2 A mechanism determining the stability of echinocytes

Size: px
Start display at page:

Download "2 A mechanism determining the stability of echinocytes"

Transcription

1 Membrane shear elasticity and stability of spiculated red cells A. Iglic Faculty of Electrical and Computer Engineering, University of Ljublijana, Trzaska 25, Ljublijana, Slovenia 8291 Abstract In this work the stability of spiculated red blood cells, called also echinocytes, is studied. We assume that the stable echinocyte shape corresponds to the minimum of its membrane elastic energy. It is shown that by neglecting the membrane shear elasticity the calculated stable echinocyte shapes always have only one spicule. However by taking into account also the membrane shear elastic energy the calculated stable echinocyte shapes have many spicula in agreement with experimental observations. 1 Introduction The normal shape of red blood cells (RBC) is the biconcave discoid shape. Under various external conditions these normal RBCs (discocytes) may be transformed into various other shapes such as cup shapes or echinocyte shapes [1]. Echinocytes are spherical cells with spicula uniformly distributed over the surface (Fig.l). The aim of the presented work is to analyze a possible physical mechanism determining the stability of echinocytes. 2 A mechanism determining the stability of echinocytes The RBC membrane has extremely low permeability for water molecules. Therefore the RBC volume (V) is practically constant during the RBC shape transformation. Because of that and since RBC has

2 44 Computer Simulations in Biomedicine discocyte echinocyte Figure 1: Schematic presentation of discocyte and echinocyte red blood cell shapes. no internal structure, the RBC shape is the consequence of the membrane properties solely. The RBC membrane is essentially composed of two parts, the bilayer and the continuous network of proteins, also called the membrane skeleton (Fig.2). The bilayer which is composed of two layers of lipid molecules contains also some other molecules such as glycolipids and different membrane integral proteins. Both lipid layers are in close contact due to hydrophobic effect but are unconnected, so that they are free to slide over each other and may therefore respond differently to various external perturbations [1]. The skeleton is attached to the bilayer integral proteins at the inner side of the bilayer. Figure 2: Schematic presentation of the red cell membrane cross-section (adapted from Cohen [2])

3 Computer Simulations in Biomedicine 45 Because the area expansivity modulus of the skeleton is in normal conditions around four order of magnitudes smaller than the area expansivity modulus of the bilayer [3], the influence of the skeleton on the areas of the neutral surfaces of both lipid layers and on the area of the neutral surface of the bilayer, defined here as the mean membrane area (A), is neglected. It was shown that the stability of many different RBC shapes as well as the transformations beetwen these shapes can be well explained within the bilayer couple model [1,4,5]. In the view of this model the difference between the outer and the inner membrane lipid layer areas (AA) is taken to be an important parameter which influences the RBC shape, while the stable RBC shape at given A is determined by minimization of the membrane bending energy. For example, the effect of different amphiphilic molecules, which are bound to the inner (or outer) lipid layer and thus decrease (or increase) AA, on the RBC shape changes can be qualitatively well explained within the bilayer couple model [1]. It is expected that stable echinocyte shapes exist in the range of high AA. However, the existence of stable echinocyte RBC shapes can not be explained by minimization of the membrane bending energy at higer values of AA [6]. Here we propose that the generalization of the theoretical determination of the equilibrium RBC shapes should take into account also the membrane shear energy. Therefore in this work we shall determine the stable RBC shapes by minimizing the membrane elastic energy (W) consisting of both bending (Wb) and shear (Ws) contributions The bending energy can be expressed as [7] W = - B f (c + c f da b 2 * ^ 1 2^ ' ' where B is the bending elastic modulus of the RBC membrane, Ci and C2 are the two principal curvatures defined so that they are positive for a sphere and da is the infinitesimal membrane area element. The shear energy is [7] -* /I 1 \ 1 I,4 A \ / where p, is the membrane area shear modulus, while Ai and A.2 are the principal extension ratios of the membrane area element, which are chosen sufficiently small that we may consider them approximately flat. The local principal axes are chosen so that the shear resultants

4 46 Computer Simulations in Biomedicine along the local area element edges are zero [7]. The shear energy of the RBC membrane is contributed solely by the skeleton since the lipid bilayer has the properties of the two-dimensional liquid [7]. 3 Model The echinocyte shape can be approximately described by a geometrical model with five parameters. Those parameters are radius of the large sphere R, the number of axisymmetrical spicula distributed on the large sphere n, the length of the spiculum cylinder L, radius r and angle cp (Fig.3). In this model the bending energy Wb can be after some calculation expressed as [6]: Wb = 8%B + njcbl (r + R)sincp - r (4) 2n7iB(r + r((r + Rrsmi cp - arctg ((r +R)sincp + r) tg(% - ((r + Figure 3: The parameters characterizing the geometrical model of echinocyte shape [6]. While calculating the shear elastic energy Ws we shall assume that the area of the membrane is locally conserved, which means that Xl%,2 = 1 [7]. As a consequence Xi = A,2*. In the Mowing analysis we use the the definition Ai = Km- and A,2 = Km For the sake of simplicity we approximately calculate the shear elastic energy Ws as the sum of contributions of n single spicula:

5 Computer Simulations in Biomedicine 47 Ws = n [ J [ ( ) - 1 ] da ] where we integrate over the area of the single spicule and its sorroundings. While calculating the shear energy of the single spicule the infinite flat membrane is considered as an initial reference state having the shear energy equal to zero. For a given shape of the spicule, characterized by the parameters r, (p, L and R, the values of the extension ratio 1m in different points on the spicule and on the sorrounding area are calculated according to the method described in detail by Evans and Skalak [7]. In this way the energy Ws can be expressed as follows, Ws = n ( Ecp + Ecy + Eba + Epi ) (6) where Ecp is the shear energy of the cup of the spicule, Ecy is the shear energy of the spiculum cylinder, Eba is the shear energy of the spiculum base, while Epi is the shear energy of the plane around the spicule. The obtained expressions are: In2 - Ecy = n? Vp), (8) a Epi = \i [ a - n (r + p) ] In n ( r + p r (9) where p = (R + r) sincp - r and a = 2%p + 27ipL + + 7i^(r + p)r - 27ir^. The shear energy of the spiculum base (Eba) can be obtained only numerically by calculating the integral Eba = 2-2 %(% + ^ ) - 1 (2%[p + r(l - cosco)]r) dco, 2 m m where 4 Results 2 m ~ 7i[p 2%(r + p) rco - cosco)] As we mentioned before the aim of this work is to determine the stable echinocyte RBC shapes by minimization of the membrane energy.

6 48 Computer Simulations in Biomedicine The minimization procedure is carried out at given difference between the areas of the neutral surfaces of the two layers of the bilayer (AAo), given membrane area (Ao) and given cell volume (Vo): V(R,n,cp,L,R) = Vo, A(r,n,cp,L,R) = Ao, AA(r,n,(p,L,R) = AAo. (12) The expressions for V, A and AA [6] are not shown in this paper. At given Vo, Ao and AAo the parameters cp, L and R can be determined numerically as functions of r and n by solving the Equations (12). By minimizing the elastic energy of model echinocyte W with respect to parameter r, the elastic energy of the echinocyte as a function of number of spicula W(n) can be calculated (Fig.4a). It can be seen in Figure 4a that for p/b = 0 the stable echinocyte shape has only one spicule (nmin = 1) which is not in accordance with experimental observations [6]. However, for i/b # 0, the calculated echinocyte shape corresponding to the minimal elastic energy Wmin has more than one spicule (nmin >1) in agreement with the observed echinocyte shapes. Figure 4b shows the dependence of the number of spicula (nmin) corresponding to the minimal membrane cell elastic Wmin/8TlB W(n)/8TiB Figure 4: a: the calculated total echinocyte membrane elastic energy Was a function of the number of spicula n: (1) i/b = 0, nmin = 1, (2) M/B = ^ m-2, nmin = 25. b: the calculated number of echinocyte spicula nmin and the corresponding minimal energy Wmin (see Fig. 4a) as functions of the ratio p/b.

7 Computer Simulations in Biomedicine 49 energy (Wmin) as a function of the ratio i/b. The measured value of i is around " N/m [8], while the measured value of B is around "^ Nm [7], which gives us the value around 35-10^ m"^ for the ratio i/b. The chosen values of Vo = 90 p,m and Ao = 138 \im? in Fig.4 are the normal values for the RBCs, while the chosen value of AAo = 1.0 (urn is in the range of those AAo where other RBC can not exist due to geometrical restrictions [4,5]. 5 Conclusions The bilayer couple model and the requirement of the minimal RBC membrane bending energy can explain the stability of numerous observed RBC shapes [4,5,9]. However, these studies of RBC shapes [4,5,9] were limited to the range of area difference between both membrane lipid layers (AA) where spiculated RBC cells, i.e. echinocytes can not exist due to geometrical restrictions. Namely, echinocyte RBC shapes have due to topology of their surface much higher AA than other RBC shapes. Therefore in this work the analysis of the RBC shape stability was extended into the range of higher AA where the echinocytes can exist. It was shown that within the limitation of the presented geometrical model of echinocyte shape the requirement of the minimum bending energy can not explain the stability of echinocyte RBC shapes. However, by the inclusion of the membrane shear energy in the minimization procedure the existence of stable echinocyte shapes can be explained. References 1. Sheetz, M.P. & Singer, SJ. Biological membranes as bilayer couples. A mechanism of drug-erythrocyte interactions, Proceedings of the National Academy of Sciences USA, 1974, 72, Cohen, C.M. The molecular organization of the red cell membrane skeleton, Seminars in Hematology, 1983, 20, Mohandas, N. & Evans, E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects, Annual Review of Biophysics and Biomolecular Structure, 1994, 23, Svetina, S. & Zeks, B. Membrane bending energy and shape determination of phospholipid vesicles and red blood cells, European Biophysics Journal, 1989, 17,

8 50 Computer Simulations in Biomedicine 5. Svetina, S., Iglic, A. & Zeks, B. On the role of the elastic properties of closed lamellar membranes in membrane fusion, Annals of the New York Academy of Sciences, 1994, 710, Iglic, A., Zeks, B. & Svetina, S. A model for echinocyte red cell shape, presented on the 16th Yugoslav Symposium on Biophysics, Kranjska gora, Evans, E. & Skalak, R. Mechanics and Thermodynamics of Biomembranes, CRC Press, Boca Raton, Waugh, R. & Evans, E.A. Thermoelasticity of red blood cell membrane, Biophysical Journal, 1979, 26, Kralj-Iglic, V., Svetina, S. & Zeks, B. The existence of nonaxisymmetrical bilayer vesicle shapes predicted by the bilayer couple model, European Biophysics Journal, 1993, 22,

Transactions on Biomedicine and Health vol 3, 1996 WIT Press, ISSN

Transactions on Biomedicine and Health vol 3, 1996 WIT Press,   ISSN 110 Simulation Modelling in Bioengineering molecules, such as laterally mobile membrane integral proteins and different glycolipids, see Gennis [1]. bilayer ^skeleton Figure 1: Schematic presentation of

More information

Depletion of Membrane Skeleton in Red Blood Cell Vesicles

Depletion of Membrane Skeleton in Red Blood Cell Vesicles 274 Biophysical Journal Volume 69 July 1995 274-279 Depletion of Membrane Skeleton in Red Blood Cell Vesicles Ales Iglic,*: Sasa Svetina,* and Bostjan Zeks* *Institute of Biophysics, Medical Faculty, *Faculty

More information

Membrane skeleton and red blood cell vesiculation at low ph

Membrane skeleton and red blood cell vesiculation at low ph Ž. Biochimica et Biophysica Acta 1371 1998 Membrane skeleton and red blood cell vesiculation at low ph Malgorzata Bobrowska-Hagerstrand a, Henry Hagerstrand a, Ales ˇ Iglicˇ b,) a Department of Biology,

More information

Topic 7b: Biological Membranes

Topic 7b: Biological Membranes Topic 7b: Biological Membranes Overview: Why does life need a compartment? Nature of the packaging what is it made of? properties? New types of deformations in 2D Applications: Stretching membranes, forming

More information

Flip-Flop Induced Relaxation Of Bending Energy: Implications For Membrane Remodeling

Flip-Flop Induced Relaxation Of Bending Energy: Implications For Membrane Remodeling Biophysical Journal, Volume 97 Supporting Material Flip-Flop Induced Relaxation Of Bending Energy: Implications For Membrane Remodeling Raphael Jeremy Bruckner, Sheref S. Mansy, Alonso Ricardo, L. Mahadevan,

More information

Lectures 16-17: Biological Membranes: Life in Two Dimensions

Lectures 16-17: Biological Membranes: Life in Two Dimensions Lectures 16-17: Biological Membranes: Life in Two Dimensions Lecturer: Brigita Urbanc Office: 1-909 (E-mail: brigita@drexel.edu) Course website: www.physics.drexel.edu/~brigita/courses/biophys_011-01/

More information

SHAPE VARIATION OF BILAYER MEMBRANE DAUGHTER VESICLES INDUCED BY ANISOTROPIC MEMBRANE INCLUSIONS

SHAPE VARIATION OF BILAYER MEMBRANE DAUGHTER VESICLES INDUCED BY ANISOTROPIC MEMBRANE INCLUSIONS CELLULAR & MOLECULAR BIOLOGY LETTERS Volume, (2006) pp 90 0 http://www.cmbl.org.pl Received: 08 September 2005 Revised form accepted: 06 January 2006 DOI: 0.2478/s658-006-0009-3 2006 by the University

More information

Lipid Membranes with Free edges Z. C. Tu

Lipid Membranes with Free edges Z. C. Tu Lipid Membranes with Free edges Z. C. Tu Institute of Theoretical Physics Chinese Academy of Sciences Outline I. Introduction The model of cell membranes Studies for shapes of closed membranes Previous

More information

Effect of Lipid Characteristics on the Structure of Transmembrane Proteins

Effect of Lipid Characteristics on the Structure of Transmembrane Proteins 141 Biophysical Journal Volume 75 September 1998 141 1414 Effect of Lipid Characteristics on the Structure of Transmembrane Proteins N. Dan* and S. A. Safran *Department of Chemical Engineering, University

More information

University of Ljubljana, Ljubljana Slovenia

University of Ljubljana, Ljubljana Slovenia Budding of membranes 1 Veronika Kralj-Iglič and 2 Aleš Iglič 1 Laboratory of Clinical Biophysics, Faculty of Medicine 2 Laboratory of Physics, Faculty of Electrical Engineering University of Ljubljana,

More information

Physics of Cellular Materials: Biomembranes

Physics of Cellular Materials: Biomembranes Physics of Cellular Materials: Biomembranes Tom Chou 1 1 Dept. of Biomathematics, UCL, Los ngeles, C 90095-1766 (Dated: December 6, 2002) Here I will review the mathematics and statistical physics associated

More information

Torocyte Membrane Endovesicles Induced by Octaethyleneglycol Dodecylether in Human Erythrocytes

Torocyte Membrane Endovesicles Induced by Octaethyleneglycol Dodecylether in Human Erythrocytes 3356 Biophysical Journal Volume 77 December 1999 3356 3362 Torocyte Membrane Endovesicles Induced by Octaethyleneglycol Dodecylether in Human Erythrocytes Malgorzata Bobrowska-Hägerstrand,* Veronika Kralj-Iglič,

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 2018, 52(3), p. 217 221 P h y s i c s STUDY OF THE SWELLING OF THE PHOSPHOLIPID BILAYER, DEPENDING ON THE ANGLE BETWEEN THE

More information

MAE 545: Lecture 14 (11/10) Mechanics of cell membranes

MAE 545: Lecture 14 (11/10) Mechanics of cell membranes MAE 545: ecture 14 (11/10) Mechanics of cell membranes Cell membranes Eukaryotic cells E. Coli FIBROBAST 10 mm E. COI nuclear pore complex 1 mm inner membrane plasma membrane secretory complex ribosome

More information

The Cell Membrane (Ch. 7)

The Cell Membrane (Ch. 7) The Cell Membrane (Ch. 7) Phospholipids Phosphate head hydrophilic Fatty acid tails hydrophobic Arranged as a bilayer Phosphate attracted to water Fatty acid repelled by water Aaaah, one of those structure

More information

Spontaneous vesicle formation by mixed surfactants

Spontaneous vesicle formation by mixed surfactants Progress in Colloid & Polymer Science Progr Colloid Polym Sci 84:3--7 (1991) Spontaneous vesicle formation by mixed surfactants S. A. Safranl'4), E C. MacKintosh1), P. A. Pincus2), and D. A. Andelman 3)

More information

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol)

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol) Module 2C Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membrane- bound organelles. In this module, we will examine the

More information

Shape transformation of giant phospholipid vesicles at high concentrations of C 12 E 8

Shape transformation of giant phospholipid vesicles at high concentrations of C 12 E 8 Bioelectrochemistry 63 (2004) 183 187 www.elsevier.com/locate/bioelechem Shape transformation of giant phospholipid vesicles at high concentrations of C 12 E 8 B. Mavčič, B. Babnik, A. Iglič*, M. Kandušer,

More information

Multiscale simulation of erythrocyte membranes

Multiscale simulation of erythrocyte membranes Multiscale simulation of erythrocyte membranes Zhangli Peng, Robert J. Asaro, and Qiang Zhu* Department of Structural Engineering, University of California, San Diego, La Jolla, California 9093, USA Received

More information

Chapter 1 Membrane Structure and Function

Chapter 1 Membrane Structure and Function Chapter 1 Membrane Structure and Function Architecture of Membranes Subcellular fractionation techniques can partially separate and purify several important biological membranes, including the plasma and

More information

Biological Membranes. Lipid Membranes. Bilayer Permeability. Common Features of Biological Membranes. A highly selective permeability barrier

Biological Membranes. Lipid Membranes. Bilayer Permeability. Common Features of Biological Membranes. A highly selective permeability barrier Biological Membranes Structure Function Composition Physicochemical properties Self-assembly Molecular models Lipid Membranes Receptors, detecting the signals from outside: Light Odorant Taste Chemicals

More information

Physical Cell Biology Lecture 10: membranes elasticity and geometry. Hydrophobicity as an entropic effect

Physical Cell Biology Lecture 10: membranes elasticity and geometry. Hydrophobicity as an entropic effect Physical Cell Biology Lecture 10: membranes elasticity and geometry Phillips: Chapter 5, Chapter 11 and Pollard Chapter 13 Hydrophobicity as an entropic effect 1 Self-Assembly of Lipid Structures Lipid

More information

Chapter 2 Transport Systems

Chapter 2 Transport Systems Chapter 2 Transport Systems The plasma membrane is a selectively permeable barrier between the cell and the extracellular environment. It permeability properties ensure that essential molecules such as

More information

Ch7: Membrane Structure & Function

Ch7: Membrane Structure & Function Ch7: Membrane Structure & Function History 1915 RBC membranes studied found proteins and lipids 1935 membrane mostly phospholipids 2 layers 1950 electron microscopes supported bilayer idea (Sandwich model)

More information

1.4 Page 1 Cell Membranes S. Preston 1

1.4 Page 1 Cell Membranes S. Preston 1 AS Unit 1: Basic Biochemistry and Cell Organisation Name: Date: Topic 1.3 Cell Membranes and Transport Page 1 1.3 Cell Membranes and Transport from your syllabus l. Cell Membrane Structure 1. Read and

More information

Shape transformation and burst of giant POPC unilamellar liposomes modulated by non-ionic detergent C 12 E 8

Shape transformation and burst of giant POPC unilamellar liposomes modulated by non-ionic detergent C 12 E 8 Chemistry and Physics of Lipids 125 (2003) 123 138 Shape transformation and burst of giant POPC unilamellar liposomes modulated by non-ionic detergent C 12 E 8 Blaž Babnik a, Damjan Miklavčič a, Maša Kandušer

More information

Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol

Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol d 1 2 Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol backbone. The phosphate head group is hydrophilic water

More information

Reading for lecture 6

Reading for lecture 6 Reading for lecture 6 1. Lipids and Lipid Bilayers 2. Membrane Proteins Voet and Voet, Chapter 11 Alberts et al Chapter 6 Jones, R.A.L, Soft Condensed Matter 195pp Oxford University Press, ISBN 0-19-850590-6

More information

Maruša Vitek Advisor: doc. dr. Primož Ziherl

Maruša Vitek Advisor: doc. dr. Primož Ziherl Department of Physics Artificial Life: Vesicles and Synthesis of a Minimal Cell Seminar Maruša Vitek Advisor: doc. dr. Primož Ziherl 14 th December 2011 A goal of biochemical-based artificial life is to

More information

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 1 February 26, The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 Introduction I 2 Biological membranes are phospholipid bilayers with associated proteins. Current data support a fluid

More information

NANO 243/CENG 207 Course Use Only

NANO 243/CENG 207 Course Use Only L9. Drug Permeation Through Biological Barriers May 3, 2018 Lipids Lipid Self-Assemblies 1. Lipid and Lipid Membrane Phospholipid: an amphiphilic molecule with a hydrophilic head and 1~2 hydrophobic tails.

More information

1.2 introduction to the cell. me239 mechanics of the cell. 1.2 introduction to the cell. 1.2 introduction to the cell.

1.2 introduction to the cell. me239 mechanics of the cell. 1.2 introduction to the cell. 1.2 introduction to the cell. 2. introduction to mechanics prokaryotic cells Figure 1.1 Prokaryotic cell. Cell without a nucleus. the inner life of a cell, viel & lue, harvard [2006] me239 mechanics of the cell 1 eukaryotic cells 1.2

More information

Interaction of cholesterol and lysophosphatidylcholine in determining red cell shape

Interaction of cholesterol and lysophosphatidylcholine in determining red cell shape Interaction of cholesterol and lysophosphatidylcholine in determining red cell shape Yvonne Lange and James M. Slayton Departments of Pathology and Biochemistry, Rush Medical College, Chicago, IL 6061

More information

John Lenyo Corrina Perez Hazel Owens. Cell Membrane.

John Lenyo Corrina Perez Hazel Owens. Cell Membrane. John Lenyo Corrina Perez Hazel Owens Cell Membrane http://micro.magnet.fsu.edu/cells/plasmamembrane/plasmamembrane.html Cell membranes are composed of proteins and lipids. Since they are made up of mostly

More information

NWAFOR A. AND COAKLEY W. T.

NWAFOR A. AND COAKLEY W. T. African Journal of Biomedical Research, Vol. 6; 95-100 (2003) Original Article THE EFFECT OF MEMBRANE DIFFUSION POTENTIAL CHANGE ON ANIONIC DRUGS INDOMETHACIN AND BARBITONE INDUCED HUMAN RED BLOOD CELL

More information

MAE 545: Lecture 17 (11/19) Mechanics of cell membranes

MAE 545: Lecture 17 (11/19) Mechanics of cell membranes MAE 545: Lecture 17 (11/19) Mechanics cell membranes Membrane deformations stretch bend shear change. Phillips et al., Physical Biology Cell a model sometimes known as Helfrich Canham Evans free. involves

More information

Chapter 12: Membranes. Voet & Voet: Pages

Chapter 12: Membranes. Voet & Voet: Pages Chapter 12: Membranes Voet & Voet: Pages 390-415 Slide 1 Membranes Essential components of all living cells (define boundry of cells) exclude toxic ions and compounds; accumulation of nutrients energy

More information

0.5 nm nm acyl tail region (hydrophobic) 1.5 nm. Hydrophobic repulsion organizes amphiphilic molecules: These scales are 5 10xk B T:

0.5 nm nm acyl tail region (hydrophobic) 1.5 nm. Hydrophobic repulsion organizes amphiphilic molecules: These scales are 5 10xk B T: Lecture 31: Biomembranes: The hydrophobic energy scale and membrane behavior 31.1 Reading for Lectures 30-32: PKT Chapter 11 (skip Ch. 10) Upshot of last lecture: Generic membrane lipid: Can be cylindrical

More information

Morphology of Vesicles

Morphology of Vesicles CHAPTER 8 Morphology of Vesicles U. SEIFERT Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany R. LIPOWSKY Max-Plank-Institut für Kolloid- und Grenzflächenforschung, Kantstr.

More information

Membrane Fusion: Stalk Model Revisited

Membrane Fusion: Stalk Model Revisited Biophysical Journal Volume 82 February 2002 693 712 693 Membrane Fusion: Stalk Model Revisited Vladislav S. Markin* and Joseph P. Albanesi *Department of Anesthesiology and Department of Pharmacology,

More information

Membranes Under Deformation

Membranes Under Deformation 1 374 Biophysical Journal Volume 71 September 1996 1374-1388 Accelerated Interleaflet Transport of Phosphatidylcholine Molecules in Membranes Under Deformation Robert M. Raphael and Richard E. Waugh Department

More information

Laboratoire de Physique Statistique Université Pierre & Marie Curie

Laboratoire de Physique Statistique Université Pierre & Marie Curie INHOMOGENEOUS LIPID MEMBRANE:ELASTICITY AND FLUIDITY Martine Ben Amar Laboratoire de Physique Statistique Université Pierre & Marie Curie Ecole Normale Supérieure Collaborators:J.M. ALLAIN,MIGUEL TREJO,FELIX

More information

We parameterized a coarse-grained fullerene consistent with the MARTINI coarse-grained force field

We parameterized a coarse-grained fullerene consistent with the MARTINI coarse-grained force field Parameterization of the fullerene coarse-grained model We parameterized a coarse-grained fullerene consistent with the MARTINI coarse-grained force field for lipids 1 and proteins 2. In the MARTINI force

More information

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 1 The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 Introduction I 2 Biological membranes are phospholipid bilayers with associated proteins. Current data support a fluid mosaic model

More information

Dynamics of Fusion Pores Connecting Membranes of Different Tensions

Dynamics of Fusion Pores Connecting Membranes of Different Tensions Biophysical Journal Volume 78 May 2000 2241 2256 2241 Dynamics of Fusion Pores Connecting Membranes of Different Tensions Yuri A. Chizmadzhev,* Peter I. Kuzmin,* Dimetry A. Kumenko,* Joshua Zimmerberg,

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. Fabrication processes of bud-mimicking PDMS patterns based on a combination of colloidal, soft, and photo-lithography a-d, The polystyrene (PS) particles

More information

Coarse grained simulations of Lipid Bilayer Membranes

Coarse grained simulations of Lipid Bilayer Membranes Coarse grained simulations of Lipid Bilayer Membranes P. B. Sunil Kumar Department of Physics IIT Madras, Chennai 600036 sunil@iitm.ac.in Atomistic MD: time scales ~ 10 ns length scales ~100 nm 2 To study

More information

Interaction between two cylindrical inclusions in a symmetric lipid bilayer

Interaction between two cylindrical inclusions in a symmetric lipid bilayer JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 14 8 OCTOBER 2003 Interaction between two cylindrical inclusions in a symmetric lipid bilayer Klemen Bohinc Faculty of Electrical Engineering, University

More information

Molecular modeling of the pathways of vesicle membrane interaction. Tongtao Yue and Xianren Zhang

Molecular modeling of the pathways of vesicle membrane interaction. Tongtao Yue and Xianren Zhang Molecular modeling of the pathways of vesicle membrane interaction Tongtao Yue and Xianren Zhang I. ELECTRONIC SUPPLEMENTARY INFORMATION (ESI): METHODS Dissipative particle dynamics method The dissipative

More information

Torocyte shapes of red blood cell daughter vesicles

Torocyte shapes of red blood cell daughter vesicles Bioelectrochemistry 5 000 www.elsevier.comrlocaterbioelechem Torocyte shapes of red blood cell daughter vesicles ˇ ˇ ˇ Ales Iglic a,, Veronika Kralj-Iglic b, Bojan Bozic b, Malgorzata Bobrowska-agerstrand

More information

PLASMA MEMBRANE. Submitted by:- DR.Madhurima Sharma PGGCG-II,Chandigarh

PLASMA MEMBRANE. Submitted by:- DR.Madhurima Sharma PGGCG-II,Chandigarh PLASMA MEMBRANE Submitted by:- DR.Madhurima Sharma PGGCG-II,Chandigarh LIPID COMPONENTS OF THE PLASMA MEMBRANE The outer leaflet consists predominantly of phosphatidylcholine, sphingomyelin, and glycolipids,

More information

Supplementary Figure 1. Overview of steps in the construction of photosynthetic protocellular systems

Supplementary Figure 1. Overview of steps in the construction of photosynthetic protocellular systems Supplementary Figure 1 Overview of steps in the construction of photosynthetic protocellular systems (a) The small unilamellar vesicles were made with phospholipids. (b) Three types of small proteoliposomes

More information

Membrane Structure, Resting membrane potential, Action potential. Biophysics seminar

Membrane Structure, Resting membrane potential, Action potential. Biophysics seminar Membrane Structure, Resting membrane potential, Action potential Biophysics seminar 09.09.2013. Membrane structure Biological membranes consists of lipids and proteins to bind with non-covalent bond. Phospholipids

More information

Chapter 7: Membranes

Chapter 7: Membranes Chapter 7: Membranes Roles of Biological Membranes The Lipid Bilayer and the Fluid Mosaic Model Transport and Transfer Across Cell Membranes Specialized contacts (junctions) between cells What are the

More information

BENG 221 Report - Simulation of Glucose Diffusion in a Cylindrical Cell Juyuong Baek, Jason Dang, Ali Ebrahim, Wei Ren

BENG 221 Report - Simulation of Glucose Diffusion in a Cylindrical Cell Juyuong Baek, Jason Dang, Ali Ebrahim, Wei Ren BENG 221 Report - Simulation of Glucose Diffusion in a Cylindrical Cell Juyuong Baek, Jason Dang, Ali Ebrahim, Wei Ren Introduction Metabolism is the set of chemical reactions that happen in living organisms

More information

Chapter 4: Cell Membrane Structure and Function

Chapter 4: Cell Membrane Structure and Function Chapter 4: Cell Membrane Structure and Function Plasma Membrane: Thin barrier separating inside of cell (cytoplasm) from outside environment Function: 1) Isolate cell s contents from outside environment

More information

Interactions of Liquid Droplets with Biomembranes

Interactions of Liquid Droplets with Biomembranes Interactions of Liquid Droplets with Biomembranes Reinhard Lipowsky MPI of Colloids and Interfaces, Potsdam-Golm Intro: Membranes and GUVs GUVs + Aqueous Two-Phase Systems Theory of Fluid-Elastic Scaffolding

More information

Role of Phospholipid Asymmetry in the Stability of Inverted Hexagonal Mesoscopic Phases

Role of Phospholipid Asymmetry in the Stability of Inverted Hexagonal Mesoscopic Phases Article Role of Phospholipid Asymmetry in the Stability of Inverted Hexagonal Mesoscopic Phases Tomas# Mares#, Matej Daniel, and S#arka PerutkovaAndrej Perne, and Gregor DolinarAles# Iglic#Michael RappoltVeronika

More information

Transport. Slide 1 of 47. Copyright Pearson Prentice Hall

Transport. Slide 1 of 47. Copyright Pearson Prentice Hall & Transport 1 of 47 Learning Targets TN Standard CLE 3216.1.3 Explain how materials move into and out of cells. CLE 3216.1.5 Investigate how proteins regulate the internal environment of a cell through

More information

Supplementary Information

Supplementary Information Coarse-Grained Molecular Dynamics Simulations of Photoswitchable Assembly and Disassembly Xiaoyan Zheng, Dong Wang,* Zhigang Shuai,* MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering,

More information

Phospholipids. Phosphate head. Fatty acid tails. Arranged as a bilayer. hydrophilic. hydrophobic. Phosphate. Fatty acid. attracted to water

Phospholipids. Phosphate head. Fatty acid tails. Arranged as a bilayer. hydrophilic. hydrophobic. Phosphate. Fatty acid. attracted to water The Cell Membrane Phospholipids Phosphate head hydrophilic Fatty acid tails hydrophobic Arranged as a bilayer Phosphate attracted to water Fatty acid repelled by water I want you to remember: Structure

More information

Cell Membranes and Signaling

Cell Membranes and Signaling 5 Cell Membranes and Signaling Concept 5.1 Biological Membranes Have a Common Structure and Are Fluid A membrane s structure and functions are determined by its constituents: lipids, proteins, and carbohydrates.

More information

TRANSDUCER MODELS FOR THE FINITE ELEMENT SIMULATION OF ULTRASONIC NDT PHENOMENA. R. L. Ludwig, D. Moore and W. Lord

TRANSDUCER MODELS FOR THE FINITE ELEMENT SIMULATION OF ULTRASONIC NDT PHENOMENA. R. L. Ludwig, D. Moore and W. Lord TRANSDUCER MODELS FOR THE FINITE ELEMENT SIMULATION OF ULTRASONIC NDT PHENOMENA R. L. Ludwig, D. Moore and W. Lord Electrical Engineering Department Colorado State University Fort Collins, Colorado 80523

More information

Membrane transport. Pharmacy Dr. Szilvia Barkó

Membrane transport. Pharmacy Dr. Szilvia Barkó Membrane transport Pharmacy 04.10.2017 Dr. Szilvia Barkó Cell Membranes Cell Membrane Functions Protection Communication Import and and export of molecules Movement of the cell General Structure A lipid

More information

membranes membrane functions basic structure membrane functions chapter 11-12

membranes membrane functions basic structure membrane functions chapter 11-12 membranes chapter - membrane functions Ca + hormone IP H + HO compartmentalization intracellular compartments scaffold for biochemical activities organize enzymes selectively permeable membrane allows

More information

Chem Lecture 8 Lipids and Cell Membranes

Chem Lecture 8 Lipids and Cell Membranes Chem 452 - Lecture 8 Lipids and Cell Membranes 111114 Like carbohydrates, lipids are one of the four major classes of biomolecules, which also include the proteins, carbohydrates and nucleic acids. Lipids

More information

Cell Overview. Hanan Jafar BDS.MSc.PhD

Cell Overview. Hanan Jafar BDS.MSc.PhD Cell Overview Hanan Jafar BDS.MSc.PhD THE CELL is made of: 1- Nucleus 2- Cell Membrane 3- Cytoplasm THE CELL Formed of: 1. Nuclear envelope 2. Chromatin 3. Nucleolus 4. Nucleoplasm (nuclear matrix) NUCLEUS

More information

Phys 7B Lec 03 Midterm 2

Phys 7B Lec 03 Midterm 2 Phys 7B Lec 03 Midterm 2 TOTAL POINTS 83.5 / 100 QUESTION 1 1 Problem 1 15 / 20 + 0 pts Null: no credit + 20 pts Full marks + 4 pts FIRST method: correct starting equation for calculating electric potential

More information

Cell Biology. The Plasma Membrane

Cell Biology. The Plasma Membrane Cell Biology The Plasma Membrane recall Fluid Mosiac Model S.J. Singer Semipermeable membrane fluid portion is double layer of phospholipids (=phospholipid bilayer) mosaic portion is the proteins and carbohydrates

More information

This week s topic will be: Evidence for the Fluid Mosaic Model. Developing theories, testing hypotheses and techniques for visualizing cells

This week s topic will be: Evidence for the Fluid Mosaic Model. Developing theories, testing hypotheses and techniques for visualizing cells Tutorials, while not mandatory, will allow you to improve your final grade in this course. Thank you for your attendance to date. These notes are not a substitute for the discussions that we will have

More information

Monday, September 30 th :

Monday, September 30 th : Monday, September 30 th : QUESTION TO PONDER: Differentiate between a pro- and eukaryotic organism. List 4 organelles that each type of organism has in common. The Cell Membrane Modified from Kim Foglia

More information

Supplementary Information

Supplementary Information Gureaso et al., Supplementary Information Supplementary Information Membrane-dependent Signal Integration by the Ras ctivator Son of Sevenless Jodi Gureaso, William J. Galush, Sean Boyevisch, Holger Sondermann,

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function Chapter 7 Objectives Define the following terms: amphipathic molecules, aquaporins, diffusion Distinguish between the following pairs or sets of terms: peripheral and integral

More information

Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion

Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion Rolf J. Ryham 1,, Thomas S. Klotz 2, Lihan Yao 1, and Fredric S. Cohen 3 1 Fordham University, Department

More information

TUTORIAL IN SMALL ANGLE X-RAY SCATTERING ANALYSIS

TUTORIAL IN SMALL ANGLE X-RAY SCATTERING ANALYSIS TUTORIAL IN SMALL ANGLE X-RAY SCATTERING ANALYSIS at the Abdus Salam International Center of Theoretical Physics (ICTP) Heinz Amenitsch Sigrid Bernstorff Michael Rappolt Trieste, 15. May 2006 (14:30-17:15)

More information

CHAPTER 5 MODELING OF THE BRIDGE

CHAPTER 5 MODELING OF THE BRIDGE 62 CHAPTER 5 MODELING OF THE BRIDGE 5.1 MODELING SAP2000, a nonlinear software package was used for modeling and analysing the study bridge. The following list provides details about the element type used

More information

Describe the Fluid Mosaic Model of membrane structure.

Describe the Fluid Mosaic Model of membrane structure. Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membranebound organelles. In this topic, we will examine the structure and

More information

Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use.

Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Planar Lipid Bilayers

More information

Molecular Cell Biology. Prof. D. Karunagaran. Department of Biotechnology. Indian Institute of Technology Madras

Molecular Cell Biology. Prof. D. Karunagaran. Department of Biotechnology. Indian Institute of Technology Madras Molecular Cell Biology Prof. D. Karunagaran Department of Biotechnology Indian Institute of Technology Madras Module 4 Membrane Organization and Transport Across Membranes Lecture 1 Cell Membrane and Transport

More information

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins Lecture 6: Membranes and Cell Transport Biological Membranes I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins 1. Characteristics a. Phospholipids form bilayers

More information

Diffusion across cell membrane

Diffusion across cell membrane The Cell Membrane and Cellular Transport Diffusion across cell membrane Cell membrane is the boundary between inside & outside separates cell from its environment Can it be an impenetrable boundary? NO!

More information

Basophilic. Basophilic structures are stained by basic dyes: Mnemonic: Basophilic = Blue

Basophilic. Basophilic structures are stained by basic dyes: Mnemonic: Basophilic = Blue Cell Overview Basophilic Basophilic structures are stained by basic dyes: Basic dyes are positive Basophilic structures are negative (ex. DNA, RNA, ribosomes, RER) Mnemonic: Basophilic = Blue Acidophilic

More information

Division Ave High School Ms. Foglia AP Biology

Division Ave High School Ms. Foglia AP Biology The Cell Membrane Phospholipids Phosphate head hydrophilic Fatty acid tails hydrophobic Arranged as a bilayer Phosphate attracted to water Fatty acid repelled by water 2007-2008 Aaaah, one of those structure

More information

Cell membrane & Transport. Dr. Ali Ebneshahidi Ebneshahidi

Cell membrane & Transport. Dr. Ali Ebneshahidi Ebneshahidi Cell membrane & Transport Dr. Ali Ebneshahidi Cell Membrane To enclose organelles and other contents in cytoplasm. To protect the cell. To allow substances into and out of the cell. To have metabolic reactions

More information

Cells: The Living Units

Cells: The Living Units Cells: The Living Units Introduction Life in general occurs in an aqueous environment All chemical processes essential to life occur within the aqueous environment of the cell and surrounding fluids contained

More information

Enhanced delivery methods for greater efficacy

Enhanced delivery methods for greater efficacy On-Line Formulation Training - Anywhere In The World - Enhanced delivery methods for greater efficacy Belinda Carli Director, Institute of Personal Care Science Image showing absorbance in the outer stratum

More information

AP Biology. Overview. The Cell Membrane. Phospholipids. Phospholipid bilayer. More than lipids. Fatty acid tails. Phosphate group head

AP Biology. Overview. The Cell Membrane. Phospholipids. Phospholipid bilayer. More than lipids. Fatty acid tails. Phosphate group head Overview The Cell Membrane Cell separates living cell from nonliving surroundings thin barrier = 8nm thick Controls traffic in & out of the cell selectively permeable allows some substances to cross more

More information

Modern Cell Theory. Plasma Membrane. Generalized Cell Structures. Cellular Form and Function. Three principle parts of a cell

Modern Cell Theory. Plasma Membrane. Generalized Cell Structures. Cellular Form and Function. Three principle parts of a cell Cellular Form and Function Concepts of cellular structure Cell surface Membrane transport Cytoplasm Modern Cell Theory All living organisms are composed of cells. the simplest structural and functional

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. (a) Uncropped version of Fig. 2a. RM indicates that the translation was done in the absence of rough mcirosomes. (b) LepB construct containing the GGPG-L6RL6-

More information

Paper 12: Membrane Biophysics Module 15: Principles of membrane transport, Passive Transport, Diffusion, Fick s law

Paper 12: Membrane Biophysics Module 15: Principles of membrane transport, Passive Transport, Diffusion, Fick s law Paper 12: Membrane Biophysics Module 15: Principles of membrane transport, Passive Transport, Diffusion, Fick s law LEARNING OBJECTIVES OF MODULE: We would begin this module by considering some general

More information

9/20/2016 CHAPTER 7 LECTURE NOTES. Section Objectives. Explain how a cell s plasma membrane functions.

9/20/2016 CHAPTER 7 LECTURE NOTES. Section Objectives. Explain how a cell s plasma membrane functions. CHAPTER 7 LECTURE NOTES Kennedy biol. 1ab Section Objectives Explain how a cell s plasma membrane functions. Relate the function of the plasma membrane to the fluid mosaic model. All living cells must

More information

The Cell Membrane. Cell membrane separates living cell from nonliving surroundings. Controls traffic in & out of the cell

The Cell Membrane. Cell membrane separates living cell from nonliving surroundings. Controls traffic in & out of the cell The Cell Membrane 1 Overview Cell membrane separates living cell from nonliving surroundings thin barrier = 8nm thick Controls traffic in & out of the cell selectively permeable allows some substances

More information

Homeostasis, Transport & The Cell Membrane. Chapter 4-2 (pg 73 75) Chapter 5

Homeostasis, Transport & The Cell Membrane. Chapter 4-2 (pg 73 75) Chapter 5 Homeostasis, Transport & The Cell Membrane Chapter 4-2 (pg 73 75) Chapter 5 Unit 5: Lecture 1 Topic: The Cell Membrane Covers: Chapter 5, pages 95-96 Chapter 4, pages 73-75 The Cell Membrane The chemistry

More information

CWDHS Mr. Winch Grade 12 Biology

CWDHS Mr. Winch Grade 12 Biology The Cell Membrane Overview Cell separates living cell from nonliving surroundings thin barrier = 8nm thick Controls traffic in & out of the cell selectively permeable allows some substances to cross more

More information

Coarse-grained simulation studies of mesoscopic membrane phenomena

Coarse-grained simulation studies of mesoscopic membrane phenomena Coarse-grained simulation studies of mesoscopic membrane phenomena Markus Deserno Department of Physics Carnegie Mellon University with: Ira R. Cooke, Gregoria Illya, Benedict J. Reynwar, Vagelis A. Harmandaris,

More information

THE DISCOCYTE-ECHINOCYTE TRANSFORMATION AS AN INDEX OF HUMAN RED CELL TRAUMA 1

THE DISCOCYTE-ECHINOCYTE TRANSFORMATION AS AN INDEX OF HUMAN RED CELL TRAUMA 1 THE DSCOCYTE-ECHNOCYTE TRANSFORMATON AS AN NDEX OF HUMAN RED CELL TRAUMA KETH L. BLACK AND RCHARD D. JONES, Division of Surgical Research, Saint Luke's Hospital, Cleveland, Ohio Abstract. Scanning electron

More information

H-NMR in liquid crystals and membranes

H-NMR in liquid crystals and membranes Colloids and Surfaces A: Physicochemical and Engineering Aspects 158 (1999) 281 298 www.elsevier.nl/locate/colsurfa 2 H-NMR in liquid crystals and membranes Michael F. Brown *, Alexander A. Nevzorov 1

More information

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine Membrane Structure and Membrane Transport of Small Molecules Assist. Prof. Pinar Tulay Faculty of Medicine Introduction Cell membranes define compartments of different compositions. Membranes are composed

More information

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 12 Membrane Transport Review Chapter 15 regarding Endocytosis and Exocytosis Read Chapter 20 (Cell

More information

The shape of acetabular cartilage optimizes hip contact

The shape of acetabular cartilage optimizes hip contact J. Anat. (2005) 207, pp85 91 The shape of acetabular cartilage optimizes hip contact Blackwell Publishing, Ltd. stress distribution Matej Daniel, 1 Ale7 IgliC 2 and Veronika Kralj-IgliC 3 1 Laboratory

More information