LESSON 4.5 WORKBOOK. How do viruses adapt Antigenic shift and drift and the flu pandemic

Size: px
Start display at page:

Download "LESSON 4.5 WORKBOOK. How do viruses adapt Antigenic shift and drift and the flu pandemic"

Transcription

1 DEFINITIONS OF TERMS Gene a particular sequence of DNA or RNA that contains information for the synthesis of a protien or RNA molecule. For a complete list of defined terms, see the Glossary. LESSON 4.5 WORKBOOK How do viruses adapt Antigenic shift and drift and the flu pandemic As discussed in the last lesson, mutations are made randomly. If you take a test and randomly fill in the answers, do you think you will get them all right? No, but if you repeat your random answering thousands of times you might, and this is how mutations work. Many mutations are silent or harmful to the pathogen but the few that are helpful make the wait worth the waste. In this lesson we will further explore how viruses change and adapt. In particular, this lesson describes how the processes of antigenic drift (random mutation), and antigenic shift (swapping viral genes) lead to adaptations that keep viruses one step ahead of the immune system. Mutations in viruses can have one of three outcomes: 1. A mutation may have no effect on the virus structure and function. 2. A mutation may be unfavorable to the virus. 3. A mutation may be favorable to the virus. Even though we are talking about viruses here it is important to note that mutations also happen in the bacterial and parasitic pathogens we have discussed. This is an important process contributing to drug resistance and immune evasion! Figure 1: A mutation in a gene may not affect a protein (left panel) or can lead to changes in a protein (right panel) that may be favorable or unfavorable. 1. Mutations can have one of all of the following effects EXCEPT: The mutation may have no effect on the virus s ability to survive or become virulent. The mutation may produce a virus that is defective in some way. c. The mutation can create a virus that is more virulent. d. none of the above 176

2 DEFINITIONS OF TERMS Antigenic having the ability to be recognized by the immune system as foreign, and provoke the production of antibodies. Segmented genome a genome that is fragmented into multiple pieces instead of contained in one large molecule. For a complete list of defined terms, see the Glossary. LESSON READINGS Viruses mutate via antigenic drift and antigenic shift Antigenic drift is the name given to the random mutations that accumulate during replication As we saw in the last lesson, mutations in viral genomes, either DNA or RNA, can accumulate quickly because viruses often lack proofreading enzymes. This is why there is a high likelihood that new virus particles will have genomes coding for altered proteins. Such changes, may be detrimental or beneficial to the virus. For example, if the mutation leads to a change in the entry receptor protein of the virus, and it no longer binds to the host cell, oops, that virus is dead. However, if a mutation leads to change in a protein on the surface of the virus, it may make it unrecognizable to the host immune system, even if the host was exposed to a different version of the virus in the past. In fact, this is how viruses replicate successfully in a host they randomly guess on the test and then repeat this process enough times to ensure that one of them gets a perfect score. We have all felt the consequences of this process; antigenic drift is the major reason why we need a new flu vaccine every year. The flu virus is an RNA virus, and as we learned in lesson 4.4, RNA viruses can t proofread when copying their genomes. For this reason, RNA viruses are prone to high levels of mutations via antigenic drift. Hence, every year when the flu comes back around, it has drifted away from its previous form. Figure 3: Two strains of the same flu virus infect different cells in the respiratory tract. Figure 2: Comparison of antigenic drift and shift: minor vs. major changes. Antigenic shift or how one virus can exchange genes with another Unlike the process of accumulating single mutations through antigenic drift, antigenic shifts are much larger changes in the genome, and hence viral properties, that happen suddenly. However, only viruses with segmented genomes, like influenza, can do this. 2. Antigenic shift is to as antigenic drift is to. swapping viral genes; random mutation swapping genomes; random mutation c. random mutation; swapping genomes d. random mutation; swapping viral genes 177

3 DEFINITIONS OF TERMS Viral strain genetic variant of the same virus. For a complete list of defined terms, see the Glossary. LESSON READINGS As shown in the above picture, the influenza viral strain, H1N1, generally infects the mucosa of the upper respiratory tract, whereas a different strain, H5N1 (also known as bird flu), infects the mucosa of the lower respiratory tract. Infecting the lower respiratory tract causes a severe immune reaction, leading to the accumulation of fluid in the lungs, causing severe symptoms mimicking drowning. This ability to infect the mucosa of the lower respiratory tract is thought to be why H5N1 is more deadly than H1N1. On the other hand, the inability to infect the upper respiratory tract makes it harder for H5N1 to spread from person to person. But what if H1N1 and H5N1 could trade genes via antigenic shift? This could potentially make a virus that infects both the upper and lower respiratory tracts. This is why many scientists fear the flu over all other pathogens! Viruses with nonsegmented genomes can t undergo antigenic shift Now, let's answer the question: why viruses with nonsegmented genomes cannot undergo antigenic shift? In figure 4, the tan shape in the middle represents a host cell. Each blue pentagon depicts a virus. The blue, yellow, red and green stars on the blue pentagons represent viral surface proteins or receptors. The colored lines within each virus represent the viral genomes. Here, the genomes are in one piece, hence nonsegmented, and each color represents a different gene within the genome. In this case, when a host cell is infected by two strains of a viruses (A and B) at the same time, the genomes of both viruses will replicate in the cell. When the new viruses are assembled, each virus will have a genome identical to one of the parent viruses with the exception of any mutations that occurred by antigenic drift during replication. Viruses with segmented genomes can exchange genes by antigenic shift Figure 4: Nonsegmented viruses can't exchange genes even when they infect the same host cell. Now, let's see how segmented genomes can undergo antigenic shift. In figure 5, the shapes represent the same structures as above. This time though, the two viruses (C and D) have segmented genomes: composed of multiple pieces. When a host cell is infected with viruses C and D at the same time, the genomes of both viruses will replicate in the cell, but when the new viruses start to assemble the gene 3. Antigenic shift allows one virus to exchange genes with another virus. True False 178

4 LESSON READINGS Figure 5: Segmented viruses can exchange genes when they infect the same host cell. So the offspring of segmented viruses can contain genes from both parent viruses plus differ by antigenic drift. segments can get mixed up. Each new virus needs to have a certain number and type of segments to be functional. In this case that will be one large (in grey), one middle (green or yellow), and one small (blue or red) gene segment. But the new viruses assemble with a random combination of these segments, possibly generating a new type of virus with genes from both parent viruses. This is depicted in Fig. 5: the resulting new viruses have segments from both parent genomes the new viruses have swapped their middle size segments, green and yellow, creating progeny viruses that are very different from the parent types. To top that, they will also have any mutations they acquired by antigenic drift during replication! Will this swapping cause change in function? Probably. For example, the new viruses may acquire a new collection of entry receptors allowing them to infect a whole new set of cells think back to H1N1 and H5N1. H1N1 could quite conceivably acquire new entry receptors from H5N1 through antigenic shift when both viruses infected the same cell. Keep in mind that the depicted swapping is not the only possible one in reality the combinations are practically infinite. 4. In an antigenic shift, the resulting genome will contain only the parent genome. genomes not present from parent genomes. c. genomes from both parent genomes. d. all of the above 179

5 STUDENT RESPONSES H1N1 and H5N2 can undergo antigenic shift. The H and N genes are on independent gene segments. What variants of influenza could you get? Will the new viruses be more or less virulent? Remember to identify your sources Construct an explanation based on evidence for why adaptation does not occur in the absence of natural selection. 180

6 TERMS TERM DEFINITION Antigenic Gene Segmented genome Viral strain Having the ability to be recognized by the immune system as foreign, and provoke the production of antibodies. A particular sequence of DNA or RNA that contains information for the synthesis of a protein or RNA molecule. A genome that is fragmented into multiple pieces instead of contained in one large molecule. Genetic variant of the same virus. 181

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication DEFINITIONS OF TERMS Eukaryotic: Non-bacterial cell type (bacteria are prokaryotes).. LESSON 4.4 WORKBOOK How viruses make us sick: Viral Replication This lesson extends the principles we learned in Unit

More information

Evolution of influenza

Evolution of influenza Evolution of influenza Today: 1. Global health impact of flu - why should we care? 2. - what are the components of the virus and how do they change? 3. Where does influenza come from? - are there animal

More information

Overview: Chapter 19 Viruses: A Borrowed Life

Overview: Chapter 19 Viruses: A Borrowed Life Overview: Chapter 19 Viruses: A Borrowed Life Viruses called bacteriophages can infect and set in motion a genetic takeover of bacteria, such as Escherichia coli Viruses lead a kind of borrowed life between

More information

LESSON 1.4 WORKBOOK. Viral sizes and structures. Workbook Lesson 1.4

LESSON 1.4 WORKBOOK. Viral sizes and structures. Workbook Lesson 1.4 Eukaryotes organisms that contain a membrane bound nucleus and organelles. Prokaryotes organisms that lack a nucleus or other membrane-bound organelles. Viruses small, non-cellular (lacking a cell), infectious

More information

Grade Level: Grades 9-12 Estimated Time Allotment Part 1: One 50- minute class period Part 2: One 50- minute class period

Grade Level: Grades 9-12 Estimated Time Allotment Part 1: One 50- minute class period Part 2: One 50- minute class period The History of Vaccines Lesson Plan: Viruses and Evolution Overview and Purpose: The purpose of this lesson is to prepare students for exploring the biological basis of vaccines. Students will explore

More information

Acute respiratory illness This is a disease that typically affects the airways in the nose and throat (the upper respiratory tract).

Acute respiratory illness This is a disease that typically affects the airways in the nose and throat (the upper respiratory tract). Influenza glossary Adapted from the Centers for Disease Control and Prevention, US https://www.cdc.gov/flu/glossary/index.htm and the World Health Organization http://www.wpro.who.int/emerging_diseases/glossary_rev_sept28.pdf?ua=1

More information

The Flu: The Virus, The Vaccine, and Surveillance. Joanna Malukiewicz GK12 Program School of Life Sciences Arizona State University

The Flu: The Virus, The Vaccine, and Surveillance. Joanna Malukiewicz GK12 Program School of Life Sciences Arizona State University The Flu: The Virus, The Vaccine, and Surveillance Joanna Malukiewicz GK12 Program School of Life Sciences Arizona State University What do we know about the flu? What kind of bug is it? How do you know

More information

HS-LS4-4 Construct an explanation based on evidence for how natural selection leads to adaptation of populations.

HS-LS4-4 Construct an explanation based on evidence for how natural selection leads to adaptation of populations. Unit 2, Lesson 2: Teacher s Edition 1 Unit 2: Lesson 2 Influenza and HIV Lesson Questions: o What steps are involved in viral infection and replication? o Why are some kinds of influenza virus more deadly

More information

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV LESSON 4.6 WORKBOOK Designing an antiviral drug The challenge of HIV In the last two lessons we discussed the how the viral life cycle causes host cell damage. But is there anything we can do to prevent

More information

Unit 2: Lesson 2 Case Studies: Influenza and HIV LESSON QUESTIONS

Unit 2: Lesson 2 Case Studies: Influenza and HIV LESSON QUESTIONS 1 Unit 2: Lesson 2 Case Studies: Influenza and HIV LESSON QUESTIONS What steps are involved in viral infection and replication? Why are some kinds of influenza virus more deadly than others? How do flu

More information

Lecture 19 Evolution and human health

Lecture 19 Evolution and human health Lecture 19 Evolution and human health The evolution of flu viruses The evolution of flu viruses Google Flu Trends data US data Check out: http://www.google.org/flutrends/ The evolution of flu viruses the

More information

Influenza; tracking an emerging pathogen by popularity of Google Searches

Influenza; tracking an emerging pathogen by popularity of Google Searches Davids 1 Influenza; tracking an emerging pathogen by popularity of Google Searches Background Influenza is a wide spread and occasionally fatal disease, typically infecting children and the elderly. Each

More information

Lecture 2: Virology. I. Background

Lecture 2: Virology. I. Background Lecture 2: Virology I. Background A. Properties 1. Simple biological systems a. Aggregates of nucleic acids and protein 2. Non-living a. Cannot reproduce or carry out metabolic activities outside of a

More information

Chapter 19: The Genetics of Viruses and Bacteria

Chapter 19: The Genetics of Viruses and Bacteria Chapter 19: The Genetics of Viruses and Bacteria What is Microbiology? Microbiology is the science that studies microorganisms = living things that are too small to be seen with the naked eye Microorganisms

More information

numbe r Done by Corrected by Doctor

numbe r Done by Corrected by Doctor numbe r 5 Done by Mustafa Khader Corrected by Mahdi Sharawi Doctor Ashraf Khasawneh Viral Replication Mechanisms: (Protein Synthesis) 1. Monocistronic Method: All human cells practice the monocistronic

More information

LESSON 1.4 WORKBOOK. Viral structures. Just how small are viruses? Workbook Lesson 1.4 1

LESSON 1.4 WORKBOOK. Viral structures. Just how small are viruses? Workbook Lesson 1.4 1 Eukaryotes- organisms that contain a membrane bound nucleus and organelles Prokaryotes- organisms that lack a nucleus or other membrane-bound organelles Viruses-small acellular (lacking a cell) infectious

More information

Lecture 11. Immunology and disease: parasite antigenic diversity

Lecture 11. Immunology and disease: parasite antigenic diversity Lecture 11 Immunology and disease: parasite antigenic diversity RNAi interference video and tutorial (you are responsible for this material, so check it out.) http://www.pbs.org/wgbh/nova/sciencenow/3210/02.html

More information

بسم هللا الرحمن الرحيم

بسم هللا الرحمن الرحيم - 1 - - - 1 P a g e بسم هللا الرحمن الرحيم This sheet was made from record section 1 all information are included - Introduction Our respiratory tract is divided anatomically to upper (URT),middle and

More information

Lesson Title: Viruses vs. Cells Standards to be Addressed: Acquisition

Lesson Title: Viruses vs. Cells Standards to be Addressed: Acquisition Readiness Standards: 4.C: compare the structures of viruses to cells, describe viral reproduction, and describe the role of viruses in causing diseases such as human immunodeficiency virus (HIV) and influenza

More information

2000 and Beyond: Confronting the Microbe Menace 1999 Holiday Lectures on Science Chapter List

2000 and Beyond: Confronting the Microbe Menace 1999 Holiday Lectures on Science Chapter List 2000 and Beyond: Confronting the Microbe Menace 1999 Holiday Lectures on Science Chapter List Lecture One Microbe Hunters: Tracking Infectious Agents Donald E. Ganem, M.D. 1. Start of Lecture One 2. Introduction

More information

Should the US develop and Stockpile Vaccines and Antiviral Medications Against. A(H5N1) Avian Flu?

Should the US develop and Stockpile Vaccines and Antiviral Medications Against. A(H5N1) Avian Flu? Spring Upshaw Biology Due: 7/7/06 Should the US develop and Stockpile Vaccines and Antiviral Medications Against A(H5N1) Avian Flu? The A(H5N1) avian flu, which has existed since 1997 is lethal in humans

More information

INFLUENZA VIRUS. INFLUENZA VIRUS CDC WEBSITE

INFLUENZA VIRUS. INFLUENZA VIRUS CDC WEBSITE INFLUENZA VIRUS INFLUENZA VIRUS CDC WEBSITE http://www.cdc.gov/ncidod/diseases/flu/fluinfo.htm 1 THE IMPACT OF INFLUENZA Deaths: PANDEMICS 1918-19 S p a n is h flu 5 0 0,0 0 0 U S 2 0,0 0 0,0 0 0 w o rld

More information

Avian influenza Avian influenza ("bird flu") and the significance of its transmission to humans

Avian influenza Avian influenza (bird flu) and the significance of its transmission to humans 15 January 2004 Avian influenza Avian influenza ("bird flu") and the significance of its transmission to humans The disease in birds: impact and control measures Avian influenza is an infectious disease

More information

Biology 350: Microbial Diversity

Biology 350: Microbial Diversity Biology 350: Microbial Diversity Strange Invaders: Viruses, viroids, and prions. Lecture #27 7 November 2007-1- Notice handouts and announcements for today: Outline and study questions A 1999 paper discussing

More information

2.1 VIRUSES. 2.1 Learning Goals

2.1 VIRUSES. 2.1 Learning Goals 2.1 VIRUSES 2.1 Learning Goals To understand the structure, function, and how Viruses replicate To understand the difference between Viruses to Prokaryotes and Eukaryotes; namely that viruses are not classified

More information

Name Class Date. Infection in which a virus inserts its nucleic acid into the DNA of the host cell and is duplicated with the cell s DNA

Name Class Date. Infection in which a virus inserts its nucleic acid into the DNA of the host cell and is duplicated with the cell s DNA Name Class Date 20.1 Viruses Lesson Objectives Explain how viruses reproduce. Explain how viruses cause infection. BUILD Vocabulary A. The chart below shows key terms from the lesson with their definitions.

More information

Influenza viruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics

Influenza viruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics Influenza viruses Virion Genome Genes and proteins Viruses and hosts Diseases Distinctive characteristics Virion Enveloped particles, quasi-spherical or filamentous Diameter 80-120 nm Envelope is derived

More information

Dr. Gary Mumaugh. Viruses

Dr. Gary Mumaugh. Viruses Dr. Gary Mumaugh Viruses Viruses in History In 1898, Friedrich Loeffler and Paul Frosch found evidence that the cause of foot-and-mouth disease in livestock was an infectious particle smaller than any

More information

Bacteria and Viruses

Bacteria and Viruses CHAPTER 13 LESSON 3 Bacteria and Viruses What are viruses? Key Concepts What are viruses? How do viruses affect human health? What do you think? Read the two statements below and decide whether you agree

More information

Dr. Ahmed K. Ali. Outcomes of the virus infection for the host

Dr. Ahmed K. Ali. Outcomes of the virus infection for the host Lec. 9 Dr. Ahmed K. Ali Outcomes of the virus infection for the host In the previous few chapters we have looked at aspects of the virus replication cycle that culminate in the exit of infective progeny

More information

The prokaryotic domains

The prokaryotic domains Diversity of Bacteria, Archaea, and Viruses Chapter 19 The prokaryotic domains Bacteria Three types of structure Spherical, rod-shaped, and spiral Archaea Many are extremophilic Prefer to live in very

More information

Unit 13.2: Viruses. Vocabulary capsid latency vaccine virion

Unit 13.2: Viruses. Vocabulary capsid latency vaccine virion Unit 13.2: Viruses Lesson Objectives Describe the structure of viruses. Outline the discovery and origins of viruses. Explain how viruses replicate. Explain how viruses cause human disease. Describe how

More information

Immune System Review. 1. State one way white blood cells protect the body from foreign microbes.

Immune System Review. 1. State one way white blood cells protect the body from foreign microbes. Name Immune System Review Date 1. State one way white blood cells protect the body from foreign microbes. 2. Cells of the immune system are able to respond to the presence of invading organisms because

More information

ECMO and the 2013 Influenza A H1N1 Epidemic

ECMO and the 2013 Influenza A H1N1 Epidemic ECMO and the 2013 Influenza A H1N1 Epidemic Jonathan Kozinn, MD Department of Cardiac Anesthesiology and Critical Care Why Is an Anesthesiologist Talking About the flu? In susceptible individuals, influenza

More information

Biotechnology-Based Vaccines. Dr. Aws Alshamsan Department of Pharmaceutics Office: AA87 Tel:

Biotechnology-Based Vaccines. Dr. Aws Alshamsan Department of Pharmaceutics Office: AA87 Tel: Biotechnology-Based Vaccines Dr. Aws Alshamsan Department of Pharmaceutics Office: AA87 Tel: 4677363 aalshamsan@ksu.edu.sa Objectives of this lecture By the end of this lecture you will be able to: 1.

More information

Lecture 18 Evolution and human health

Lecture 18 Evolution and human health Lecture 18 Evolution and human health Evolution and human health 1. Genetic factors 2. Infectious diseases Evolution and human health 1. Genetic factors Evolution and human health 1. Genetic factors P

More information

Protein Modeling Event

Protein Modeling Event Protein Modeling Event School Name: School Number: Team Member 1: Team Member 2: : Pre-Build Score: On-Site Build Score: Test Score: Tie Breaker: Total: Final Rank: Part I: Pre-Build (40% of total score)

More information

Biodiversity: prokaryotes & viruses

Biodiversity: prokaryotes & viruses Biodiversity: prokaryotes & viruses All three domains contain microscopic organisms. Focus now: Prokaryotes Prokaryotes in general Asexual, single-celled, no nucleus or organelles, circular DNA Can live

More information

Q: If antibody to the NA and HA are protective, why do we continually get epidemics & pandemics of flu?

Q: If antibody to the NA and HA are protective, why do we continually get epidemics & pandemics of flu? Influenza virus Influenza virus Orthomyxoviridae family of viruses RNA enveloped viruses that make up three genera Influenzavirus A Influenzavirus B Influenzavirus C The type A viruses are the most virulent

More information

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6)

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6) Section: 1.1 Question of the Day: Name: Review of Old Information: N/A New Information: We tend to only think of animals as living. However, there is a great diversity of organisms that we consider living

More information

Part I. Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents.

Part I. Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents. Viruses Part I Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents. History Through the 1800s, many scientists discovered that something

More information

Patricia Fitzgerald-Bocarsly

Patricia Fitzgerald-Bocarsly FLU Patricia Fitzgerald-Bocarsly October 23, 2008 Orthomyxoviruses Orthomyxo virus (ortho = true or correct ) Negative-sense RNA virus (complementary to mrna) Five different genera Influenza A, B, C Thogotovirus

More information

AP Biology. Viral diseases Polio. Chapter 18. Smallpox. Influenza: 1918 epidemic. Emerging viruses. A sense of size

AP Biology. Viral diseases Polio. Chapter 18. Smallpox. Influenza: 1918 epidemic. Emerging viruses. A sense of size Hepatitis Viral diseases Polio Chapter 18. Measles Viral Genetics Influenza: 1918 epidemic 30-40 million deaths world-wide Chicken pox Smallpox Eradicated in 1976 vaccinations ceased in 1980 at risk population?

More information

Part Of A Virus That Contains The Instructions For Making New Viruses

Part Of A Virus That Contains The Instructions For Making New Viruses Part Of A Virus That Contains The Instructions For Making New Viruses A hidden virus. Becomes part of the host cell's generic material. A virus's contains the instructions for making new viruses. Genetic

More information

Structure & Function of Viruses

Structure & Function of Viruses Structure & Function of Viruses Discovery of Viruses Louis Pasteur- looks for a causative agent for rabies, says too small, can not find it 1892 Dimitry Ivanosky- studies tobacco disease, can not find

More information

INFLUENZA-2 Avian Influenza

INFLUENZA-2 Avian Influenza INFLUENZA-2 Avian Influenza VL 7 Dec. 9 th 2013 Mohammed El-Khateeb Overview 1. Background Information 2. Origin/History 3. Brief overview of genome structure 4. Geographical Distribution 5. Pandemic Nature

More information

What is influenza virus? 13,000 base RNA genome: 1/ the size of the human genome

What is influenza virus? 13,000 base RNA genome: 1/ the size of the human genome What is influenza virus? 13,000 base RNA genome: 1/246153 the size of the human genome CDC Principles of Virology, 4e Neumann et al. Nature. 2009. Influenza virus is one of the most deadly viral pathogens

More information

Virus and Prokaryotic Gene Regulation - 1

Virus and Prokaryotic Gene Regulation - 1 Virus and Prokaryotic Gene Regulation - 1 We have discussed the molecular structure of DNA and its function in DNA duplication and in transcription and protein synthesis. We now turn to how cells regulate

More information

Influenza: The past, the present, the (future) pandemic

Influenza: The past, the present, the (future) pandemic Influenza: The past, the present, the (future) pandemic Kristin Butler, MLS (ASCP) cm Department of Clinical Laboratory Sciences Louisiana Health Sciences Center - Shreveport Fall 2017 Objectives 1) Detail

More information

Chapter 18. Viral Genetics. AP Biology

Chapter 18. Viral Genetics. AP Biology Chapter 18. Viral Genetics 2003-2004 1 A sense of size Comparing eukaryote bacterium virus 2 What is a virus? Is it alive? DNA or RNA enclosed in a protein coat Viruses are not cells Extremely tiny electron

More information

SECTION 25-1 REVIEW STRUCTURE. 1. The diameter of viruses ranges from about a. 1 to 2 nm. b. 20 to 250 nm. c. 1 to 2 µm. d. 20 to 250 µm.

SECTION 25-1 REVIEW STRUCTURE. 1. The diameter of viruses ranges from about a. 1 to 2 nm. b. 20 to 250 nm. c. 1 to 2 µm. d. 20 to 250 µm. SECTION 25-1 REVIEW STRUCTURE VOCABULARY REVIEW Define the following terms. 1. virus 2. capsid 3. retrovirus 4. viroid 5. prion MULTIPLE CHOICE Write the correct letter in the blank. 1. The diameter of

More information

Viral reproductive cycle

Viral reproductive cycle Lecture 29: Viruses Lecture outline 11/11/05 Types of viruses Bacteriophage Lytic and lysogenic life cycles viruses viruses Influenza Prions Mad cow disease 0.5 µm Figure 18.4 Viral structure of capsid

More information

Influenza. By Allison Canestaro-Garcia. Disease Etiology:

Influenza. By Allison Canestaro-Garcia. Disease Etiology: Influenza By Allison Canestaro-Garcia Disease Etiology: The flu is an infectious disease caused by a subset of viruses of the family Orthomyxoviridae. There are 7 different viruses in this family, four

More information

BIOLOGY. Viruses CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick TENTH EDITION

BIOLOGY. Viruses CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick TENTH EDITION CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 19 Viruses Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 19.1 Are the viruses (red) budding from this

More information

Are viruses alive? Name: Date:

Are viruses alive? Name: Date: Name: Date: Are viruses alive? Anyone with a cold or the flu virus feels as if they are under attack by some organism. But in the scientific community it's still an open-ended question. This is why viruses

More information

Orthomyxoviridae and Paramyxoviridae. Lecture in Microbiology for medical and dental medical students

Orthomyxoviridae and Paramyxoviridae. Lecture in Microbiology for medical and dental medical students Orthomyxoviridae and Paramyxoviridae Lecture in Microbiology for medical and dental medical students Orthomyxoviridae and Paramyxoviridae are ss RNA containng viruses Insert Table 25.1 RNA viruses 2 SIZE

More information

4/28/2013. The Ever-Evolving Flu p The 1918 Flu p. 617

4/28/2013. The Ever-Evolving Flu p The 1918 Flu p. 617 The Ever-Evolving Flu p. 615 1. Influenza (Fig 18.10) rapidly evolves each year, and processes such as reassortment give rise to new genotypes. 2. Flu virus evolves rapidly to evade our immune system (Fig

More information

Conflict of Interest and Disclosures. Research funding from GSK, Biofire

Conflict of Interest and Disclosures. Research funding from GSK, Biofire Pandemic Influenza Suchitra Rao, MBBS, Assistant Professor, Pediatric Infectious Diseases, Hospital Medicine and Epidemiology Global Health and Disasters Course, 2018 Conflict of Interest and Disclosures

More information

Discovery of. 1892: Russian biologist Dmitri Ivanovsky publishes. 1931: first images of viruses obtained using

Discovery of. 1892: Russian biologist Dmitri Ivanovsky publishes. 1931: first images of viruses obtained using Discovery of (1884: invention of the Chamberland filter with pores smaller than bacteria) 1892: Russian biologist Dmitri Ivanovsky publishes a paper in which shows that extracts from diseased tobacco plants

More information

SWINE FLU 3: NOW NAMED H1N1 INFLUENZA A

SWINE FLU 3: NOW NAMED H1N1 INFLUENZA A 1 Created by LifeWind International SWINE FLU 3: NOW NAMED H1N1 INFLUENZA A Date: 5/09 (1 HOUR) OBJECTIVES: After working through this lesson, participants will be able to: 1. Explain how swine flu spreads

More information

VIROLOGY OF INFLUENZA. Subtypes: A - Causes outbreak B - Causes outbreaks C - Does not cause outbreaks

VIROLOGY OF INFLUENZA. Subtypes: A - Causes outbreak B - Causes outbreaks C - Does not cause outbreaks INFLUENZA VIROLOGY OF INFLUENZA Subtypes: A - Causes outbreak B - Causes outbreaks C - Does not cause outbreaks PATHOGENICITY High pathogenicity avian influenza (HPAI) Causes severe disease in poultry

More information

All living creatures share two basic purposes 1. survival 2. reproduction

All living creatures share two basic purposes 1. survival 2. reproduction Infectious Diseases All living creatures share two basic purposes 1. survival 2. reproduction *Organisms must take nutrients essential for growth and proliferation from the environment. *In many conditions

More information

DRAFT WGE WGE WGE WGE WGE WGE WGE WGE WGE WGE WGE WGE WGE WGE GETREADYNOWGE GETREADYNOWGE GETREADYNOWGE GETREADYNOWGE.

DRAFT WGE WGE WGE WGE WGE WGE WGE WGE WGE WGE WGE WGE WGE WGE GETREADYNOWGE GETREADYNOWGE GETREADYNOWGE GETREADYNOWGE. What Can I Do As A National Leader? This publication was produced by the AI.COMM project, managed by the Academy for Educational Development (AED), and funded by the U.S. Agency for International Development

More information

Influenza Viruses A Review

Influenza Viruses A Review Influenza Viruses A Review AVIAN INFLUENZA: INTERSECTORAL COLLABORATION Larnaca, Cyprus 20 22 July 2009 Kate Glynn Scientific and Technical Department, OIE Influenza Viruses C. Goldsmith,1981 Influenza

More information

Viral Diseases. Question: 5/17/2011

Viral Diseases. Question: 5/17/2011 Viral Diseases Question: What is the likely reason for the dramatic increase in deaths due to heart disease and cancer in 1997 compared to 1900? 1. poor lifestyle choices (high fat diets, smoking, lack

More information

Current Vaccines: Progress & Challenges. Influenza Vaccine what are the challenges?

Current Vaccines: Progress & Challenges. Influenza Vaccine what are the challenges? Current Vaccines: Progress & Challenges Influenza Vaccine what are the challenges? Professor John S. Tam The Hong Kong Polytechnic University Asia-Pacific Alliance for the Control of Influenza (APACI)

More information

Global Catastrophic Biological Risks

Global Catastrophic Biological Risks Global Catastrophic Biological Risks Working Definition of Global Catastrophic Biological Risks (GCBRs) Events in which biological agents whether naturally emerging or reemerging, deliberately created

More information

Five Features of Fighting the Flu

Five Features of Fighting the Flu Five Features of Fighting the Flu Public Health Emergency Preparedness Pandemic Influenza Prevention Curriculum Grades 9-12 1 Day One Understand the Flu Virus 2 Five Features of Flu Fighting Code 1: Understand

More information

Topic 7 - Commonality

Topic 7 - Commonality II. Organism Topic 7 - Commonality From Viruses to Bacteria to Genetic Engineering Prebiotic Period Refers to before life Early Earth contained little O 2 O 2 prevents complex molecules Complex organic

More information

DOLPHIN RESEARCH CENTER Viruses and Dolphins

DOLPHIN RESEARCH CENTER Viruses and Dolphins DOLPHIN RESEARCH CENTER Grade Level: 6 th -8 th Objectives: Students will be able to explain how viruses operate within cells and how they can be transmitted. Students will be able to apply their knowledge

More information

HSE National Immunisation Office Influenza

HSE National Immunisation Office Influenza HSE National Immunisation Office Influenza What is Influenza and How are People Infected? Influenza (Flu) is a viral disease mainly affecting epithelial cells of the upper respiratory tract. It is a major

More information

Avian Influenza: Armageddon or Hype? Bryan E. Bledsoe, DO, FACEP The George Washington University Medical Center

Avian Influenza: Armageddon or Hype? Bryan E. Bledsoe, DO, FACEP The George Washington University Medical Center Avian Influenza: Armageddon or Hype? Bryan E. Bledsoe, DO, FACEP The George Washington University Medical Center Definitions: Epidemic The occurrence of cases of an illness in a community or region which

More information

Bioterrorism and the Pandemic Potential

Bioterrorism and the Pandemic Potential Page 1 of 5 Bioterrorism and the Pandemic Potential March 7, 2013 1001 GMT Print 38 35 125 29 Text Size Stratfor By Rebecca Keller Periodic media reports of bird flu, a new SARS-like virus and a case of

More information

INFLUENZA AND OTHER RESPIRATORY VIRUSES

INFLUENZA AND OTHER RESPIRATORY VIRUSES INFLUENZA AND OTHER RESPIRATORY VIRUSES Lung Foundation Australia Patient Seminar 21 st October 2017 Lynette Reid Respiratory Clinical Nurse Specialist, RHH What is influenza (the flu )? Influenza (flu)

More information

An Evolutionary Story about HIV

An Evolutionary Story about HIV An Evolutionary Story about HIV Charles Goodnight University of Vermont Based on Freeman and Herron Evolutionary Analysis The Aids Epidemic HIV has infected 60 million people. 1/3 have died so far Worst

More information

7.012 Problem Set 6 Solutions

7.012 Problem Set 6 Solutions Name Section 7.012 Problem Set 6 Solutions Question 1 The viral family Orthomyxoviridae contains the influenza A, B and C viruses. These viruses have a (-)ss RNA genome surrounded by a capsid composed

More information

4.0 Prevention of Infection Vaccines

4.0 Prevention of Infection Vaccines 4.0 Prevention of Infection Vaccines National Curriculum Link Key Stage 3 Sc1:1a - 1c. 2a 2p Sc2: 2n, 5c, 5d Unit of Study Unit 8: Microbes and Disease Unit 9B: Fit and Healthy Unit 20: 20 th Century Medicine

More information

Overview of the Influenza Virus

Overview of the Influenza Virus Overview of the Influenza Virus Victor C. Huber, Ph.D. September 24, 2015 victor.huber@usd.edu General Features of Influenza Virus Infections Clinical Features of Influenza Sudden onset of symptoms Incubation

More information

Malik Sallam. Ola AL-juneidi. Ammar Ramadan. 0 P a g e

Malik Sallam. Ola AL-juneidi. Ammar Ramadan. 0 P a g e 1 Malik Sallam Ola AL-juneidi Ammar Ramadan 0 P a g e Today's lecture will be about viral upper respiratory tract infections. Those include: common cold, sinusitis, otitis, etc. Infections in the upper

More information

Building complexity Unit 04 Population Dynamics

Building complexity Unit 04 Population Dynamics Building complexity Unit 04 Population Dynamics HIV and humans From a single cell to a population Single Cells Population of viruses Population of humans Single Cells How matter flows from cells through

More information

Influenza. Gwen Clutario, Terry Chhour, Karen Lee

Influenza. Gwen Clutario, Terry Chhour, Karen Lee Influenza Gwen Clutario, Terry Chhour, Karen Lee Overview Commonly referred to as the flu Defined as a highly contagious viral infection where it starts at the upper respiratory tract and attacks the nose,

More information

WEBQUEST: Viruses and Vaccines

WEBQUEST: Viruses and Vaccines WLHS / Biology / Monson / UNIT 8 Viruses & Bacteria Name Date Per Part 1: Viruses WEBQUEST: Viruses and Vaccines Go to the following website: http://science.howstuffworks.com/virus-human.htm 1) Name 5

More information

Human Genome Complexity, Viruses & Genetic Variability

Human Genome Complexity, Viruses & Genetic Variability Human Genome Complexity, Viruses & Genetic Variability (Learning Objectives) Learn the types of DNA sequences present in the Human Genome other than genes coding for functional proteins. Review what you

More information

Viruses. An Illustrated Guide to Viral Life Cycles to Accompany Lecture. By Noel Ways

Viruses. An Illustrated Guide to Viral Life Cycles to Accompany Lecture. By Noel Ways Viruses An Illustrated Guide to Viral Life Cycles to Accompany Lecture By Noel Ways Viral Life Cycle Step #1, Adhesion: During adhesion, specific receptors for specific molecules on potential host cell

More information

LESSON 3.2 WORKBOOK. How do normal cells become cancer cells? Workbook Lesson 3.2

LESSON 3.2 WORKBOOK. How do normal cells become cancer cells? Workbook Lesson 3.2 For a complete list of defined terms, see the Glossary. Transformation the process by which a cell acquires characteristics of a tumor cell. LESSON 3.2 WORKBOOK How do normal cells become cancer cells?

More information

Should the U.S. develop and stockpile vaccines against A(H5N1) avian flu?

Should the U.S. develop and stockpile vaccines against A(H5N1) avian flu? Amy Dewees July 7, 2006 Biol 501 Should the U.S. develop and stockpile vaccines against A(H5N1) avian flu? A(H5N1) is a strain of flu virus that infects many species of birds, including domestic and migratory

More information

Purpose: To describe the characteristics of viruses and how they infect a host cell.

Purpose: To describe the characteristics of viruses and how they infect a host cell. Intro to Viruses Group Worksheet Name: Per: # Purpose: To describe the characteristics of viruses and how they infect a host cell. Directions: Discuss the following questions as a group and use the resources

More information

1918 Influenza; Influenza A, H1N1. Basic agent information. Section I- Infectious Agent. Section II- Dissemination

1918 Influenza; Influenza A, H1N1. Basic agent information. Section I- Infectious Agent. Section II- Dissemination 1918 Influenza; Influenza A, H1N1 Basic agent information Section I- Infectious Agent Risk Group: - RG3 Synonym or Cross reference: - Spanish Flu - 1918 Flu - El Grippe Characteristics: - SELECT AGENT

More information

Unit 5: The Kingdoms of Life Module 12: Simple Organisms

Unit 5: The Kingdoms of Life Module 12: Simple Organisms Unit 5: The Kingdoms of Life Module 12: Simple Organisms NC Essential Standard: 1.2.3 Explain how specific cell adaptations help cells survive in particular environments 2.1.2 Analyze how various organisms

More information

Nanoparticulate Vaccine Design: The VesiVax System

Nanoparticulate Vaccine Design: The VesiVax System Nanoparticulate Vaccine Design: The VesiVax System Gary Fujii, Ph.D. President and CEO Molecular Express, Inc. May 16, 2006 Orlando, Florida Influenza Each year up to 20% of the world's population contracts

More information

علم األحياء الدقيقة Microbiology Introduction to Virology & Immunology

علم األحياء الدقيقة Microbiology Introduction to Virology & Immunology علم األحياء الدقيقة Microbiology Introduction to Virology & Immunology What is a virus? Viruses may be defined as acellular organisms whose genomes consist of nucleic acid (DNA or RNA), and which obligatory

More information

EVOLUTION. Reading. Research in my Lab. Who am I? The Unifying Concept in Biology. Professor Carol Lee. On your Notecards please write the following:

EVOLUTION. Reading. Research in my Lab. Who am I? The Unifying Concept in Biology. Professor Carol Lee. On your Notecards please write the following: Evolution 410 9/5/18 On your Notecards please write the following: EVOLUTION (1) Name (2) Year (3) Major (4) Courses taken in Biology (4) Career goals (5) Email address (6) Why am I taking this class?

More information

Where are we heading?

Where are we heading? Unit 5: Where are we heading? Unit 5: Introduction Unit 1: Why should we care about infectious diseases? Unit 2: What does it mean to have an infectious disease? Unit 3: When does a microbe become a pathogen?

More information

Chapter 39 Viruses. Viruses are tiny. They are much smaller (50 times) than a bacterium.

Chapter 39 Viruses. Viruses are tiny. They are much smaller (50 times) than a bacterium. Chapter 39 Viruses Viruses are tiny. They are much smaller (50 times) than a bacterium. They are not made of cellsand cannot reproduceon their own. Therefore they are not alive according to our rules.

More information

1/29/2013. Viruses and Bacteria. Infectious Disease. Pathogens cause disease by: Chapters 16 and 17

1/29/2013. Viruses and Bacteria. Infectious Disease. Pathogens cause disease by: Chapters 16 and 17 Viruses and Bacteria Chapters 16 and 17 Infectious Disease Caused by the invasion of a host by agents whose activities harm the host s tissues Can be transmitted to others Pathogen microorganisms that

More information

Starting with MICROBIOLOGY

Starting with MICROBIOLOGY Starting with MICROBIOLOGY Micro means very small and biology is the study of living things. Microbes are the oldest form of life on Earth. They've been here for 3.8 billion years! Microbes live everywhere.

More information

November 9, 2009 Bioe 109 Fall 2009 Lecture 19 Evolution and human health. The evolution of flu viruses

November 9, 2009 Bioe 109 Fall 2009 Lecture 19 Evolution and human health. The evolution of flu viruses November 9, 2009 Bioe 109 Fall 2009 Lecture 19 Evolution and human health The evolution of flu viruses - the potential harm of disease epidemics in human populations has received considerable attention

More information

Advances in Viral Immunity Stemming from the 1918 Flu Pandemic

Advances in Viral Immunity Stemming from the 1918 Flu Pandemic Transcript Details This is a transcript of an educational program accessible on the ReachMD network. Details about the program and additional media formats for the program are accessible by visiting: https://reachmd.com/programs/clinicians-roundtable/advances-in-viral-immunity-stemming-from-the-

More information

number Done by Corrected by Doctor Ashraf

number Done by Corrected by Doctor Ashraf number 4 Done by Nedaa Bani Ata Corrected by Rama Nada Doctor Ashraf Genome replication and gene expression Remember the steps of viral replication from the last lecture: Attachment, Adsorption, Penetration,

More information

Influenza: The Threat of a Pandemic

Influenza: The Threat of a Pandemic April, 2009 Definitions Epidemic: An increase in disease above what you what would normally expect. Pandemic: A worldwide epidemic 2 What is Influenza? Also called Flu, it is a contagious respiratory illness

More information