Engineering of Metabolic Pathways and Global Regulators of Yarrowia lipolytica to Produce High Value Commercial Products

Size: px
Start display at page:

Download "Engineering of Metabolic Pathways and Global Regulators of Yarrowia lipolytica to Produce High Value Commercial Products"

Transcription

1 Engineering Conferences International ECI Digital Archives Metabolic Engineering IX Proceedings Summer Engineering of Metabolic Pathways and Global Regulators of Yarrowia lipolytica to Produce High Value Commercial Products Ethal Jackson Du Pont Follow this and additional works at: Part of the Biomedical Engineering and Bioengineering Commons Recommended Citation Ethal Jackson, "Engineering of Metabolic Pathways and Global Regulators of Yarrowia lipolytica to Produce High Value Commercial Products" in "Metabolic Engineering IX", E. Heinzle, Saarland Univ.; P. Soucaille, INSA; G. Whited, Danisco Eds, ECI Symposium Series, (2013). This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Metabolic Engineering IX by an authorized administrator of ECI Digital Archives. For more information, please contact

2 Engineering of Metabolic Pathways and Global Regulators of Yarrowia lipolytica to Produce High Value Commercial Products Ethel Jackson CR&D, E.I. du Pont de Nemours and Company, USA Metabolic Engineering IX, Biarritz, France 2012

3 2 Metabolic Engineering of Yarrowia: Land-based Renewable Source of Omega-3 Current Wild Harvest of Ocean Fish Unsustainable Future Renewable Land-based Fermentation

4 3 Essential Omega-3 Fatty Acids: EPA and DHA EPA & DHA required in diet of humans & animals Total Omega-3 market ~$7B, growing 10-12%/yr. Markets include aquaculture, human nutrition, pharmaceuticals, animal feed, pet food Primary source is wild-caught ocean fish Only synthesized in nature by plankton and algae Small amount DHA from algae fermentation Critical for salmon aquaculture 85% of world market for fish oil No highly productive land-based source of EPA available

5 4 Goal: DuPont s Omega-3 program Develop a clean and sustainable source of Omega-3 and Omega-6 fatty acids by fermentation Approach: Metabolically engineered oleaginous yeast to produce EPA and/or DHA by fermentation. Sugar Yarrowia lipolytica Omega-3 oil OH O Eicosapentaenoic Acid (EPA)

6 5 TOPICS Yarrowia lipolytica good production host for products of metabolic engineering Omega-3 metabolic engineering Omega-3 fermentation process First commercial products Lessons Learned Summary

7 6 Yarrowia lipolytica: : A Good Production Host Safe FDA approved for food-grade citric acid production Good Fermentation Organism - Robust growth - High oil content - Growth on Sugars Conventional strain breeding - Mating types Oil body Oleaginous Yarrowia Useful molecular genetic tools

8 Development of a Comprehensive Genetic Toolbox for Yarrowia lipolytica 7 Genome Sequence Information available 21 Mb; 6 chromosome; 6650 ORFs Transformation System Stable integration into genome or replicating plasmids Selectable Markers No antibiotic resistance genes needed Strategy for Chromosomal Integration of Multiple Foreign Genes Genetic Tools Based on Homologous Recombination Targeted gene deletions Targeted gene integrations Genetic Tools Based on Non-Homologous End Joining Random gene disruptions Random gene integrations Method for Identifying the Chromosomal Locations of Integrated Genes

9 8 Metabolic Engineering of Yarrowia for Production of Omega-3 & Omega-6 Fatty Acids Oleic Acid [C18:1] 9D Stearic Acid [C18:0] C 16/18 E Palmitate [C16:0] C 14/16 E Myristic Acid [C14:0] 12D Linoleic Acid [LA, C18:2] 9E 15D 18:3 (ALA) 9E 20:3 (ETrA) 8D 5D 20:2 (EDA) 20:3 (DGLA) 20:4 (ARA) 8D 17D 20:4 (ETA) 5D 17D 20:5 (EPA) Eicosapentaenoic Acid Yarrowia native pathway Engineered pathway options

10 9 Strategies to Build an EPA Production Strain Build an efficient EPA biosynthetic pathway - Use of different strong promototers - Codon-optimization of heterologous genes - Multiple copies of structural genes - Focus on limiting steps - Push and pull carbon flux Screen for high oil and EPA productivity Eliminate fatty acid β-oxidation and increase oil content - Modification of Peroxisome - Generate mutants with key enzymes of β-oxidation knocked-out Control fatty acid transportation - Fine regulation of acyltransferases - Direct fatty acid flux for increased EPA productivity Manipulating global regulators - Alter nitrogen control of lipid synthesis by Snf1 mutation

11 Metabolic Engineering Generation of The First Commercial Production Strain 10 ATCC Wild typey. lipolytica Each Step: 1,500 GC Y2224 Y4001 Y4001U1 Y4036 Y4036U Integrate multiple genes into host s genome by homologous & non-homologous recombination Y4070 Y4086 Y4086U1 Y4128 Y4128U3 Y4217 Y4217U Y4259 Y4259U2 Y % EPA Y4305 (56% EPA) 15 Steps, 8 Generations 32 copies of 9 different genes No antibiotic marker

12 11 EPA/Oil Biosynthesis A Complex Process in Engineered Yarrowia Cell Glucose Pyruvate Acetyl-CoA Oxaloacetate Citrate Isocitrate Malate α-ketoglutarate Fumarate Succinate Mitochondrion Pentose phosphate shunt ER NADPH Acetyl-CoA Citrate Oxaloacetate EPA-CoA Acyl (C16)-CoA Malonyl-CoA TAGs (Oil) EPA/TAGs Fatty Acids Lipid Body X Fatty Acids Acetyl-CoA Oxaloacetate Malate Acetyl -CoA Glyoxylate Peroxisome Citrate Isocitrate Succinate Cytoplasm

13 12 Pex10 Gene Function Member of peroxin class of proteins involved in peroxisome biogenesis Identified Pex10 knockout that blocked β-oxidation pathway (key to keeping oil and EPA high) EPA/TAGs Fatty Acids X Fatty Acids Lipid Body Acetyl-CoA Oxaloacetate Citrate Acetyl-CoA Malate Isocitrate P M N NE CW V peroxisome mitochondrion nucleus nuclear envelope cell wall vacuole Electron micrograph of Yarrowia lipolytica Glyoxylate Peroxisome Succinate

14 13 Peroxisome Mutations Increase EPA Titer Knock out of the Pex10 gene resulted in an EPA titer increase >2X 50 EPA% of FAME PEX Pex Y4127 Y4128 Strains

15 14 Control the Carbon Flux for Enhanced EPA Production % of To otal Lipids C16: 4% 3 1 Pushing Pulling C18: <24% Fatty Acids 56 EPA TAG Sink

16 Searching for A Global Regulator of Lipid Metabolism in Yarrowia 15 Glucose Pentose phosphate shunt NADPH Pyruvate ER EPA-CoA Acyl (C14)-CoA TAGs (Oil) EPA/TAGs Fatty Acids Lipid Body Acetyl-CoA Acetyl-CoA Malonyl-CoA Fatty Acids Acetyl-CoA Oxaloacetate Citrate Isocitrate Malate a-ketoglutarate Fumarate Succinate Mitochondrion Citrate Oxaloacetate Global Regulator? Cytoplasm Oxaloacetate Citrate Acetyl-CoA Malate Isocitrate Glyoxylate Peroxisome Succinate

17 Yarrowia SNF1: Global Regulator of Lipid Accumulation 16 Lipid %D DCW High Medium Low snf1 Control Days in oleaginous phase

18 Three DAG Acyltransferases for Oil Biosynthesis 17 E P E R P E R R P E R R TAG biosynthesis E R R R G3P LPA PA DAG TAG Glycerol G3PAT LPAAT PC-DAG exchange CPT1 18:1 18:2 20:2 20:3 20:4 20:5 EPA biosynthesis PC pool. E R R PDAT PC DGAT2 DGAT1 FAS LPCAT/ LPAAT 16:0 18:0 18:1 18:2 EPA 20:2 20:5 PC recycling CoA pool PEX β-oxidation GPAT DGAT CPT LPAAT LPCAT PDAT Glycerol-3-phosphate acyltransferase Diacylglycerol acyltransferase CDP-choline:diacylglycerol cholinephosphotransferase Lysophosphatidic Acid Acyltransferase acyl-coa::lyso-phosphatidylcholine acltransferase phopholipid::diacylglycerol acyltransferase

19 18 Oil Content In Y.. lipolytica DAG AT Mutants TAG Oil conten nt, TF % dcw (% WT) ATCC Std Oil WT S d1 S-DT1 d2 S-DT2 S-PT p S-DT1 d1 S-DT1 d1 S-DT2 d2 Std S-DT2 d2 S-PT p S-PT p Single mutants Double mutants S-DT1 d1 S-DT2 d2 S-PT p

20 19 Over-Expression of DGAT and PDAT Improves Oil 70 Total Lipids as Dr ry Cell Weight (%) Y9502 Y PDAT Y DGAT2 Strain Comparison

21 20 Omega-3 Fermentation Research: Strain Evaluation and Process Development Glucose feed Cell Density and Byprod ducts (g/l) Cell Density Excreted Byproducts Lipid Content (% DCW) EPA Content (% DCW) Lipid an nd EPA content (% DCW) + + NH 4 4 Fermentation Time Air

22 21 Process Flow for Strain Evaluation by Fermentation 1,500 50, Micro-24 Bioreactor Air * Numbers refer to the strains tested

23 22 Micro-24 Bioreactor vs. Lab-Scale Fermentor Vessel/ Reactor Controllability Experimental Data Work Capacity 24 reactors, 3-7 ml Online process- T, Individual ph, po2 T, ph, po 2 Final point titer, rate, yield 1000 individual experiments /year/person Single reactor, 2-10 L T, ph, po 2 feeding Online process- T, ph, po2, feeding Time course titer, rate, yield 40 individual experiments /year/person

24 23 Micro-24 Bioreactor - bridge between shake flask and fermentor Strain #1 Flask mico-24 2-L fermentor 0 cell density product#1 product #2 product # Strain #2 Flask mico-24 2-L fermentor cell density product#1 product #2 product #3

25 24 Micro-24 Bioreactor - help identify the best strain and condition Identify the best production strain Identify the best fermentation conditions

26 25 Products: Current Omega-3 Market Oil Concentrates Pharmaceuticals Dietary Supplements Yarrowia Biomass Processed Biomass Extracted Oil Functional Foods Medical Foods & Pharma Aquaculture Terrestrial Animal Agriculture Pet Foods Industrial Applications Omega-3 market growing 12-15%/year

27 26 newharvest Vegetarian, renewable source - made from yeast, not fish Highly concentrated for convenient dosage Avoids fishy taste and burps No cholesterol. No PCBs. Strategic Partners Active Ingredient Natural Marketer Channel Partner

28 27 Verlasso s Harmoniously Raised Fish (Salmon) A new category of premium farmed salmon that is beyond sustainable farming practices Raised on a diet rich in omega-3 Fish in Fish out ratio 1 to 1 vs. 4 to 1 One of the lowest pen densities No hormones or preventative antibiotics Partnership between DuPont and AquaChile Validated through extensive market research National Market Test in 5 US Cities Marketing Support Building the Brand Partnership with the retailers 27

29 28 MY LESSONS LEARNED Project choice: make sure the view is worth the climb - No well-established chemical process - Multiple different products possible Collaboration is key: integrate metabolic engineering and fermentation engineering research - Strain, construction and process research should be integrated from the start - Results determine production strain attributes and process parameters Cost is king - Capital investment barrier must optimize fermentation productivity - Raw material cost There s no substitute for good science

30 29 Summary Yarrowia lipolytica is a useful host for metabolic engineering Powerful genetic tool box for metabolic engineering Robust, safe fermentation production organism Engineered production strains are stable without antibiotic selection DuPont s process is a sustainable alternative for Omega-3s Land-based fermentation from renewable resources at commercial scale Naturally contaminant free, no DHA Versatile technology enables production of tailored oil compositions, different PUFA s and multiple product applications Launched two commercial products NewHarvet TM EPA Oil Verlasso TM Salmon EPA Biomass DuPont will continue to drive lower costs and broaden the platform

Genetic modification of microalgae for the sustainable production of high value products

Genetic modification of microalgae for the sustainable production of high value products Rothamsted Research where knowledge grows Genetic modification of microalgae for the sustainable production of high value products Olga Sayanova 9 May 2016 Cambridge Metabolic Engineering of Microalgae

More information

Enhanced microbial lipid production with genetically modified yeast and fungus

Enhanced microbial lipid production with genetically modified yeast and fungus Enhanced microbial lipid production with genetically modified yeast and fungus Pacific Rim Summit on Industrial Biotechnology and Bioenergy 2014 Kari Koivuranta, Marilyn Wiebe, Laura Ruohonen and Merja

More information

Re-configuring Yarrowia lipolytica lipogenesis platform towards free fatty acid and biofuel production

Re-configuring Yarrowia lipolytica lipogenesis platform towards free fatty acid and biofuel production Re-configuring Yarrowia lipolytica lipogenesis platform towards free fatty acid and biofuel production Yonghong Meng, Ali Abghari, Rishikesh Ghogare, Xiaochao Xiong, GuokunWang, and Shulin Chen Bioprocessing

More information

Integrative Metabolism: Significance

Integrative Metabolism: Significance Integrative Metabolism: Significance Energy Containing Nutrients Carbohydrates Fats Proteins Catabolism Energy Depleted End Products H 2 O NH 3 ADP + Pi NAD + NADP + FAD + Pi NADH+H + NADPH+H + FADH2 Cell

More information

LIPID METABOLISM. Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI

LIPID METABOLISM. Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI LIPID METABOLISM Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI Lipid metabolism is concerned mainly with fatty acids cholesterol Source of fatty acids from dietary fat de novo

More information

HARNESSING THE POWER OF ALGAE. for Human and Animal Nutrition

HARNESSING THE POWER OF ALGAE. for Human and Animal Nutrition HARNESSING THE POWER OF ALGAE for Human and Animal Nutrition MARCEL WUBBOLTS, CTO CORBION 7/14/2018 Corbion: Who we are today 2 Key figures KEY FIGURES (2017) NET SALES BY REGION (2017) NET SALES 891.7mln

More information

MPS Advanced Plant Biochemistry Course. Fall Semester Lecture 11. Lipids III

MPS Advanced Plant Biochemistry Course. Fall Semester Lecture 11. Lipids III MPS 587 - Advanced Plant Biochemistry Course Fall Semester 2011 Lecture 11 Lipids III 9. Triacylglycerol synthesis 10. Engineering triacylglycerol fatty acid composition Today s topics on the Arabidopsis

More information

Chapter 9. Cellular Respiration: Harvesting Chemical Energy

Chapter 9. Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Living cells require energy from outside sources Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and

More information

ANSC/NUTR 618 Lipids & Lipid Metabolism

ANSC/NUTR 618 Lipids & Lipid Metabolism I. Overall concepts A. Definitions ANC/NUTR 618 Lipids & Lipid Metabolism 1. De novo synthesis = synthesis from non-fatty acid precursors a. Carbohydrate precursors (glucose, lactate, and pyruvate) b.

More information

Advances in the Production of Fuels and Chemicals Derived from Fatty Acid Metabolism

Advances in the Production of Fuels and Chemicals Derived from Fatty Acid Metabolism Engineering Conferences International ECI Digital Archives Metabolic Engineering IX Proceedings Summer 6-4-2012 Advances in the Production of Fuels and Chemicals Derived from Fatty Acid Metabolism Donald

More information

Information transmission

Information transmission 1-3-3 Case studies in Systems Biology Goutham Vemuri goutham@chalmers.se Information transmission Fluxome Metabolome flux 1 flux flux 3 Proteome metabolite1 metabolite metabolite3 protein 1 protein protein

More information

Biosynthesis of Fatty Acids. By Dr.QUTAIBA A. QASIM

Biosynthesis of Fatty Acids. By Dr.QUTAIBA A. QASIM Biosynthesis of Fatty Acids By Dr.QUTAIBA A. QASIM Fatty Acids Definition Fatty acids are comprised of hydrocarbon chains terminating with carboxylic acid groups. Fatty acids and their associated derivatives

More information

Respiration. Energy is everything!

Respiration. Energy is everything! Respiration Energy is everything! Tesla was incredible Everyone was intrigued by Tesla Tesla showed that energy does not need to be feared So what does this have to do with twinkies? Everything! Cellular

More information

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM. Triacylglycerol and Fatty Acid Metabolism

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM. Triacylglycerol and Fatty Acid Metabolism ANSC/NUTR 618 LIPIDS & LIPID METABOLISM II. Triacylglycerol synthesis A. Overall pathway Glycerol-3-phosphate + 3 Fatty acyl-coa à Triacylglycerol + 3 CoASH B. Enzymes 1. Acyl-CoA synthase 2. Glycerol-phosphate

More information

Respiration. Energy is everything!

Respiration. Energy is everything! Respiration Energy is everything! Tesla was incredible Everyone was intrigued by Tesla Tesla showed that energy does not need to be feared So what does this have to do with twinkies? Everything! Cellular

More information

BCM 221 LECTURES OJEMEKELE O.

BCM 221 LECTURES OJEMEKELE O. BCM 221 LECTURES BY OJEMEKELE O. OUTLINE INTRODUCTION TO LIPID CHEMISTRY STORAGE OF ENERGY IN ADIPOCYTES MOBILIZATION OF ENERGY STORES IN ADIPOCYTES KETONE BODIES AND KETOSIS PYRUVATE DEHYDROGENASE COMPLEX

More information

Cellular Respiration Stage 2 & 3. Glycolysis is only the start. Cellular respiration. Oxidation of Pyruvate Krebs Cycle.

Cellular Respiration Stage 2 & 3. Glycolysis is only the start. Cellular respiration. Oxidation of Pyruvate Krebs Cycle. Cellular Respiration Stage 2 & 3 Oxidation of Pyruvate Krebs Cycle AP 2006-2007 Biology Glycolysis is only the start Glycolysis glucose pyruvate 6C 2x 3C Pyruvate has more energy to yield 3 more C to strip

More information

Chem 109 C. Fall Armen Zakarian Office: Chemistry Bldn 2217

Chem 109 C. Fall Armen Zakarian Office: Chemistry Bldn 2217 Chem 109 C Fall 2014 Armen Zakarian ffice: Chemistry Bldn 2217 Chapter 25 o Glycolysis : fates of pyruvate NADH, H + H + C 2 NADH, H + H - (S)-lactic acid lactate dehydrogenase; anaerobic conditions -

More information

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM 1 2018/19 BY: MOHAMAD FAHRURRAZI TOMPANG Chapter Outline (19-1) The central role of the citric acid cycle in metabolism (19-2) The overall pathway of the citric

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

Development of efficient Escherichia coli succinate production strains

Development of efficient Escherichia coli succinate production strains Development of efficient Escherichia coli succinate production strains Ka-Yiu San Department of Bioengineering Department of Chemical and Biomolecular Engineering Rice University, Houston, Texas International

More information

Lipid Metabolism. Catabolism Overview

Lipid Metabolism. Catabolism Overview Lipid Metabolism Pratt & Cornely, Chapter 17 Catabolism Overview Lipids as a fuel source from diet Beta oxidation Mechanism ATP production Ketone bodies as fuel 1 High energy More reduced Little water

More information

Synthesis of Fatty Acids and Triacylglycerol

Synthesis of Fatty Acids and Triacylglycerol Synthesis of Fatty Acids and Triacylglycerol Lippincott s Chapter 16 Fatty Acid Synthesis Mainly in the Liver Requires Carbon Source: Acetyl CoA Reducing Power: NADPH 8 CH 3 COO C 15 H 33 COO Energy Input:

More information

Lecture 29: Membrane Transport and metabolism

Lecture 29: Membrane Transport and metabolism Chem*3560 Lecture 29: Membrane Transport and metabolism Insulin controls glucose uptake Adipose tissue and muscles contain a passive glucose transporter GluT4 which takes up glucose from blood. (This is

More information

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels CH 7: Cell Respiration and Fermentation Overview Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals feed on other organisms Energy flows into

More information

Connect with consumers for life. Introducing new MEG-3 Ultra and life sdha Ultra

Connect with consumers for life. Introducing new MEG-3 Ultra and life sdha Ultra Connect with consumers for life Introducing new MEG-3 Ultra and life sdha Ultra ega-3s are essential for everyone, every day Omega-3 fatty acids play a critical role in supporting human health across different

More information

Fatty acids synthesis

Fatty acids synthesis Fatty acids synthesis The synthesis start from Acetyl COA the first step requires ATP + reducing power NADPH! even though the oxidation and synthesis are different pathways but from chemical part of view

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION CITRIC ACID CYCLE (T.C.A) PRODUCTION OF ACETYL CoA REACTIONS OF THE CITIRC ACID CYCLE THE AMPHIBOLIC NATURE OF THE T.C.A CYCLE THE GLYOXYLATE CYCLE

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course First Edition CHAPTER 19 Harvesting Electrons from the Cycle 2013 W. H. Freeman and Company Chapter 19 Outline The citric acid cycle oxidizes the acetyl

More information

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points.

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points. CHEM 4420 Exam 4 Spring 2015 Dr. Stone Page 1 of 6 Name Use complete sentences when requested. There are 120 possible points on this exam. Therefore there are 20 bonus points. Multiple choice: Circle the

More information

Summary of fatty acid synthesis

Summary of fatty acid synthesis Lipid Metabolism, part 2 1 Summary of fatty acid synthesis 8 acetyl CoA + 14 NADPH + 14 H+ + 7 ATP palmitic acid (16:0) + 8 CoA + 14 NADP + + 7 ADP + 7 Pi + 7 H20 1. The major suppliers of NADPH for fatty

More information

Krebs cycle Energy Petr Tůma Eva Samcová

Krebs cycle Energy Petr Tůma Eva Samcová Krebs cycle Energy - 215 Petr Tůma Eva Samcová Overview of Citric Acid Cycle Key Concepts The citric acid cycle (Krebs cycle) is a multistep catalytic process that converts acetyl groups derived from carbohydrates,

More information

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.2 Light energy

More information

Fungal Conversion of Canola for Polyunsaturated Fatty Acids-added Lipids

Fungal Conversion of Canola for Polyunsaturated Fatty Acids-added Lipids Fungal Conversion of Canola for Polyunsaturated Fatty Acids-added Lipids Meidui Dong and Terry H. Walker Biosystems Engineering, Clemson University, SC March 2008 1 Introduction Polyunsaturated fatty acids

More information

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh 8 Marah Bitar Faisal Nimri... Nafeth Abu Tarboosh Summary of the 8 steps of citric acid cycle Step 1. Acetyl CoA joins with a four-carbon molecule, oxaloacetate, releasing the CoA group and forming a six-carbon

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

Chapter 9. Cellular Respiration and Fermentation

Chapter 9. Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks Chapter 9: Cellular Respiration Overview: Life Is Work Living cells Require transfusions of energy from outside sources to perform their many tasks Biology, 7 th Edition Neil Campbell and Jane Reece The

More information

Reviewer #1. Reviewer #2

Reviewer #1. Reviewer #2 Reviewer #1 A&E The manuscript by Zhou et al. describes production of fatty acids, fatty alcohols, and alkanes in Saccharomyces cerevisiae. First they use various previously developed modifications to

More information

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy Figure 9-01 LE 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO2 + H2O Cellular respiration in mitochondria Organic + O molecules 2 powers most cellular work Heat energy LE 9-UN161a becomes

More information

EPA DHA HARNESSING NATURE. ENABLING GROWTH.

EPA DHA HARNESSING NATURE. ENABLING GROWTH. EPA DHA HARNESSING NATURE. ENABLING GROWTH. Producing omega-3 fatty acids EPA and DHA from natural marine algae for animal nutrition One of nature s many treasures algae can be found in the sea. Natural

More information

Cellular Respiration

Cellular Respiration Cellular Respiration 1. To perform cell work, cells require energy. a. A cell does three main kinds of work: i. Mechanical work, such as the beating of cilia, contraction of muscle cells, and movement

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O 9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.1 Figure 9.2

More information

Objectives By the end of lecture the student should:

Objectives By the end of lecture the student should: Objectives By the end of lecture the student should: Discuss β oxidation of fatty acids. Illustrate α oxidation of fatty acids. Understand ω oxidation of fatty acids. List sources and fates of active acetate.

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living

More information

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete loss of electrons Reduction: partial or complete gain of electrons

More information

Tricarboxylic Acid Cycle. TCA Cycle; Krebs Cycle; Citric Acid Cycle

Tricarboxylic Acid Cycle. TCA Cycle; Krebs Cycle; Citric Acid Cycle Tricarboxylic Acid ycle TA ycle; Krebs ycle; itric Acid ycle The Bridging Step: Pyruvate D hase O H 3 - - pyruvate O O - NAD + oash O 2 NADH O H 3 - - S - oa acetyl oa Pyruvate D hase omplex Multienzyme

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Still having trouble understanding the material? Check

More information

Acyl-Coenzyme A Thioesters for Pesticides, Parkinson s, and Metabolism. Nathaniel W Snyder, PhD, MPH Blair Lab August 11, 2014

Acyl-Coenzyme A Thioesters for Pesticides, Parkinson s, and Metabolism. Nathaniel W Snyder, PhD, MPH Blair Lab August 11, 2014 Acyl-Coenzyme A Thioesters for Pesticides, Parkinson s, and Metabolism Nathaniel W Snyder, PhD, MPH Blair Lab August 11, 214 1 Biological Importance of Acyl-CoAs Krebs Cycle Fatty Acid Metabolism Acyl-

More information

SIMPLE BASIC METABOLISM

SIMPLE BASIC METABOLISM SIMPLE BASIC METABOLISM When we eat food such as a tuna fish sandwich, the polysaccharides, lipids, and proteins are digested to smaller molecules that are absorbed into the cells of our body. As these

More information

Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1

Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1 Lecture on General Biology 1 Campbell Biology 9 th edition Chapter 9 Cellular Respiration and Fermentation Chul-Su Yang, Ph.D., chulsuyang@hanyang.ac.kr Infection Biology Lab., Dept. of Molecular & Life

More information

BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels

BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels 9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates

More information

Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain

Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain Goals: To be able to describe the overall catabolic pathways for food molecules. To understand what bonds are hydrolyzed in the digestion

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation Chapter 9 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Cellular Respiration and Fermentation

More information

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 Notes NAME DATE HOUR SUMMARY EQUATION CELLULAR RESPIRATION C 6 H 12 O 6 + O 2 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete

More information

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM. Fatty Acid Elongation and Desaturation

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM. Fatty Acid Elongation and Desaturation ANSC/NUTR 618 LIPIDS & LIPID METABOLISM I. Fatty acid elongation A. General 1. At least 60% of fatty acids in triacylglycerols are C18. 2. Free palmitic acid (16:0) synthesized in cytoplasm is elongated

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III Lecture 16 Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III The Powertrain of Human Metabolism (verview) CARBHYDRATES PRTEINS

More information

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy by eating plants, and some animals feed on other

More information

Omega 3 oil sources for use in aquaculture Alternatives to the unstainable harvest of wildfish

Omega 3 oil sources for use in aquaculture Alternatives to the unstainable harvest of wildfish Omega 3 oil sources for use in aquaculture Alternatives to the unstainable harvest of wildfish Prepared by: Matt Miller, Peter Nichols & Chris Carter Problem Aquaculture is growing Requires wild caught

More information

Using the Organic Acids Test Part 5 Dr. Jeff Moss

Using the Organic Acids Test Part 5 Dr. Jeff Moss Using organic acids to resolve chief complaints and improve quality of life in chronically ill patients Part V Jeffrey Moss, DDS, CNS, DACBN jeffmoss@mossnutrition.com 413-530-08580858 (cell) 1 Summer

More information

Oxidation of Long Chain Fatty Acids

Oxidation of Long Chain Fatty Acids Oxidation of Long Chain Fatty Acids Dr NC Bird Oxidation of long chain fatty acids is the primary source of energy supply in man and animals. Hibernating animals utilise fat stores to maintain body heat,

More information

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007 INTRODUCTORY BIOCHEMISTRY BI 28 Second Midterm Examination April 3, 2007 Name SIS # Make sure that your name or SIS # is on every page. This is the only way we have of matching you with your exam after

More information

NOTES: Ch 9, part & Fermentation & Regulation of Cellular Respiration

NOTES: Ch 9, part & Fermentation & Regulation of Cellular Respiration NOTES: Ch 9, part 4-9.5 & 9.6 - Fermentation & Regulation of Cellular Respiration 9.5 - Fermentation enables some cells to produce ATP without the use of oxygen Cellular respiration requires O 2 to produce

More information

Cellular Respiration Other Metabolites & Control of Respiration. AP Biology

Cellular Respiration Other Metabolites & Control of Respiration. AP Biology Cellular Respiration Other Metabolites & Control of Respiration Cellular respiration: Beyond glucose: Other carbohydrates: Glycolysis accepts a wide range of carbohydrates fuels. polysaccharides glucose

More information

Synthesis of Fatty Acids and Triacylglycerol

Synthesis of Fatty Acids and Triacylglycerol Fatty Acid Synthesis Synthesis of Fatty Acids and Triacylglycerol Requires Carbon Source: Reducing Power: NADPH Energy Input: ATP Why Energy? Why Energy? Fatty Acid Fatty Acid + n(atp) ΔG o : -ve Fatty

More information

AP BIOLOGY Chapter 7 Cellular Respiration =

AP BIOLOGY Chapter 7 Cellular Respiration = 1 AP BIOLOGY Chapter 7 Cellular Respiration = Day 1 p. I. Overview A. Cellular Respiration 1. Respiration breathing, exchange of O 2 for CO 2 2. Cellular respiration aerobic harvesting of energy from food

More information

2/4/17. Cellular Metabolism. Metabolism. Cellular Metabolism. Consists of all of the chemical reactions that take place in a cell.

2/4/17. Cellular Metabolism. Metabolism. Cellular Metabolism. Consists of all of the chemical reactions that take place in a cell. Metabolism Cellular Metabolism Consists of all of the chemical reactions that take place in a cell. Can be reactions that break things down. (Catabolism) Or reactions that build things up. (Anabolism)

More information

Ahmad Ulnar. Faisal Nimri ... Dr.Faisal

Ahmad Ulnar. Faisal Nimri ... Dr.Faisal 24 Ahmad Ulnar Faisal Nimri... Dr.Faisal Fatty Acid Synthesis - Occurs mainly in the Liver (to store excess carbohydrates as triacylglycerols(fat)) and in lactating mammary glands (for the production of

More information

LOVAZA (omega-3-acid ethyl esters) oral capsule VASCEPA (icosapent ethyl) oral capsule

LOVAZA (omega-3-acid ethyl esters) oral capsule VASCEPA (icosapent ethyl) oral capsule VASCEPA (icosapent ethyl) oral capsule Coverage for services, procedures, medical devices and drugs are dependent upon benefit eligibility as outlined in the member's specific benefit plan. This Pharmacy

More information

Biochemistry 463, Summer II University of Maryland, College Park Your SID #:

Biochemistry 463, Summer II University of Maryland, College Park Your SID #: Biochemistry 463, Summer II Your Name: University of Maryland, College Park Your SID #: Biochemistry and Physiology Prof. Jason Kahn Final Exam (150 points total) August 16, 2013 You have 90 minutes for

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated

More information

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 Notes NAME DATE HOUR SUMMARY EQUATION CELLULAR RESPIRATION C 6 H 12 O 6 + O 2 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete

More information

How Cells Harvest Chemical Energy

How Cells Harvest Chemical Energy Chapter 6 How Cells Harvest Chemical Energy INTRODUCTION TO CELLULAR RESIRATION hotosynthesis and cellular respiration provide energy for life Cellular respiration makes and consumes O During the oxidation

More information

Chapter 6. How Cells Harvest Chemical Energy. Lecture by Richard L. Myers

Chapter 6. How Cells Harvest Chemical Energy. Lecture by Richard L. Myers Chapter 6 How Cells Harvest Chemical Energy oweroint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 earson Education, Inc. Lecture

More information

Lipid Metabolism. Remember fats?? Triacylglycerols - major form of energy storage in animals

Lipid Metabolism. Remember fats?? Triacylglycerols - major form of energy storage in animals Remember fats?? Triacylglycerols - major form of energy storage in animals Your energy reserves: ~0.5% carbs (glycogen + glucose) ~15% protein (muscle, last resort) ~85% fat Why use fat for energy? 1 gram

More information

Cellular Respiration Checkup Quiz. 1. Of the following products, which is produced by both anaerobic respiration and aerobic respiration in humans?

Cellular Respiration Checkup Quiz. 1. Of the following products, which is produced by both anaerobic respiration and aerobic respiration in humans? 1. Of the following products, which is produced by both anaerobic respiration and aerobic respiration in humans? I. Pyruvate II. III. ATP Lactate A. I only B. I and II only C. I, II and III D. II and III

More information

6. How Are Fatty Acids Produced? 7. How Are Acylglycerols and Compound Lipids Produced? 8. How Is Cholesterol Produced?

6. How Are Fatty Acids Produced? 7. How Are Acylglycerols and Compound Lipids Produced? 8. How Is Cholesterol Produced? Lipid Metabolism Learning bjectives 1 How Are Lipids Involved in the Generationand Storage of Energy? 2 How Are Lipids Catabolized? 3 What Is the Energy Yield from the xidation of Fatty Acids? 4 How Are

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Chemical Equation 6 O 2 + C 6 H 12 O 6 6 H 2 O + 6 CO 2 + Page 107 Adenosine Triphosphate Adenosine Diphosphate Background Aerobic= requires oxygen Anaerobic= does not require oxygen

More information

ANSC/NUTR 618 Lipids & Lipid Metabolism

ANSC/NUTR 618 Lipids & Lipid Metabolism I. verall concepts A. Definitions ANSC/NUTR 618 Lipids & Lipid Metabolism 1. De novo synthesis = synthesis from non-fatty acid precursors a. Carbohydrate precursors (glucose and lactate) 1) Uses glucose

More information

THE PROBLEM OMEGA 3. pure

THE PROBLEM OMEGA 3. pure p2 THE PROBLEM Essential fatty acids (EFAs) are polyunsaturated fats that our bodies need but cannot produce. Therefore, they must be consumed through food or supplements. Omega 3 and Omega 6 are EFAs.

More information

MILK BIOSYNTHESIS PART 3: FAT

MILK BIOSYNTHESIS PART 3: FAT MILK BIOSYNTHESIS PART 3: FAT KEY ENZYMES (FROM ALL BIOSYNTHESIS LECTURES) FDPase = fructose diphosphatase Citrate lyase Isocitrate dehydrogenase Fatty acid synthetase Acetyl CoA carboxylase Fatty acyl

More information

Biochemistry Sheet 27 Fatty Acid Synthesis Dr. Faisal Khatib

Biochemistry Sheet 27 Fatty Acid Synthesis Dr. Faisal Khatib Page1 بسم رلاهللا On Thursday, we discussed the synthesis of fatty acids and its regulation. We also went on to talk about the synthesis of Triacylglycerol (TAG). Last time, we started talking about the

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Cellular Metabolism. Biology 105 Lecture 6 Chapter 3 (pages 56-61)

Cellular Metabolism. Biology 105 Lecture 6 Chapter 3 (pages 56-61) Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Aerobic cellular respiration requires

More information

Fatty Acid and Triacylglycerol Metabolism 1

Fatty Acid and Triacylglycerol Metabolism 1 Fatty Acid and Triacylglycerol Metabolism 1 Mobilization of stored fats and oxidation of fatty acids Lippincott s Chapter 16 What is the first lecture about What is triacylglycerol Fatty acids structure

More information

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016 5//016 Metabolism Metabolism All the biochemical reactions occurring in the body Generating, storing and expending energy ATP Supports body activities Assists in constructing new tissue Metabolism Two

More information

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III Lecture 16 Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III The Powertrain of Human Metabolism (verview) CARBHYDRATES PRTEINS

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Life Is Work Living cells

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

ANSC/NUTR 618 Lipids & Lipid Metabolism

ANSC/NUTR 618 Lipids & Lipid Metabolism Fatty Acid ynthesis I. verall concepts A. Definitions ANC/NUTR 618 Lipids & Lipid Metabolism Fatty Acid ynthesis 1. De novo synthesis = synthesis from non-fatty acid precursors a. Carbohydrate precursors

More information

Metabolic engineering some basic considerations. Lecture 9

Metabolic engineering some basic considerations. Lecture 9 Metabolic engineering some basic considerations Lecture 9 The 90ties: From fermentation to metabolic engineering Recruiting heterologous activities to perform directed genetic modifications of cell factories

More information

Cellular Respiration: Harvesting Chemical Energy Chapter 9

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Chapter 9 Assemble polymers, pump substances across membranes, move and reproduce The giant panda Obtains energy for its cells by eating plants which get

More information