch. 12)

Regulation of Cell Division (Ch. 12) Regulation of Cell Division (Ch. 12) Coordination of cell division A multicellular organism needs to coordinate cell division across different tissues & organs critical for normal growth, development &

More information

5.1. KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. 68 Reinforcement Unit 2 Resource Book

5.1. KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. 68 Reinforcement Unit 2 Resource Book 5.1 THE CELL CYCLE KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. Cells have a regular pattern of growth, DNA duplication, and division that is called the cell cycle.

More information

Chemistry 107 Exam 4 Study Guide

Chemistry 107 Exam 4 Study Guide Chemistry 107 Exam 4 Study Guide Chapter 10 10.1 Recognize that enzyme catalyze reactions by lowering activation energies. Know the definition of a catalyst. Differentiate between absolute, relative and

More information

Alternative RNA processing: Two examples of complex eukaryotic transcription units and the effect of mutations on expression of the encoded proteins.

Alternative RNA processing: Two examples of complex eukaryotic transcription units and the effect of mutations on expression of the encoded proteins. Alternative RNA processing: Two examples of complex eukaryotic transcription units and the effect of mutations on expression of the encoded proteins. The RNA transcribed from a complex transcription unit

More information

Lecture 27. Epigenetic regulation of gene expression during development

Lecture 27. Epigenetic regulation of gene expression during development Lecture 27 Epigenetic regulation of gene expression during development Development of a multicellular organism is not only determined by the DNA sequence but also epigenetically through DNA methylation

More information

609G: Concepts of Cancer Genetics and Treatments (3 credits)

609G: Concepts of Cancer Genetics and Treatments (3 credits) Master of Chemical and Life Sciences Program College of Computer, Mathematical, and Natural Sciences 609G: Concepts of Cancer Genetics and Treatments (3 credits) Text books: Principles of Cancer Genetics,

More information

Cell Division. Chromosome structure. Made of chromatin (mix of DNA and protein) Only visible during cell division

Cell Division. Chromosome structure. Made of chromatin (mix of DNA and protein) Only visible during cell division Chromosome structure Made of chromatin (mix of DNA and protein) Only visible during cell division Chromosome structure The DNA in a cell is packed into an elaborate, multilevel system of coiling and folding.

More information

Functional Limitations

Functional Limitations Regulation of the Cell Cycle Chapter 12 Pg. 228 245 Functional Limitations Various factors determine whether and when a cell divides. Two functional limitations for cell size limit growth or influence

More information

Enzyme-coupled Receptors. Cell-surface receptors 1. Ion-channel-coupled receptors 2. G-protein-coupled receptors 3. Enzyme-coupled receptors

Enzyme-coupled Receptors. Cell-surface receptors 1. Ion-channel-coupled receptors 2. G-protein-coupled receptors 3. Enzyme-coupled receptors Enzyme-coupled Receptors Cell-surface receptors 1. Ion-channel-coupled receptors 2. G-protein-coupled receptors 3. Enzyme-coupled receptors Cell-surface receptors allow a flow of ions across the plasma

More information

DNA codes for RNA, which guides protein synthesis.

DNA codes for RNA, which guides protein synthesis. Section 3: DNA codes for RNA, which guides protein synthesis. K What I Know W What I Want to Find Out L What I Learned Vocabulary Review synthesis New RNA messenger RNA ribosomal RNA transfer RNA transcription

More information

Midterm 1. Number of students Score. Mean: 73 Median: 75 Top Score: 98

Midterm 1. Number of students Score. Mean: 73 Median: 75 Top Score: 98 Midterm 1 14 12 Number of students 10 8 6 4 2 0 35-40 41-45 Mean: 73 Median: 75 Top Score: 98 46-50 51-55 56-60 61-65 66-70 71-75 Score 76-80 81-85 86-90 91-95 96-100 Write your name and student ID# on

More information

Chapter 18- Oncogenes, tumor suppressors & Cancer

Chapter 18- Oncogenes, tumor suppressors & Cancer Chapter 18- Oncogenes, tumor suppressors & Cancer - Previously we have talked about cancer which is an uncontrolled cell proliferation and we have discussed about the definition of benign, malignant, metastasis

More information

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication DEFINITIONS OF TERMS Eukaryotic: Non-bacterial cell type (bacteria are prokaryotes).. LESSON 4.4 WORKBOOK How viruses make us sick: Viral Replication This lesson extends the principles we learned in Unit

More information

Cell Cycle and Cancer

Cell Cycle and Cancer 142 8. Cell Cycle and Cancer NOTES CELL CYCLE G 0 state o Resting cells may re-enter the cell cycle Nondividing cells (skeletal and cardiac muscle, neurons) o Have left the cell cycle and cannot undergo

More information

Chapter 12 The Cell Cycle

Chapter 12 The Cell Cycle Chapter 12 The Cell Cycle Objectives Describe how cell reproduction contributes to repair and growth. Compare and contrast prokaryotic and eukaryotic cell division. Compare and contrast asexual and sexual

More information

RNA (Ribonucleic acid)

RNA (Ribonucleic acid) RNA (Ribonucleic acid) Structure: Similar to that of DNA except: 1- it is single stranded polunucleotide chain. 2- Sugar is ribose 3- Uracil is instead of thymine There are 3 types of RNA: 1- Ribosomal

More information

Cancer. October is National Breast Cancer Awareness Month

Cancer. October is National Breast Cancer Awareness Month Cancer October is National Breast Cancer Awareness Month Objectives 1: Gene regulation Explain how cells in all the different parts of your body develop such different characteristics and functions. Contrast

More information

Stem Cell Epigenetics

Stem Cell Epigenetics Stem Cell Epigenetics Philippe Collas University of Oslo Institute of Basic Medical Sciences Norwegian Center for Stem Cell Research www.collaslab.com Source of stem cells in the body Somatic ( adult )

More information

PowerPoint Image Slideshow

PowerPoint Image Slideshow COLLEGE BIOLOGY PHYSICS Chapter 10 # Cell Chapter Reproduction Title PowerPoint Image Slideshow CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 12 The Cell Cycle 2014 Pearson

More information

Chapter 12. Regulation of Cell Division. AP Biology

Chapter 12. Regulation of Cell Division. AP Biology Chapter 12. Regulation of Cell Division Coordination of cell division! Multicellular organism " need to coordinate across different parts of organism! timing of cell division! rates of cell division "

More information

Introduction. Cancer Biology. Tumor-suppressor genes. Proto-oncogenes. DNA stability genes. Mechanisms of carcinogenesis.

Introduction. Cancer Biology. Tumor-suppressor genes. Proto-oncogenes. DNA stability genes. Mechanisms of carcinogenesis. Cancer Biology Chapter 18 Eric J. Hall., Amato Giaccia, Radiobiology for the Radiologist Introduction Tissue homeostasis depends on the regulated cell division and self-elimination (programmed cell death)

More information

Complexity DNA. Genome RNA. Transcriptome. Protein. Proteome. Metabolites. Metabolome

Complexity DNA. Genome RNA. Transcriptome. Protein. Proteome. Metabolites. Metabolome DNA Genome Complexity RNA Transcriptome Systems Biology Linking all the components of a cell in a quantitative and temporal manner Protein Proteome Metabolites Metabolome Where are the functional elements?

More information

Keywords: Daughter Cells Asexual Reproduction Sexual Reproduction Chromosomes Chromatin Homologous Chromosomes Diploid

Keywords: Daughter Cells Asexual Reproduction Sexual Reproduction Chromosomes Chromatin Homologous Chromosomes Diploid Name: CP Biology Unit 6: Cell Growth and Development Students will be able to: 6.1 Understand and explain the different aspects of the eukaryotic cell cycle. Explain how cell size is related to cell division

More information