Int J Clin Exp Med 2015;8(4): /ISSN: /IJCEM Xiaokang Liu, Yingjie Liu, Xiaofeng Lian, Jianguang Xu

Size: px
Start display at page:

Download "Int J Clin Exp Med 2015;8(4): /ISSN: /IJCEM Xiaokang Liu, Yingjie Liu, Xiaofeng Lian, Jianguang Xu"

Transcription

1 Int J Clin Exp Med 2015;8(4): /ISSN: /IJCEM Original Article Magnetic resonance imaging on disc degeneration changes after implantation of an interspinous spacer and fusion of the adjacent segment Xiaokang Liu, Yingjie Liu, Xiaofeng Lian, Jianguang Xu Department of Orthopedics, Shanghai Jiaotong University Affiliated Sixth People s Hospital, Shanghai , China Received January 26, 2015; Accepted March 26, 2015; Epub April 15, 2015; Published April 30, 2015 Abstract: The aim of the study was to investigate the changes of the lumbar intervertebral disc degeneration by magnetic resonance imaging (MRI) after the implantation of interspinous device and the fusion of the adjacent segment. A total of 62 consecutive patients suffering L5/S1 lumbar disc herniation (LDH) with concomitant disc space narrowing or low-grade instability up to 5 mm translational slip in L5/S1 level were treated with lumbar interbody fusion (LIF) via posterior approach. Thirty-four of these patients (Coflex group) received an additional implantation of the interspinous spacer device (Coflex ) in the level L4/L5, while the rest of 28 patients (fusion group) underwent the fusion surgery alone. Clinical and radiographic examinations were performed at pre- and postoperative visits to compare the clinical outcomes and the changes of the L4/L5 vertebral disc degeneration on MRI in both Coflex and fusion group. Although both Coflex and fusion group showed improvements of the clinical outcomes assessed by the Oswestry Disability Index (ODI) after surgery, patients in Coflex group had more significant amelioration (P < 0.05) compared to fusion group. During follow up, the postoperative disc degeneration changes in Coflex group assessed by the relative signal intensity (RSI) differed from those in fusion group (P < 0.05). The supplemental implantation of Coflex after the fusion surgery could delay the disc degeneration of the adjacent segment. Keywords: Coflex, adjacent segmental degeneration, spinal fusion Introduction Nowadays, the fusion surgery is a routine treatment for lumbar spine disorders, such as segmental instability, degenerative scoliosis and spinal stenosis. As a conventional therapy, the fusion surgery was considered to be superior to conservative treatments in long-term investigation [1-3]. Due to the technological or material advances such as transpedicular fixation and polyetheretherketone cage, successful fusion has been achieved in more and more patients. The solid fusion, however, did not always produce the satisfactory clinical outcome. One relevant clinical problem after the fusion surgery was the adjacent segmental degeneration [4, 5]. Previous biomechanical studies have proven that the redistribution in load and motion after a fusion procedure usually led to adjacent disc degeneration [6]. Therefore, how to delay the progress of adjacent segmental degeneration is of great importance to the surgical treatment of lumbar degenerative disorders. Recently a variety of interspinous spacers have been introduced as the alternative to traditional surgical procedures [4, 7]. Such interspinous device as Coflex (Paradigm Spine, LCC, New York) promised to restore the foraminal height, maintain the interspinous space and establish segmental stability. Ever since its invention by the French orthopedic surgeon Jacques Samani in 1994, Coflex have served for treating mono- and bi-segmental symptomatic spinal canal stenosis in combination with interlaminar decompression. It was also reported that the device may alleviate the adjacent segmental diseases after fusion [8]. However, whether the implantation of Coflex after fusion would decelerate the disc degeneration was not investigated.

2 Table 1. Inclusion and exclusion criteria for the patients Inclusion criteria Exclusion criteria Clinical and radiographic criteria of a symptomatic lumbar disc herniation Any type of spondylolisthesis in L4/L5 segment Frustrated conservative treatment more than 3 months Concomitant congenital lumbar spine deformity Age between 18 and 50 Non-fusion of L5/S1 level at the follow-up L4/L5 disc degeneration History of lumbar spine surgery In the present study, clinical and radiographic examinations were employed pre- and postoperatively to investigate the clinical outcome, and at the same time, the disc degeneration on MRI was assessed. Materials and methods Patients Between January 2008 and September 2013, a total of 62 consecutive patients (30 males and 32 females) were enrolled into this study and retrospectively reviewed. The inclusion and exclusion criteria were made a list in Table 1. All the patients were diagnosed as L5/S1 LDH with disc space narrowing or segmental instability, L4/L5 disc degeneration. Segmental instability was defined as segmental kyphosis of > 5 and/or anterior slip of > 5 mm on standing lateral radiograph of maximal flexion. Following criteria were set for L4/L5 disc degeneration: 1) Pfirrmann grade II-III disc degeneration [9]; 2) No disc herniation or canal stenosis that required a fusion or decompression surgery; 3) No high intensity zone (HIZ); 4) No instability on preoperative flexion-extension plain radiographs in L4/L5 segment. The study was approved by the ethics committee of Shanghai Jiaotong University Affiliated Sixth People s Hospital. The patients were divided into 2 groups, Coflex group and fusion group. Fusion group (28 patients) was treated with L5/S1 interbody fusion surgery alone, while Coflex group underwent the same surgery plus Coflex implantation in the level L4/L5. All the procedures were performed by a single group of surgeons. Procedures The patients were placed in a prone position and the surgical interventions were performed under general anesthesia. All the subjects underwent the fusion surgery in L5/S1 segment through the standard posterior midline approach. The standard procedure involved L5/S1 bilateral pedicle screws implantation, unilateral L5 laminectomy, L5 and S1 nerve root decompression, ligamentum flavum removal, facetectomy undercutting as well as interbody fusion. The interbody fusion was performed with a single cage packed with autologous bone, which was harvested from the laminectomy. During the entire surgery, both supraspinal ligament and spinous process were kept intact for the fixation of Coflex device. In Coflex group, after the L5/S1 interbody fusion was completed, the Coflex device was fixed in the spinous process of L4 and L5. The skill of Coflex implantation was simple. After resecting the interspinous ligament and the bony overgrowth of the spinous process, the trial templates were used to define the appropriate size, then the Coflex was placed into the interspinous space with amount of interspinous distraction. Intraoperative c-arm monitoring was employed to determine the appropriate templates according to the segmental kyphosis and the interspinous distraction. Evaluation of ODI and RSI The Oswestry Disability Index (ODI) of all the patients were recorded to evaluate the clinical outcome, at the same time, while the relative signal intensity (RSI) of L4/L5 disc was employed to assess L4/L5 the disc degeneration changes, the RSI of the disc was measured and calculated by the method of Luoma [10], and the formula was as follows: ^SI # A na + SI # n h B B /n ^ A + n h B RSI = SI CSF SIA, SIB were defined as the signal intensity of above (A) and below (B) the central intranuclear cleft in the disc respectively, the value of SICSF was calculated as the signal intensity of the cerebrospinal fluid (CSF) in the anterior part of the adjacent dural sac behind each vertebrae, while na and nb represented the number of measured pixels, respectively. Statistical analysis All statistical analyses were performed using SPSS, version 18.0 (SPSS Inc, Chicago, USA) Int J Clin Exp Med 2015;8(4):

3 Table 2. ODI and RSI assessment Fusion group Coflex group Pre-surgery follow-up Pre-surgery follow-up ODI (mean, range) 48 (38-59) 30 (18-44) 54 (42-63) 20 (5-38) L4/L5 angle (mean, range) 21.2 (16-26) 22.4 (17-28) 20.5 (14-27) 16.5 (15-23) RSI (mean, range) 0.71 ( ) 0.54 ( ) 0.70 ( ) ( ) Figure 1. A 31-year old female patient diagnosed as L5/S1 disc herniation and L4/L5 disc degeneration. A, B. The plain radiographs at the 48-month follow-up. C, D. Sagittal T2-weighted MRI images preoperatively and 48-month postoperatively. Normality was compared between the groups by using the Mann-Whitney U test. For binomial distribution, the McNemar test was used. Non-parametric variables between the two groups were analyzed by the chi-square test. A P value < 0.05 were considered to be significant. Results Clinical characteristics of patients In Coflex group, there were 16 males and 18 females, with a mean age of 32 years (ranged from 22 to 43 years). In fusion group, there were 14 males and 14 females with a mean age of 36 years (ranged from 24 to 49 years). No significant differences were observed in terms of demographic data such as sex, age, body mass index (BMI), and duration of the disease. No different disc degeneration observed in both groups before surgery. The mean follow-up was 57 months (range: months). ODI and RSI assessment Before surgery, there was also no significant difference in terms of the ODI, the L4/L5 angles, and the RSI between the two groups before surgery. As shown in Table 2, the mean preoperative ODI was 48 (range: 38-59) in fusion group and 54 (range: 42-63) in Coflex group. The mean ODI value at follow-up reduced to 30 in 6099 Int J Clin Exp Med 2015;8(4):

4 fusion group (range: 18-44) and 20 (range: 5-38) in Coflex group, respectively. This reduction was more significant between the two groups (P <0.01). Before surgery, the mean L4/L5 segmental lordosis was 21.2 (range: 16-26) in fusion group and 22.4 (range: 17-28) in Coflex group. The mean L4/L5 angle value at follow-up was 20.5 (range: 14-27) in fusion group, while the mean segmental angle was 16.5 (range: 15-23) in Coflex group (Table 2). There was a significant difference between the two groups (P <0.05). As shown in Table 2, a mean preoperative RSI in fusion group was 0.71 (range: ) and dropped significantly to 0.54 (range: ) at the follow-up. In Coflex group, the mean preoperative RSI was 0.70 (range: ) and decreased significantly to 0.65 (range: , P < 0.05) at the follow-up. We found a significant difference between the two groups in terms of the postoperative RSI of L4/L5 disc. Complications Until to the last follow-up, no implantation related complications such as spinous process fracture, malpositioning of Coflex device were observed, no patient reported a late fusion in the adjacent level. MRI analysis A 31-year old female patient was diagnosed as L5/S1 disc herniation and L4/L5 disc degeneration. The plain radiographs and sagittal T2-weighted MRI images were obtained preoperatively and 48-month postoperatively (Figure 1). Discussion The conventional surgical treatment for LDH was the resection of herniated nucleus pulposus combined with the expansion of nerve root canal. With the concomitant disc space narrowing or segmental instability, an interbody fusion was proved to be necessary to restore the disc space height, the spine stability as well as the spine alignment [11, 12]. As a routine clinical treatment, lumbar arthrodesis surgery was widely performed. However, the unintended effect of adjacent segment degeneration has aroused concern as the data of long-term follow-up become available [1]. Growing evidence in the spine literature showed that the overall motion of lumbar spine decreased after the fusion, while the percentage of the adjacent segment motion for the entire lumbar motion increased, the motion stress in the adjacent segment was stronger than the other segments [5, 6, 13]. Recently, a prospective randomized study by Ekman and his colleague also demonstrated that the pre-existed degenerative changes in the adjacent level would increasingly deteriorate due to the fusion surgery [14]. Partly for the purpose of ameliorating the situation of the adjacent segment degeneration, a variety of dynamic stabilization systems including Coflex, have been introduced to the spine community. Some experts also carried out the hybrid surgery [15, 16], such as LIF+DIAM, to investigate the efficacy of the hybrid procedure to delay the adjacent segment degeneration, some preliminary results were achieved. However, whether the application of hybrid construct in the degenerated adjacent segment can delay the process of disc degeneration was not a thoroughly investigated issue. According to the results of our study, the clinical outcomes improved in these 2 groups after the surgery. The ODI decreased more significantly in Coflex group compared to fusion group, with a significant difference (P < 0.05). In this study, we focused on the disc degeneration rather than the entire adjacent segment degeneration, which was a part of a project designed to investigate the effect of Coflex on the adjacent segment. Radiologically, lumbar disc degeneration has been defined as decreased signal intensity on T2-weighted MRI images combined with a loss of disc space height [3]. MRI is capable of showing disc desiccation changes based on a loss of signal intensity, an increase or decrease in signal intensity in correspondence with an increase or decrease in water content, respectively [17], while disc height loss is due to a breakdown of the structures surrounding the nucleus pulposus. Therefore, the disc signal intensity as well as the disc height was considered as the objective indicators associated with disc degeneration [3]. In order to evaluate the disc degeneration sensitively, disc signal intensity was measured and 6100 Int J Clin Exp Med 2015;8(4):

5 calculated rather than the disc height, because slight or mild disc degeneration may occur with no loss of disc height, which only can be detected in a MRI scanning. In addition, increasing evidences have demonstrated that decreased water content is one of the most highly associated findings with disc degeneration [18, 19]. Rather than the more prevalent indicator like Pfirrmann scale, we employed the RSI to evaluate the disc degeneration accurately. According to Luoma s definition, the RSI of a disc 0.82 revealed a mild to severe disc degeneration. In the present study, the mean preoperative RSI value was not different between the 2 groups, however, RSI in fusion group decreased significantly at the follow-up. As a result, it can be reasonably concluded that the disc degeneration deteriorated over the follow-up period after the fusion of caudal segment in fusion group, whereas the additional Coflex device implantation could delay the deterioration of L4/L5 disc degeneration according to the results of signal intensity. There was a general consensus among the spine community that a degenerated disc could not regenerate on its own, while the external devices could provide the optimal conditions favorable to disc viability. It is well known that the easiest way to restore the height of the disc is interspace distraction, but so far, little is known about the biomechanical and biological effects of such distraction. Previous biomechanical studies demonstrated that the Coflex implantation could unload the facet joints, restore the foraminal height [20]. Regarding segmental angulation, the mean L4/L5 angle value before surgery was 22.4 in Coflex group and decreased to 16.5 at follow up, Coflex led to a significant loss of lordosis, which is not consistent to another biomechanical study [21]. Previous case reported the lumbar disc rehydration after the implantation of a posterior dynamic stabilization system in a single patient [8], the Coflex device, however, could not provide the optimal conditions for the disc degeneration, and failed to delay the disc degeneration after the fusion of caudal segment. In summary, this clinical study showed that the supplemental implantation of Coflex after the fusion surgery could delay the disc degeneration of the adjacent segment compared with the single fusion surgery. Acknowledgements This study was financially supported by Science and Technology Commission of Shanghai Municipality (NO ). Disclosure of conflict of interest None. Address correspondence to: Dr. Jianguang Xu, Department of Orthopedics, Shanghai Jiaotong University Affiliated Sixth People s Hospital. NO. 600, Yishan Road, Shanghai , China. Tel: ; Fax: ; jianguangxu2004@aliyun.com References [1] Atlas SJ, Keller RB, Wu YA, Deyo RA, Singer DE. Long-term outcomes of surgical and nonsurgical management of lumbar spinal stenosis: 8 to 10 year results from the maine lumbar spine study. Spine 2005; 30: [2] Wilke HJ, Drumm J, Häussler K, Mack C, Steudel WI, Kettler A. Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur Spine J 2008; 17: [3] Wilmink JT. The normal aging spine and degenerative spinal disease. Neuroradiology 2011; 53 Suppl 1: [4] Derincek A, Mehbod A, Pinto M, Transfeldt E. Degeneration of non-fused segments after floating lumbar fusion. Acta Orthop Belg 2008; 74: [5] Schlegel JD, Smith JA, Schleusener RL. Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions. Spine 1996; 21: [6] Okuda S, Iwasaki M, Miyauchi A, Aono H, Morita M, Yamamoto T. Risk factors for adjacent segment degeneration after PLIF. Spine 2004; 29: [7] Wan Z, Wang S, Kozánek M, Passias PG, Mansfield FL, Wood KB, Li G. Biomechanical evaluation of the X-Stop device for surgical treatment of lumbar spinal stenosis.j Spinal Disord Tech 2012; 25: [8] Cho BY, Murovic J, Park KW, Park J. Lumbar disc rehydration postimplantation of a posterior dynamic stabilization system. J Neurosurg Spine 2010; 13: [9] Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001; 26: [10] Luoma K, Vehmas T, Riihimäki H, Raininko R. Disc height and signal intensity of the nucleus 6101 Int J Clin Exp Med 2015;8(4):

6 pulposus on magnetic resonance imaging as indicators of lumbar disc degeneration. Spine 2001; 26: [11] Inoue S, Watanabe T, Hirose A, Tanaka T, Matsui N, Saegusa O, Sho E. Anterior discectomy and interbody fusion for lumbar disc herniation. A review of 350 cases. Clin Orthop Relat Res 1984; 183: [12] Satoh I, Yonenobu K, Hosono N, Ohwada T, Fuji T, Yoshikawa H. Indication of posterior lumbar interbody fusion for lumbar disc herniation. J Spinal Disord Tech 2006; 19: [13] Kumar MN, Baklanov A, Chopin D. Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J 2001; 10: [14] Ekman P, Moller H, Shalabi A, Yu YX, Hedlund R. A prospective randomised study on the longterm effect of lumbar fusion on adjacent disc degeneration. Eur Spine J 2009; 18: [15] Lee CH, Hyun SJ, Kim KJ, Jahng TA, Yoon SH, Kim HJ. The Efficacy of lumbar hybrid stabilization using the DIAM to delay adjacent segment degeneration: an intervention comparison study with a minimum two-year follow-up. Neurosurgery 2013; [Epub ahead of print]. [16] Maserati MB, Tormenti MJ, Panczykowski DM, Bonfield CM, Gerszten PC. The use of a hybrid dynamic stabilization and fusion system in the lumbar spine: preliminary experience. Neurosurg Focus 2010; 28: E2. [17] Haughton V. Medical imaging of intervertebral disc degeneration (2004) current status of imaging. Spine (Phila Pa 1976) 2004 ; 29: [18] Battié MC, Videman T, Gibbons LE, Fisher LD, Manninen H, Gill K. Determinants of lumbar disc degeneration. A study relating lifetime exposures and magnetic resonance imaging findings in identical twins. Spine 1995; 20: [19] Rajasekaran S, Babu JN, Arun R, Armstrong BR, Shetty AP, Murugan S. A study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine 2004; 29: [20] Celik H, Derincek A, Koksal I. Surgical treatment of the spinal stenosis with an interspinous distraction device: do we really restore the foraminal height? Turk Neurosurg 2012; 22: [21] Kettler A, Drumm J, Heuer F, Haeussler K, Mack C, Claes L, Wilke HJ. Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical in vitro study resulting in a new idea. Clin Biomech (Bristol, Avon) 2008; 23: Int J Clin Exp Med 2015;8(4):

Int J Clin Exp Med 2018;11(2): /ISSN: /IJCEM Yi Yang, Hao Liu, Yueming Song, Tao Li

Int J Clin Exp Med 2018;11(2): /ISSN: /IJCEM Yi Yang, Hao Liu, Yueming Song, Tao Li Int J Clin Exp Med 2018;11(2):1278-1284 www.ijcem.com /ISSN:1940-5901/IJCEM0063093 Case Report Dislocation and screws pull-out after application of an Isobar TTL dynamic stabilisation system at L2/3 in

More information

Spine and Fusion. Adjacent Segment Disease. 36Ihsan SOLAROGLU M.D., M. Ozerk OKUTAN M.D., Gurdal NUSRAN M.D.

Spine and Fusion. Adjacent Segment Disease. 36Ihsan SOLAROGLU M.D., M. Ozerk OKUTAN M.D., Gurdal NUSRAN M.D. Lumbar Posterior Hybrid Dynamic Stabilisation and Fusion Systems 36Ihsan SOLAROGLU M.D., M. Ozerk OKUTAN M.D., Gurdal NUSRAN M.D. Spine and Fusion It has been more than a century since 1911 when Albee

More information

Coflex TM for Lumbar Stenosis with

Coflex TM for Lumbar Stenosis with Coflex TM for Lumbar Stenosis with Segmental Instability : 1 yr outcomes Eun-Sang Kim, M.D., Ph.D. Clinical Professor Dept of Neurosurgery Samsung Medical Center Seoul, Korea Surgery for Spinal Stenosis

More information

3D titanium interbody fusion cages sharx. White Paper

3D titanium interbody fusion cages sharx. White Paper 3D titanium interbody fusion cages sharx (SLM selective laser melted) Goal of the study: Does the sharx intervertebral cage due to innovative material, new design, and lordotic shape solve some problems

More information

LUMBAR SPINAL STENOSIS

LUMBAR SPINAL STENOSIS LUMBAR SPINAL STENOSIS Always occurs in the mobile segment. Factors play role in Stenosis Pre existing congenital or developmental narrowing of the lumbar spinal canal Translation of one anatomic segment

More information

Case Report Adjacent Lumbar Disc Herniation after Lumbar Short Spinal Fusion

Case Report Adjacent Lumbar Disc Herniation after Lumbar Short Spinal Fusion Case Reports in Orthopedics, Article ID 456940, 4 pages http://dx.doi.org/10.1155/2014/456940 Case Report Adjacent Lumbar Disc Herniation after Lumbar Short Spinal Fusion Koshi Ninomiya, Koichi Iwatsuki,

More information

Interspinous Fusion Devices. Midterm results. ROME SPINE 2012, 7th International Meeting Rome, 6-7 December 2012

Interspinous Fusion Devices. Midterm results. ROME SPINE 2012, 7th International Meeting Rome, 6-7 December 2012 Interspinous Fusion Devices. Midterm results. ROME SPINE 2012, 7th International Meeting Rome, 6-7 December 2012 Posterior distraction and decompression Secure Fixation and Stabilization Integrated Bone

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/29800 holds various files of this Leiden University dissertation. Author: Moojen, Wouter Anton Title: Introducing new implants and imaging techniques for

More information

5/27/2016. Stand-Alone Lumbar Lateral Interbody Fusion (LLIF) vs. Supplemental Fixation. Disclosures. LLIF Approach

5/27/2016. Stand-Alone Lumbar Lateral Interbody Fusion (LLIF) vs. Supplemental Fixation. Disclosures. LLIF Approach Stand-Alone Lumbar Lateral Interbody Fusion (LLIF) vs. Supplemental Fixation Joseph M. Zavatsky, M.D. Spine & Scoliosis Specialists Tampa, FL Disclosures Consultant - Zimmer / Biomet, DePuy Synthes Spine,

More information

5/19/2017. Interspinous Process Fixation with the Minuteman G3. What is the Minuteman G3. How Does it Work?

5/19/2017. Interspinous Process Fixation with the Minuteman G3. What is the Minuteman G3. How Does it Work? Interspinous Process Fixation with the Minuteman G3 LLOYDINE J. JACOBS, MD CASTELLVI SPINE MEETING MAY 13, 2017 What is the Minuteman G3 The world s first spinous process plating system that is: Minimally

More information

PARADIGM SPINE. Minimally Invasive Lumbar Fusion. Interlaminar Stabilization

PARADIGM SPINE. Minimally Invasive Lumbar Fusion. Interlaminar Stabilization PARADIGM SPINE Minimally Invasive Lumbar Fusion Interlaminar Stabilization 2 A UNIQUE MIS ALTERNATIVE TO PEDICLE SCREW FIXATION The Gold Standard The combined use of surgical decompression and different

More information

Fusion-segment of high-grade Lumbar Spondylolisthesis: 2-year follow-up

Fusion-segment of high-grade Lumbar Spondylolisthesis: 2-year follow-up 730 Acta Orthop. Belg., 2016, 82, 730-736 x. li, l. xu, q. kong ORIGINAL STUDY Fusion-segment of high-grade Lumbar Spondylolisthesis: 2-year follow-up Xiaolong Li, Lian Xu, Qingquan Kong Department of

More information

Am I eligible for the TOPS study? Possibly, if you suffer from one or more of the following conditions:

Am I eligible for the TOPS study? Possibly, if you suffer from one or more of the following conditions: Am I eligible for the TOPS study? Possibly, if you suffer from one or more of the following conditions: Radiating leg pain Greater leg / buttock pain than back pain Severe pain sets in when walking as

More information

Biomechanics of Interspinous Process Fixation and Lateral Modular Plate Fixation to Support Lateral Lumbar Interbody Fusion (LLIF)

Biomechanics of Interspinous Process Fixation and Lateral Modular Plate Fixation to Support Lateral Lumbar Interbody Fusion (LLIF) Biomechanics of Interspinous Process Fixation and Lateral Modular Plate Fixation to Support Lateral Lumbar Interbody Fusion (LLIF) Calusa Ambulatory Spine Conference 2016 Jason Inzana, PhD 1 ; Anup Gandhi,

More information

PREOPERATIVE RETROLISTHESIS IS A RISK FACTOR OF LUMBAR DISC HERNIATION AFTER FENESTRATION WITHOUT DISCECTOMY

PREOPERATIVE RETROLISTHESIS IS A RISK FACTOR OF LUMBAR DISC HERNIATION AFTER FENESTRATION WITHOUT DISCECTOMY PREOPERATIVE RETROLISTHESIS IS A RISK FACTOR OF LUMBAR DISC HERNIATION AFTER FENESTRATION WITHOUT DISCECTOMY Shota Takenaka*, Noboru Hosono, Yoshihiro Mukai, Kosuke Tateishi, Takeshi Fuji Osaka Kosei-nenkin

More information

KumaFix fixation for thoracolumbar burst fractures: a prospective study on selective consecutive patients

KumaFix fixation for thoracolumbar burst fractures: a prospective study on selective consecutive patients Xi an Hong Hui Hospital Xi an, Shaanxi, China KumaFix fixation for thoracolumbar burst fractures: a prospective study on selective consecutive patients Dingjun Hao, Baorong He, Liang Yan Hong Hui Hospital,

More information

Axial Lumbosacral Interbody Fusion. Description

Axial Lumbosacral Interbody Fusion. Description Section: Surgery Effective Date: April 15, 2014 Subject: Axial Lumbosacral Interbody Fusion Page: 1 of 6 Last Review Status/Date: March 2014 Axial Lumbosacral Interbody Fusion Description Axial lumbosacral

More information

Microendoscope-assisted posterior lumbar interbody fusion: a technical note

Microendoscope-assisted posterior lumbar interbody fusion: a technical note Original Study Microendoscope-assisted posterior lumbar interbody fusion: a technical note Hirohiko Inanami 1, Fumiko Saiki 1, Yasushi Oshima 2 1 Department of Orthopaedic Surgery, Inanami Spine and Joint

More information

ProDisc-L Total Disc Replacement. IDE Clinical Study.

ProDisc-L Total Disc Replacement. IDE Clinical Study. ProDisc-L Total Disc Replacement. IDE Clinical Study. A multi-center, prospective, randomized clinical trial. Instruments and implants approved by the AO Foundation Table of Contents Indications, Contraindications

More information

Original Policy Date

Original Policy Date MP 7.01.110 Axial Lumbosacral Interbody Fusion Medical Policy Section Surgery Issue 12/2013 Original Policy Date 12/2013 Last Review Status/Date Reviewed with literature search12/2013 Return to Medical

More information

QF-78. S. Tanaka 1, T.Yokoyama 1, K.Takeuchi 1, K.Wada 2, T. Tanaka 2, S.Abrakawa 2, G.Kumagai 2, T.Asari 2, A.Ono 2, Y.

QF-78. S. Tanaka 1, T.Yokoyama 1, K.Takeuchi 1, K.Wada 2, T. Tanaka 2, S.Abrakawa 2, G.Kumagai 2, T.Asari 2, A.Ono 2, Y. QF-78 Patient-oriented outcomes after musclepreserving interlaminar decompression for patients with lumbar spinal canal stenosis: Multi-center study to identify risk factors for poor outcomes S. Tanaka

More information

Original Article Selection of proximal fusion level for degenerative scoliosis and the entailing proximal-related late complications

Original Article Selection of proximal fusion level for degenerative scoliosis and the entailing proximal-related late complications Int J Clin Exp Med 2015;8(4):5731-5738 www.ijcem.com /ISSN:1940-5901/IJCEM0006438 Original Article Selection of proximal fusion level for degenerative scoliosis and the entailing proximal-related late

More information

PARADIGM SPINE. Brochure. coflex-f Minimally Invasive Lumbar Fusion

PARADIGM SPINE. Brochure. coflex-f Minimally Invasive Lumbar Fusion PARADIGM SPINE Brochure coflex-f Minimally Invasive Lumbar Fusion coflex-f THE UNIQUE, MINIMALLY INVASIVE FUSION DEVICE The coflex-f implant is designed to deliver surgeon confidence and patient satisfaction.

More information

Pasquale Donnarumma 1, Roberto Tarantino 1, Lorenzo Nigro 1, Marika Rullo 2, Domenico Messina 3, Daniele Diacinti 4, Roberto Delfini 1.

Pasquale Donnarumma 1, Roberto Tarantino 1, Lorenzo Nigro 1, Marika Rullo 2, Domenico Messina 3, Daniele Diacinti 4, Roberto Delfini 1. Original Study Decompression versus decompression and fusion for degenerative lumbar stenosis: analysis of the factors influencing the outcome of back pain and disability Pasquale Donnarumma 1, Roberto

More information

factor for identifying unstable thoracolumbar fractures. There are clinical and radiological criteria

factor for identifying unstable thoracolumbar fractures. There are clinical and radiological criteria NMJ-Vol :2/ Issue:1/ Jan June 2013 Case Report Medical Sciences Progressive subluxation of thoracic wedge compression fracture with unidentified PLC injury Dr.Thalluri.Gopala krishnaiah* Dr.Voleti.Surya

More information

Patient Information MIS LLIF. Lateral Lumbar Interbody Fusion Using Minimally Invasive Surgical Techniques

Patient Information MIS LLIF. Lateral Lumbar Interbody Fusion Using Minimally Invasive Surgical Techniques Patient Information MIS LLIF Lateral Lumbar Interbody Fusion Using Minimally Invasive Surgical Techniques Table of Contents Anatomy of Spine....2 General Conditions of the Spine....4 What is Spondylolisthesis....5

More information

Subject: Interspinous Decompression Devices for Spinal Stenosis (X Stop, Coflex) Guidance Number: MCG-222 Revision Date(s):

Subject: Interspinous Decompression Devices for Spinal Stenosis (X Stop, Coflex) Guidance Number: MCG-222 Revision Date(s): Subject: Interspinous Decompression Devices for Spinal Stenosis (X Stop, Coflex) Guidance Number: MCG-222 Revision Date(s): Original Effective Date: 3/16/15 DESCRIPTION OF PROCEDURE/SERVICE/PHARMACEUTICAL

More information

Original Article Management of Single Level Lumbar Degenerative Spondylolisthesis: Decompression Alone or Decompression and Fusion

Original Article Management of Single Level Lumbar Degenerative Spondylolisthesis: Decompression Alone or Decompression and Fusion Egyptian Journal of Neurosurgery Volume 9 / No. 4 / October - December 014 51-56 Original Article Management of Single Level Lumbar Degenerative Spondylolisthesis: Decompression Alone or Decompression

More information

Lumbar Laminotomy DEFINING APPROPRIATE COVERAGE POSITIONS NASS COVERAGE POLICY RECOMMENDATIONS TASKFORCE

Lumbar Laminotomy DEFINING APPROPRIATE COVERAGE POSITIONS NASS COVERAGE POLICY RECOMMENDATIONS TASKFORCE NASS COVERAGE POLICY RECOMMENDATIONS Lumbar Laminotomy DEFINING APPROPRIATE COVERAGE POSITIONS North American Spine Society 7075 Veterans Blvd. Burr Ridge, IL 60527 TASKFORCE Introduction North American

More information

Innovative Techniques in Minimally Invasive Cervical Spine Surgery. Bruce McCormack, MD San Francisco California

Innovative Techniques in Minimally Invasive Cervical Spine Surgery. Bruce McCormack, MD San Francisco California Innovative Techniques in Minimally Invasive Cervical Spine Surgery Bruce McCormack, MD San Francisco California PCF Posterior Cervical Fusion PCF not currently an ambulatory care procedure Pearl diver

More information

INTRODUCTION.

INTRODUCTION. www.jkns.or.kr http://dx.doi.org/1.334/jkns.212.51.4.23 J Korean Neurosurg Soc 51 : 23-27, 212 Print ISSN 25-3711 On-line ISSN 1598-7876 Copyright 212 The Korean Neurosurgical Society Clinical Article

More information

The Role of Surgery in the Treatment of Low Back Pain and Radiculopathy. Christian Etter, MD, Spine Surgeon Zürich, Switzerland

The Role of Surgery in the Treatment of Low Back Pain and Radiculopathy. Christian Etter, MD, Spine Surgeon Zürich, Switzerland The Role of Surgery in the Treatment of Low Back Pain and Radiculopathy Christian Etter, MD, Spine Surgeon Zürich, Switzerland WW Fusion Volume by Disorder 2004E % Tumor/Trauma 11% Deformity 15% Degeneration

More information

Survival Rates and Risk Factors for Cephalad and L5 S1 Adjacent Segment Degeneration after L5 Floating Lumbar Fusion : A Minimum 2-Year Follow-Up

Survival Rates and Risk Factors for Cephalad and L5 S1 Adjacent Segment Degeneration after L5 Floating Lumbar Fusion : A Minimum 2-Year Follow-Up www.jkns.or.kr http://dx.doi.org/10.3340/jkns.2015.57.2.108 J Korean Neurosurg Soc 57 (2) : 108-113, 2015 Print ISSN 2005-3711 On-line ISSN 1598-7876 Copyright 2015 The Korean Neurosurgical Society Clinical

More information

Dingjun Hao, Baorong He, Liang Yan. Hong Hui Hospital, Xi an Jiaotong University College. of Medicine, Xi an, Shaanxi , China

Dingjun Hao, Baorong He, Liang Yan. Hong Hui Hospital, Xi an Jiaotong University College. of Medicine, Xi an, Shaanxi , China Xi an Hong Hui Hospital Xi an, Shaanxi, China The difference of occurring superior adjacent segment pathology after lumbar posterolateral fusion by using two different pedicle screw insertion techniques

More information

High failure rate of the interspinous distraction device (X-Stop) for the treatment of lumbar spinal stenosis caused by degenerative spondylolisthesis

High failure rate of the interspinous distraction device (X-Stop) for the treatment of lumbar spinal stenosis caused by degenerative spondylolisthesis Eur Spine J (2008) 17:188 192 DOI 10.1007/s00586-007-0492-x ORIGINAL ARTICLE High failure rate of the interspinous distraction device (X-Stop) for the treatment of lumbar spinal stenosis caused by degenerative

More information

Over the past several years, ISP devices have gained. Incidence of heterotopic ossification after implantation of interspinous process devices

Over the past several years, ISP devices have gained. Incidence of heterotopic ossification after implantation of interspinous process devices Neurosurg Focus 35 (2):E3, 2013 AANS, 2013 Incidence of heterotopic ossification after implantation of interspinous process devices Nai-Feng Tian, M.D., 1 Ai-Min Wu, M.D., 1 Li-Jun Wu, M.D., 2 Xin-Lei

More information

Arthrodesis remains the gold standard for the treatment

Arthrodesis remains the gold standard for the treatment ORIGINAL ARTICLE A Biomechanical Cadaveric Study of a Modified U-shaped Interspinous Distraction Device Weerasak Singhatanadgige, MD,*w Pairat Tangpornprasert, PhD,z Yongsak Wangroongsub, MD,* Pibul Itiravivong,

More information

Degenerative spondylolisthesis at the L4 L5 in a 32-year-old female with previous fusion for idiopathic scoliosis: A case report

Degenerative spondylolisthesis at the L4 L5 in a 32-year-old female with previous fusion for idiopathic scoliosis: A case report Journal of Orthopaedic Surgery 2003: 11(2): 202 206 Degenerative spondylolisthesis at the L4 L5 in a 32-year-old female with previous fusion for idiopathic scoliosis: A case report RB Winter Clinical Professor,

More information

Haiting Wu 1, Qingjiang Pang 1 and Guoqiang Jiang 2. Clinical Report

Haiting Wu 1, Qingjiang Pang 1 and Guoqiang Jiang 2. Clinical Report Clinical Report Medium-term effects of Dynesys dynamic stabilization versus posterior lumbar interbody fusion for treatment of multisegmental lumbar degenerative disease Journal of International Medical

More information

U.S. MARKET FOR MINIMALLY INVASIVE SPINAL IMPLANTS

U.S. MARKET FOR MINIMALLY INVASIVE SPINAL IMPLANTS U.S. MARKET FOR MINIMALLY INVASIVE SPINAL IMPLANTS idata_usmis15_rpt Published in December 2014 By idata Research Inc., 2014 idata Research Inc. Suite 308 4211 Kingsway Burnaby, British Columbia, Canada,

More information

Same Segment Early Recurrence in Surgery of Lumbar Canal Stenosis- Role of Dissectomy

Same Segment Early Recurrence in Surgery of Lumbar Canal Stenosis- Role of Dissectomy IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-issn: 2279-0853, p-issn: 2279-0861.Volume 15, Issue 8 Ver. II (August. 2016), PP 34-40 www.iosrjournals.org Same Segment Early Recurrence in Surgery

More information

Interbody fusion cage for the transforaminal approach. Travios. Surgical Technique

Interbody fusion cage for the transforaminal approach. Travios. Surgical Technique Interbody fusion cage for the transforaminal approach Travios Surgical Technique Image intensifier control This description alone does not provide sufficient background for direct use of DePuy Synthes

More information

Can the Interspinous Device, SPIRE, be an Alternative Fixation Modality in Posterior Lumbar Fusion Instead of Pedicle Screw?

Can the Interspinous Device, SPIRE, be an Alternative Fixation Modality in Posterior Lumbar Fusion Instead of Pedicle Screw? DOI: 10.5137/1019-5149.JTN.16097-15.1 Received: 18.09.2015 / Accepted: 13.11.2015 Published Online: 25.05.2016 Original Investigation Can the Interspinous Device, SPIRE, be an Alternative Fixation Modality

More information

The Relationship amongst Intervertebral Disc Vertical Diameter, Lateral Foramen Diameter and Nerve Root Impingement in Lumbar Vertebra

The Relationship amongst Intervertebral Disc Vertical Diameter, Lateral Foramen Diameter and Nerve Root Impingement in Lumbar Vertebra doi: http://dx.doi.org/10.5704/moj.1803.004 The Relationship amongst Intervertebral Disc Vertical Diameter, Lateral Foramen Diameter and Nerve Root Impingement in Lumbar Vertebra Yusof MI, MMed Orth, Hassan

More information

Lumbar spinal stenosis is narrowing of the spinal canal that results in compression of the cauda

Lumbar spinal stenosis is narrowing of the spinal canal that results in compression of the cauda 1 CHAPTER 32: CLINICAL RESULTS OF THE IDE TRIAL OF X-STOP INTERSPINOUS SYSTEMS ELIZABETH YU AND JAMES ZUCHERMAN Lumbar spinal stenosis Lumbar spinal stenosis is narrowing of the spinal canal that results

More information

Patient Information MIS LLIF. Lateral Lumbar Interbody Fusion Using Minimally Invasive Surgical Techniques

Patient Information MIS LLIF. Lateral Lumbar Interbody Fusion Using Minimally Invasive Surgical Techniques Patient Information MIS LLIF Lateral Lumbar Interbody Fusion Using Minimally Invasive Surgical Techniques Table of Contents Anatomy of Spine...2 General Conditions of the Spine....4 What is Spondylolisthesis....5

More information

POSTERIOR CERVICAL FUSION

POSTERIOR CERVICAL FUSION AN INTRODUCTION TO PCF POSTERIOR CERVICAL FUSION This booklet provides general information on the Posterior Cervical Fusion (PCF) surgical procedure for you to discuss with your physician. It is not meant

More information

UniWallis TM Posterior Dynamic Stabilization System

UniWallis TM Posterior Dynamic Stabilization System UniWallis TM Posterior Dynamic Stabilization System Surgical Technique Solutions by the people of Zimmer Spine. zimmerspine.eu Table of Contents Indications/Contraindications 2 UniWallis Instruments 3

More information

Dynamic Radiographic Results of Different Semi-Rigid Fusion Devices for Degenerative Lumbar Spondylolisthesis: Dynamic Rod vs. Dynamic Screw Head

Dynamic Radiographic Results of Different Semi-Rigid Fusion Devices for Degenerative Lumbar Spondylolisthesis: Dynamic Rod vs. Dynamic Screw Head DOI: 10.5137/1019-5149.JTN.9784-13.1 Received: 09.05.2013 / Accepted: 09.12.2013 Original Investigation Dynamic Radiographic Results of Different Semi-Rigid Fusion Devices for Degenerative Lumbar Spondylolisthesis:

More information

A minimally invasive surgical approach reduces cranial adjacent segment degeneration in patients undergoing posterior lumbar interbody fusion

A minimally invasive surgical approach reduces cranial adjacent segment degeneration in patients undergoing posterior lumbar interbody fusion A minimally invasive surgical approach reduces cranial adjacent segment degeneration in patients undergoing posterior lumbar interbody fusion T. Tsutsumimoto, M. Yui, S. Ikegami, M. Uehara, H. Kosaku,

More information

Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical in vitro study resulting in a new idea

Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical in vitro study resulting in a new idea Available online at www.sciencedirect.com Clinical Biomechanics 23 (2008) 242 247 Brief report Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical

More information

The clinical features and surgical treatment of degenerative lumbar scoliosis: A review of 112 patientsos4_

The clinical features and surgical treatment of degenerative lumbar scoliosis: A review of 112 patientsos4_ Orthopaedic Surgery (2009), Volume 1, No. 3, 176 183 ORIGINAL ARTICLE The clinical features and surgical treatment of degenerative lumbar scoliosis: A review of 112 patientsos4_030 176..183 Wei Liu MD,

More information

Thoracic or lumbar spinal surgery in patients with Parkinson s disease -A two-center experience of 32 cases-

Thoracic or lumbar spinal surgery in patients with Parkinson s disease -A two-center experience of 32 cases- Thoracic or lumbar spinal surgery in patients with Parkinson s disease -A two-center experience of 32 cases- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto university Hiroaki Kimura,

More information

Patient Information ACDF. Anterior Cervical Discectomy and Fusion

Patient Information ACDF. Anterior Cervical Discectomy and Fusion Patient Information ACDF Anterior Cervical Discectomy and Fusion Table of Contents Anatomy of the Spine...2-3 General Conditions of the Cervical Spine...4 5 What is an ACDF?...6 How is an ACDF performed?...7

More information

Long lumbar instrumented fusions have been described

Long lumbar instrumented fusions have been described SPINE Volume 37, Number 16, pp 1407 1414 2012, Lippincott Williams & Wilkins SURGERY Upper Instrumented Vertebral Fractures in Long Lumbar Fusions What Are the Associated Risk Factors? Stephen J. Lewis,

More information

SUBAXIAL CERVICAL SPINE TRAUMA- DIAGNOSIS AND MANAGEMENT

SUBAXIAL CERVICAL SPINE TRAUMA- DIAGNOSIS AND MANAGEMENT SUBAXIAL CERVICAL SPINE TRAUMA- DIAGNOSIS AND MANAGEMENT 1 Anatomy 3 columns- Anterior, middle and Posterior Anterior- ALL, Anterior 2/3 rd body & disc. Middle- Posterior 1/3 rd of body & disc, PLL Posterior-

More information

Range of Motion According to the Fusion Level after Lumbar Spine Fusion: A Retrospective Study

Range of Motion According to the Fusion Level after Lumbar Spine Fusion: A Retrospective Study eissn2465-891x The Nerve.2018.4(2):55-59 The Nerve https://doi.org/10.21129/nerve.2018.4.2.55 CLINICAL ARTICLE www.thenerve.net Range of Motion According to the Fusion Level after Lumbar Spine Fusion:

More information

Medical Policy Original Effective Date: Revised Date: Page 1 of 11

Medical Policy Original Effective Date: Revised Date: Page 1 of 11 Page 1 of 11 Content Disclaimer Description Coverage Determination Clinical Indications Lumbar Spine Surgery Lumbar Spine Surgery Description Indication Coding Lumbar Spinal Fusion (single level)surgery

More information

INTERSPINOUS STABILIZATION-FUSION IN THE UNSTABLE SPINE.

INTERSPINOUS STABILIZATION-FUSION IN THE UNSTABLE SPINE. INTERSPINOUS STABILIZATION-FUSION IN THE UNSTABLE SPINE. A PRELIMINARY REPORT F. POSTACCHINI, A. PALMESI LUMBAR VERTEBRAL INSTABILITY Still the subject of discussion Variously defined and interpreted Postacchini

More information

There is No Remarkable Difference Between Pedicle Screw and Hybrid Construct in the Correction of Lenke Type-1 Curves

There is No Remarkable Difference Between Pedicle Screw and Hybrid Construct in the Correction of Lenke Type-1 Curves DOI: 10.5137/1019-5149.JTN.20522-17.1 Received: 11.04.2017 / Accepted: 12.07.2017 Published Online: 21.09.2017 Original Investigation There is No Remarkable Difference Between Pedicle Screw and Hybrid

More information

DISCLOSURES. Goal of Fusion. Expandable Cages: Do they play a role in lumbar MIS surgery? CON 2/15/2017

DISCLOSURES. Goal of Fusion. Expandable Cages: Do they play a role in lumbar MIS surgery? CON 2/15/2017 Expandable Cages: Do they play a role in lumbar MIS surgery? CON Jean-Jacques Abitbol, M.D., FRCSC San Diego, California DISCLOSURES SAB; K2M, Osprey, Nanovis, Vertera, St Theresa Royalties; Osprey, K2M,

More information

Spondylolysis repair using a pedicle screw hook or claw-hook system. a comparison of bone fusion rates

Spondylolysis repair using a pedicle screw hook or claw-hook system. a comparison of bone fusion rates ORIGINAL ARTICLE SPINE SURGERY AND RELATED RESEARCH Spondylolysis repair using a pedicle screw hook or claw-hook system. a comparison of bone fusion rates Ko Ishida 1), Yoichi Aota 2), Naoto Mitsugi 1),

More information

T.L.I.F. Surgical Technique. Featuring the T.L.I.F. SG Instruments, VG2 PLIF Allograft, and the MONARCH Spine System.

T.L.I.F. Surgical Technique. Featuring the T.L.I.F. SG Instruments, VG2 PLIF Allograft, and the MONARCH Spine System. Surgical Technique T.L.I.F. Transforaminal Lumbar Interbody Fusion Featuring the T.L.I.F. SG Instruments, VG2 PLIF Allograft, and the MONARCH Spine System. CONSULTING SURGEON Todd Albert, M.D. Rothman

More information

Original Date: October 2015 LUMBAR SPINAL FUSION FOR

Original Date: October 2015 LUMBAR SPINAL FUSION FOR National Imaging Associates, Inc. Clinical guidelines Original Date: October 2015 LUMBAR SPINAL FUSION FOR Page 1 of 9 INSTABILITY AND DEGENERATIVE DISC CONDITIONS FOR CMS (MEDICARE) MEMBERS ONLY CPT4

More information

Get back to: my life. Non-fusion treatment for lumbar spinal stenosis

Get back to: my life. Non-fusion treatment for lumbar spinal stenosis Get back to: my life Non-fusion treatment for lumbar spinal stenosis Do you have any of these symptoms? numbness, weakness or pain in the lower legs When any of these conditions occur, the spinal nerve,

More information

Patient Information MIS TLIF. Transforaminal Lumbar Interbody Fusion Using Minimally Invasive Surgical Techniques

Patient Information MIS TLIF. Transforaminal Lumbar Interbody Fusion Using Minimally Invasive Surgical Techniques Patient Information MIS TLIF Transforaminal Lumbar Interbody Fusion Using Minimally Invasive Surgical Techniques MIS TLIF Table of Contents Anatomy of Spine..............................................

More information

Patient Information MIS TLIF. Transforaminal Lumbar Interbody Fusion Using Minimally Invasive Surgical Techniques

Patient Information MIS TLIF. Transforaminal Lumbar Interbody Fusion Using Minimally Invasive Surgical Techniques Patient Information MIS TLIF Transforaminal Lumbar Interbody Fusion Using Minimally Invasive Surgical Techniques MIS TLIF Table of Contents Anatomy of Spine...2 General Conditions of the Spine...4 6 MIS-TLIF

More information

Technique Guide. StenoFix. Interspinous distraction after surgical decompression.

Technique Guide. StenoFix. Interspinous distraction after surgical decompression. Technique Guide StenoFix. Interspinous distraction after surgical decompression. Table of Contents Introduction StenoFix 2 Indications and Contraindications 4 Surgical Technique Preoperative Planning

More information

L-VARLOCK. Posterior Lumbar Cage with adjustable lordosis. S urgical T echnique

L-VARLOCK. Posterior Lumbar Cage with adjustable lordosis. S urgical T echnique L-VARLOCK Posterior Lumbar Cage with adjustable lordosis S urgical T echnique Introduction Designed and manufactured by KISCO International, L-VARLOCK cages are made of titanium alloy Ti 6AI 4V (standards

More information

Incidence and Risk Factors for Late Neurologic Deterioration after C3 C6 Laminoplasty for Cervical Spondylotic Myelopathy

Incidence and Risk Factors for Late Neurologic Deterioration after C3 C6 Laminoplasty for Cervical Spondylotic Myelopathy THIEME GLOBAL SPINE JOURNAL Original Article 53 Incidence and Risk Factors for Late Neurologic Deterioration after C3 C6 Laminoplasty for Cervical Spondylotic Myelopathy Hironobu Sakaura 1 Toshitada Miwa

More information

ASJ. Radiologic and Clinical Courses of Degenerative Lumbar Scoliosis (10 25 ) after a Short-Segment Fusion. Asian Spine Journal.

ASJ. Radiologic and Clinical Courses of Degenerative Lumbar Scoliosis (10 25 ) after a Short-Segment Fusion. Asian Spine Journal. Asian Spine Journal 570 Kyu Yeol Clinical Lee et al. Study Asian Spine J 2017;11(4):570-579 https://doi.org/10.4184/asj.2017.11.4.570 Asian Spine J 2017;11(4):570-579 Radiologic and Clinical Courses of

More information

T.L.I.F. Transforaminal Lumbar Interbody Fusion

T.L.I.F. Transforaminal Lumbar Interbody Fusion T.L.I.F. Transforaminal Lumbar Interbody Fusion Cover Surgical Header Technique Sub Guide header Introduction (T.L.I.F. ) technique has gained wide acceptance Additionally, the T.L.I.F. procedure avoids

More information

Departement of Neurosurgery A.O.R.N A. Cardarelli- Naples.

Departement of Neurosurgery A.O.R.N A. Cardarelli- Naples. Percutaneous posterior pedicle screw fixation in the treatment of thoracic, lumbar and thoraco-lumbar junction (T12-L1) traumatic and pathological spine fractures. Report of 45 cases. G. Vitale, A. Punzo,

More information

The Biomechanics of the Human Spine. Basic Biomechanics, 6 th edition By Susan J. Hall, Ph.D.

The Biomechanics of the Human Spine. Basic Biomechanics, 6 th edition By Susan J. Hall, Ph.D. Chapter 9 The Biomechanics of the Human Spine Structure of the Spine The spine is a curved stack of 33 vertebrae structurally divided into five regions: cervical region - 7 vertebrae thoracic region -

More information

Medical Policy An independent licensee of the

Medical Policy An independent licensee of the Interspinous Fixation (Fusion) Devices Page 1 of 8 Medical Policy An independent licensee of the Title: See Also: Interspinous Fixation (Fusion) Devices Lumbar Spine Fusion http://www.bcbsks.com/customerservice/providers/medicalpolicies/policies.shtml

More information

Comprehension of the common spine disorder.

Comprehension of the common spine disorder. Objectives Comprehension of the common spine disorder. Disc degeneration/hernia. Spinal stenosis. Common spinal deformity (Spondylolisthesis, Scoliosis). Osteoporotic fracture. Anatomy Anatomy Anatomy

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Interspinous and Interlaminar Stabilization/Distraction Devices File Name: Origination: Last CAP Review: Next CAP Review: Last Review: interspinous_and_interlaminar_stabilization-distraction_devices

More information

Module: #15 Lumbar Spine Fusion. Author(s): Jenni Buckley, PhD. Date Created: March 27 th, Last Updated:

Module: #15 Lumbar Spine Fusion. Author(s): Jenni Buckley, PhD. Date Created: March 27 th, Last Updated: Module: #15 Lumbar Spine Fusion Author(s): Jenni Buckley, PhD Date Created: March 27 th, 2011 Last Updated: Summary: Students will perform a single level lumbar spine fusion to treat lumbar spinal stenosis.

More information

Incomplete cauda equina syndrome in adult monozygotic twins

Incomplete cauda equina syndrome in adult monozygotic twins Incomplete cauda equina syndrome in adult monozygotic twins J. Mohar, R. Kramar, N. Hero, R. J. Cirman Department of Spine Surgery and Paediatric Orthopaedics, Orthopaedic Hospital Valdoltra, Ankaran,

More information

Spinal canal stenosis Degenerative diseases F 06

Spinal canal stenosis Degenerative diseases F 06 What is spinal canal stenosis? The condition known as spinal canal stenosis is a narrowing (stenosis) of the spinal canal that in most cases develops due to the degenerative (wear-induced) deformation

More information

2/5/2019. Facet Joint Pain. Biomechanics

2/5/2019. Facet Joint Pain. Biomechanics Facet Arthropathy as a Pain Source Evaluation and Management Shelby Spine Jan 31 st Feb 2 nd, 2019 Kushagra Verma MD, MS Adult and Pediatric Scoliosis And Spine Deformity Beach Orthopaedics Specialty Institute

More information

Fractures of the thoracic and lumbar spine and thoracolumbar transition

Fractures of the thoracic and lumbar spine and thoracolumbar transition Most spinal column injuries occur in the thoracolumbar transition, the area between the lower thoracic spine and the upper lumbar spine; over half of all vertebral fractures involve the 12 th thoracic

More information

Original Investigation. Peng Luo 1*, Rong-Xue Shao 2*, Ai-Min Wu 1, Hua-Zi Xu 1, Yong-Long ChI 1, Yan LIn 1 ABSTRACT

Original Investigation. Peng Luo 1*, Rong-Xue Shao 2*, Ai-Min Wu 1, Hua-Zi Xu 1, Yong-Long ChI 1, Yan LIn 1 ABSTRACT DOI: 10.5137/1019-5149.JTN.12450-14.1 Received: 24.11.2014 / Accepted: 05.01.2015 Published Online: 11.07.2016 Original Investigation Transforaminal Lumbar Interbody Fusion with Unilateral Pedicle Screw

More information

Effect of Swallowing Function After ROI-C Anterior Cervical Interbody Fusion

Effect of Swallowing Function After ROI-C Anterior Cervical Interbody Fusion Journal of Surgery 2016; 4(6): 141-145 http://www.sciencepublishinggroup.com/j/js doi: 10.11648/j.js.20160406.14 ISSN: 2330-0914 (Print); ISSN: 2330-0930 (Online) Effect of Swallowing Function After ROI-C

More information

Royal Oak IBFD System Surgical Technique Posterior Lumbar Interbody Fusion (PLIF)

Royal Oak IBFD System Surgical Technique Posterior Lumbar Interbody Fusion (PLIF) Royal Oak IBFD System Surgical Technique Posterior Lumbar Interbody Fusion (PLIF) Preoperative Planning Preoperative planning is necessary for the correct selection of lumbar interbody fusion devices.

More information

Spine Tango annual report 2012

Spine Tango annual report 2012 DOI 10.1007/s00586-013-2943-x SPINE TANGO REPORT 2012 Spine Tango annual report 2012 M. Neukamp G. Perler T. Pigott E. Munting M. Aebi C. Röder Received: 31 July 2013 / Published online: 30 August 2013

More information

Lumbar Disc Degeneration Is an Equally Important Risk Factor as Lumbar Fusion for Causing Adjacent Segment Disc Disease

Lumbar Disc Degeneration Is an Equally Important Risk Factor as Lumbar Fusion for Causing Adjacent Segment Disc Disease Lumbar Disc Degeneration Is an Equally Important Risk Factor as Lumbar Fusion for Causing Adjacent Segment Disc Disease Raghu N. Natarajan, Gunnar B.J. Andersson Department of Orthopedic Surgery, Rush

More information

Surgery in cervical disc herniation: anterior cervical discectomy without fusion or with fusion

Surgery in cervical disc herniation: anterior cervical discectomy without fusion or with fusion Romanian Neurosurgery Volume XXXI Number 1 2017 January - March Article Surgery in cervical disc herniation: anterior cervical discectomy without fusion or with fusion Andrei Stefan Iencean ROMANIA DOI:

More information

Incidence and Risk Factors for Late Neurologic Deterioration after C3-6 Laminoplasty in Patients with Cervical Spondylotic Myelopathy

Incidence and Risk Factors for Late Neurologic Deterioration after C3-6 Laminoplasty in Patients with Cervical Spondylotic Myelopathy Incidence and Risk Factors for Late Neurologic Deterioration after C3-6 Laminoplasty in Patients with Cervical Spondylotic Myelopathy Sakaura H, Miwa T, Kuroda Y, Ohwada T Dept. of Orthop. Surg., Kansai

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Image-Guided Minimally Invasive Decompression (IG-MLD) for File Name: Origination: Last CAP Review: Next CAP Review: Last Review: image-guided_minimally_invasive_decompression_for_spinal_stenosis

More information

Induction and Maintenance of Lordosis in MultiLevel ACDF Using Allograft. Saad Khairi, MD Jennifer Murphy Robert S. Pashman, MD

Induction and Maintenance of Lordosis in MultiLevel ACDF Using Allograft. Saad Khairi, MD Jennifer Murphy Robert S. Pashman, MD Induction and Maintenance of Lordosis in MultiLevel ACDF Using Allograft Saad Khairi, MD Jennifer Murphy Robert S. Pashman, MD Purpose Is lordosis induced by multilevel cortical allograft ACDF placed on

More information

University of Groningen. Thoracolumbar spinal fractures Leferink, Vincentius Johannes Maria

University of Groningen. Thoracolumbar spinal fractures Leferink, Vincentius Johannes Maria University of Groningen Thoracolumbar spinal fractures Leferink, Vincentius Johannes Maria IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

More information

Case Report Two-year follow-up results of artificial disc replacement C7-T1

Case Report Two-year follow-up results of artificial disc replacement C7-T1 Int J Clin Exp Med 2016;9(2):4748-4753 www.ijcem.com /ISSN:1940-5901/IJCEM0018942 Case Report Two-year follow-up results of artificial disc replacement C7-T1 Yi Yang 1, Litai Ma 1, Shan Wu 1, Ying Hong

More information

It consist of two components: the outer, laminar fibrous container (or annulus), and the inner, semifluid mass (the nucleus pulposus).

It consist of two components: the outer, laminar fibrous container (or annulus), and the inner, semifluid mass (the nucleus pulposus). Lumbar Spine The lumbar vertebrae are the last five vertebrae of the vertebral column. They are particularly large and heavy when compared with the vertebrae of the cervical or thoracicc spine. Their bodies

More information

Key Primary CPT Codes: Refer to pages: 7-9 Last Review Date: October 2016 Medical Coverage Guideline Number:

Key Primary CPT Codes: Refer to pages: 7-9 Last Review Date: October 2016 Medical Coverage Guideline Number: National Imaging Associates, Inc. Clinical guidelines CERVICAL SPINE SURGERY: ANTERI CERVICAL DECOMPRESSION WITH FUSION CERVICAL POSTERI DECOMPRESSION WITH FUSION CERVICAL ARTIFICIAL DISC CERVICAL POSTERI

More information

Ligaments of the vertebral column:

Ligaments of the vertebral column: In the last lecture we started talking about the joints in the vertebral column, and we said that there are two types of joints between adjacent vertebrae: 1. Between the bodies of the vertebrae; which

More information

ProDisc-L Total Disc Replacement. IDE Clinical Study

ProDisc-L Total Disc Replacement. IDE Clinical Study Total Disc Replacement IDE Clinical Study Study Design TDR vs. circumferential fusion: Multi-center, prospective, randomized trial 17 centers, 292 patients 162 patients 80 fusion patients 50 non-randomized

More information

Lumbar Facet Joint Replacement

Lumbar Facet Joint Replacement Rome Spine 2011 THE SPINE TODAY International Congress Rome 6-7th December 2011 Lumbar Facet Joint Replacement Prof. Dr. Karin Büttner-Janz Past President International Society for the Advancement of Spine

More information