Feedback of results. Report via to NTGMC inbox. Review by GMC clinician

Size: px
Start display at page:

Download "Feedback of results. Report via to NTGMC inbox. Review by GMC clinician"

Transcription

1 Genetic deafness Maria Bitner-Glindzicz Genetics and Genomic Medicine Programme UCL Institute of Child Health, UCL Ear Institute, and Great Ormond Street Hospital for Children

2 Feedback of results Report via to NTGMC inbox Review by GMC clinician Preliminary report and discussion with referring Clinician to schedule patient for MDT Referring clinician, genetics team & clinical scientists review MDT virtual or face-to-face Potential variant No potential variant Validation Inform referring clinician who lets patient know report to referring clinician NT GMC Referring clinician sees patient +/-clinical genetics if needed Copy of report to Genomics England

3

4

5

6 Genomics MDM record Referring clinician: Maria Bitner- Gindzicz Referring department: Clinical Genetics, GOSH Forename: Click to enter text Surname: Click to enter text DOB: NHS no: Click to enter text GOSH hosp no: Click to enter text Family ID: Phenotype summary: Bilateral microtia, cleft palate, feeding difficulties Source of variant data: GOSH diagnostic lab Other diagnostic lab Research lab Lab / research study name: 100,000 Genomes Pilot Details and method(s): Trio genome Variant classification and interpretation: Variant 1 (HGVS nomenclature): SIX1 c.517a>c p.lys173gln de novo MDM decision: Variant class Class 4 Phenotype contribution Partial Variant 2 (HGVS nomenclature): CDT1 c.248c>t p.pro83leu MDM decision: Variant class Class 2 Phenotype contribution None Variant 3 (HGVS nomenclature): CDT1 c.412c>t p.arg138trp MDM decision: Variant class Class 3 Phenotype contribution None Variant 4 (HGVS nomenclature): CDT1 c.1367a>c p.glu456ala MDM decision: Variant class Class 2 Phenotype contribution None Comment: SIX1: fits with the phenotype though no renal phenoytpe. This variant is adjacent to one of the previously identified missenses. Uncertainty whether this fully explains the phenotype (feeding difficulties requiring fundoplication and gastrostomy) CDT1: phenotype doesn t fit; compound het and none of the variants are convincingly pathogenic Action: Lab to confirm SIX1 findings. MBG to consider renal ultrasound scan.

7 Deafness gene panel

8 ACTG1 ATP2B2 BDP1 CABP2 CCDC50 CDH23 CEACAM16 CIB2 CLDN14 CLPP CLRN1 COCH COL11A2 COL4A6 CRYM DFNA5 DFNB31 DFNB59 DIABLO DIAPH1 DIAPH3 EDN3 EDNRB ESPN ESRRB EYA1 EYA4 GIPC3 GJB2 GJB3 GJB6 GPR98 GPSM2 GRHL2 GRXCR1 HARS HARS2 HGF HSD17 ILDR1 KARS KCNJ1 KCNQ KIT LARS2 LHFPL LOXH LRTOMT MARVELD2 MIR96 MITF MSRB3 MYH14 MYH9 MYO15A MYO3A MYO6 MYO7A OSBPL2 OTOA OTOF OTOG P2RX2 PAX3 PCDH15 PDZD7 PNPT1 POU3F4 POU4F3 PRPS1 PTPRQ RDX RPGR SERPINB6 SIX1 SIX5 SLC17A8 SLC4A11 SMPX SNAI2 SOX10 STRC TECTA TJP2 TMC1 TMIE TMPRSS3 TPRN TRIOBP USH1C USH1G USH2A WFS1

9 New additions GATA3 KCNE1 KCNQ1 OSBPL2 OTOGL SYNE4 TBC1D2 TNC TSPEA CD164 CLIC5 EPS8 S1PR2 NARS2

10

11 GJB2:c.383insTCCGCAT (ins7bp) ins7bp/n

12 N/N ins7bp/n GJB2:c.383insTCCGCAT (ins7bp) ins7bp/n

13 ins7bp/n N/N ins7bp/n ins7bp/n GJB2:c.383insTCCGCAT (ins7bp) ins7bp/n

14 ins7bp/n N/N ins7bp/n ins7bp/n N/N GJB2:c.383insTCCGCAT (ins7bp) ins7bp/n N/N ins7bp/ins7bp

15 Deafness gene panel test

16 GPSM2 c a>c homozygous

17 GJB2:c.383insTCCGCAT (ins7bp) ins7bp/n N/N ins7bp/n ins7bp/n GPSM2:c A>C ins7bp/n GPSM2:c A>C ins7bp/ins7bp

18 Chudley McCullough syndrome GPSM2 mutations (G protein signalling modulator 2) Orienting mitotic spindles; establishment of polarity during cellular differentiation Recessive Bilateral sensorineural HL and hydrocephalus due to foramen of Munro obstruction (and dilatation of lateral ventricles). Mennonite families. Phenotypically normal Callosal dysgenesis, grey matter heterotopia, cerebellar dysgenesis, arachnoid cysts

19

20

21 Misorientation of hair bundle; malformations of stereocilia Bhonker et al, Mamm Genome 2016

22 Congenital profound Mild/moderate hearing loss in 30 s Perforated ear drum

23 Younger sibling Failed NHSP Profound hearing loss Sat 13m Walked 18m+ Bilateral CI, doing well Older child Failed NHSP Profound hearing loss Not sitting unsupported at 8m Head control at 5-6m ECG and ERG requested 2012, No further testing but things may change in next few years

24 Congenital profound Mild/moderate hearing loss in 30 s Perforated ear drum

25 MYO6 MYO6: c heterozygous MYO6: c heterozygous MYO6: c homozygous Congenital profound MYO6: c homozygous Mild/moderate hearing loss in 30 s Perforated ear drum

26 Brownstein et al 2013, EJHG

27 MYO6 Can cause autosomal dominant post-lingual hearing loss often manifesting in 30 s (DFNA22) Can also cause recessively inherited congenital profound hearing loss (DFNB37) Possibly some semi-dominant mutations

28 Failed NHSP Profound deafness Motor delay Vestibular hypofunction MYO6: c.1729_1741del hom p.(phe577ilefs*28) DIAPH1:c T>C het

29 MYO6: c.1729_1741del MYO6: c.1729_1741del DIAPH1:c T>C het Failed NHSP Profound deafness Motor delay Vestibular hypofunction MYO6: c.1729_1741del DIAPH1:c T>C het Relevance of heterozygous LOF mutation in DIAPH1??

30 MYO6 20 s 20 s Adult onset hearing loss, 30 s Congenital profound hearing loss

31 Congenital moderate hearing loss Failed NHSP m.1555a>g

32 Congenital moderate hearing loss Adult onset, moderate HL m.1555a>g m.1555a>g Possibly fits with phenotype

33 Congenital moderate hearing loss m.1555a>g m.1555a>g But added information that Dad has profound congenital deafness!

34 MYO6: c.187+2t>c MYO6: c.187+2t>c m.1555a>g MYO6: c.187+2t>c m.1555a>g But why is Dad more severely affected??

35 MYO6: c.187+2t>c MYO6: c.187+2t>c m.1555a>g MYO6: c.187+2t>c m.1555a>g STRC c.3176t>c p.(leu1059pro) and c.5276c>t p.(arg1759*) in Dad

36 But there is a pseudogene..so origin and location of variants is currently uncertain

37 *STRC c.3176t>c p.(leu1059pro) ; c.5276c>t p.(arg1759*) MYO6: c.187+2t>c MYO6: c.187+2t>c *STRC.. m.1555a>g MYO6: c.187+2t>c m.1555a>g STRC variants are in cis as both are present in paternal grandfather Watch this space..

38 Acknowledgements Thomas Cullup, Lucy Jenkins, Ann-Marie Differ, Cathy Meaney, Suzy Drury, Emma Ashton GOSgene team, Hywell Williams, Chiara Bacchelli, Janice Lee, Polona Le Quesne Stabej Robert Kleta, Horia Stanescu Alistair Calder All clinical colleagues at GOSH and RNTNEH

Whole exome sequencing Gene package Hearing impairment version 2,

Whole exome sequencing Gene package Hearing impairment version 2, Whole Exome Sequencing Gene package Hearing impairment, version 2, 23 9 2016 Technical information After DNA was enriched using Agilent Sureselect Clinical Research Exome (CRE) Capture, samples were run

More information

UKGTN Testing Criteria Test name: Syndromic and Non Syndromic Hearing Loss 95 Gene Panel

UKGTN Testing Criteria Test name: Syndromic and Non Syndromic Hearing Loss 95 Gene Panel UKGTN Testing Criteria Test name: Syndromic and Non Syndromic Hearing Loss 95 Gene Panel Approved name and symbol of disorder/condition(s): See Appendix 1 Approved name and symbol of gene(s): See Appendix

More information

Whole exome sequencing Gene package Hearing impairment version 3.1,

Whole exome sequencing Gene package Hearing impairment version 3.1, Whole Exome Sequencing Gene package Hearing impairment, version 3.1, 22 11 2017 Technical information DNA was enriched using Agilent SureSelect Clinical Research Exome V2 capture and paired end sequenced

More information

The Genetics of Usher Syndrome

The Genetics of Usher Syndrome The Genetics of Usher Syndrome Heidi L. Rehm, PhD, FACMG Assistant Professor of Pathology, BWH and HMS Director, Laboratory for Molecular Medicine, PCPGM DNA is Highly Compacted into Chromosomes The DNA

More information

Comprehensive genetic testing for hearing and vision loss

Comprehensive genetic testing for hearing and vision loss Comprehensive genetic testing for hearing and vision loss Hearing and vision loss can result from both genetic and non-genetic etiologies In general, there is a genetic basis for up to 50% of prelingual

More information

GENETIC TESTING FOR HEREDITARY HEARING LOSS

GENETIC TESTING FOR HEREDITARY HEARING LOSS GENETIC TESTING FOR HEREDITARY HEARING LOSS Non-Discrimination Statement and Multi-Language Interpreter Services information are located at the end of this document. Coverage for services, procedures,

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Genetic Testing for Hereditary Hearing Loss File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_testing_for_hereditary_hearing_loss 10/2013 7/2018 7/2019

More information

Prevalence of Hearing Impairment

Prevalence of Hearing Impairment Prevalence of Hearing Impairment 28 million Americans 2 million profoundly deaf 1/1000 congenitally deaf 1/3 impaired by age 65 1/2 impaired by age 80 NIDCD National Strategic Research Plan, 1989 Genetic

More information

Supplementary Table 2. Identified causative mutations and/or mutation candidates.

Supplementary Table 2. Identified causative mutations and/or mutation candidates. Supplementary Table 2. Identified causative mutations and/or mutation candidates. Nonsense mutations base change aa change Average depth Result of next generation in 432 patient Hereditary form of the

More information

Genetic Testing for Hereditary Hearing Loss Section 2.0 Medicine Subsection 2.04 Pathology/Laboratory

Genetic Testing for Hereditary Hearing Loss Section 2.0 Medicine Subsection 2.04 Pathology/Laboratory 2.04.87 Genetic Testing for Hereditary Hearing Loss Section 2.0 Medicine Subsection 2.04 Pathology/Laboratory Effective Date 1/30/2015 Original Policy Date 1/30/2015 Next Review Date January 2016 Description

More information

Genetic Testing for Hereditary Hearing Loss

Genetic Testing for Hereditary Hearing Loss Protocol Genetic Testing for Hereditary Hearing Loss (20487) Medical Benefit Effective Date: 01/01/18 Next Review Date: 11/18 Preauthorization Yes Review Dates: 01/14, 11/14, 11/15, 11/16, 11/17 Preauthorization

More information

FEP Medical Policy Manual

FEP Medical Policy Manual FEP Medical Policy Manual Effective Date: July 15, 2018 Related Policies: 2.04.102 Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders Genetic Testing for Hereditary Hearing Loss

More information

Usher Syndrome and Progressive Hearing Loss

Usher Syndrome and Progressive Hearing Loss Usher Syndrome and Progressive Hearing Loss Margaret A. Kenna, MD, MPH Otolaryngology and Communication Enhancement Boston Children s Hospital Professor of Otology and Laryngology Harvard Medical School

More information

Protocol. Genetic Testing for Nonsyndromic Hearing Loss

Protocol. Genetic Testing for Nonsyndromic Hearing Loss Protocol Genetic Testing for Nonsyndromic Hearing Loss (20487) Medical Benefit Effective Date: 04/01/14 Next Review Date: 01/15 Preauthorization Yes Review Dates: 01/14 The following Protocol contains

More information

Stem Cell Therapy for Acquired Hearing Loss in Children; FDA-Approved Study. Linda Baumgartner, CCC-SLP, Cert.AVT James Baumgartner, MD

Stem Cell Therapy for Acquired Hearing Loss in Children; FDA-Approved Study. Linda Baumgartner, CCC-SLP, Cert.AVT James Baumgartner, MD Stem Cell Therapy for Acquired Hearing Loss in Children; FDA-Approved Study Linda Baumgartner, CCC-SLP, Cert.AVT James Baumgartner, MD Stem Cell Basics I'll never grow up, never grow up, never grow up

More information

Usher Syndrome: When to Suspect it and How to Find It

Usher Syndrome: When to Suspect it and How to Find It Usher Syndrome: When to Suspect it and How to Find It Margaret Kenna, MD, MPH Katherine Lafferty, MS, CGC Heidi Rehm, PhD Anne Fulton, MD Harvard Medical School Harvard Medical School Center for Hereditary

More information

ClinGen Hearing Loss Variant Curation Expert Panel ACMG/AMP Classification Rules for Hearing Loss SUMMARY OF CLASSIFICATION CRITERIA

ClinGen Hearing Loss Variant Curation Expert Panel ACMG/AMP Classification Rules for Hearing Loss SUMMARY OF CLASSIFICATION CRITERIA PATHOGENIC CRITERIA RULE RULE DESCRIPTION ClinGen Hearing Loss Variant Curation Expert Panel ACMG/AMP Classification Rules for Hearing Loss SUMMARY OF CLASSIFICATION CRITERIA PVS1 PVS1_Strong PVS1_Moderate

More information

Genotype phenotype correlations for hearing impairment: Approaches to management

Genotype phenotype correlations for hearing impairment: Approaches to management Clin Genet 2014: 85: 514 523 Printed in Singapore. All rights reserved Review 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd CLINICAL GENETICS doi: 10.1111/cge.12339 Genotype phenotype

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,500 108,000 1.7 M Open access books available International authors and editors Downloads Our

More information

Genetic Hearing Loss in Children

Genetic Hearing Loss in Children Genetic Hearing Loss in Children José Faibes Lubianca & Ricardo Godinho The prevalence of genetic hearing loss reaches very high numbers. In developed countries, about 50% of the cases of pre-lingual severe

More information

POLICY PRODUCT VARIATIONS DESCRIPTION/BACKGROUND RATIONALE DEFINITIONS BENEFIT VARIATIONS DISCLAIMER REFERENCES CODING INFORMATION POLICY HISTORY

POLICY PRODUCT VARIATIONS DESCRIPTION/BACKGROUND RATIONALE DEFINITIONS BENEFIT VARIATIONS DISCLAIMER REFERENCES CODING INFORMATION POLICY HISTORY Original Issue Date (Created): November 26, 2013 Most Recent Review Date (Revised): November 26, 2013 Effective Date: February 01, 2014 POLICY PRODUCT VARIATIONS DESCRIPTION/BACKGROUND RATIONALE DEFINITIONS

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,000 116,000 120M Open access books available International authors and editors Downloads Our

More information

Hearing Impairment: A Panoply of Genes and Functions

Hearing Impairment: A Panoply of Genes and Functions Hearing Impairment: A Panoply of Genes and Functions Amiel A. Dror 1 and Karen B. Avraham 1, * 1 Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University,

More information

Nonsyndromic Deafness - Molecular Update

Nonsyndromic Deafness - Molecular Update 80 The Open Biology Journal, 2009, 2, 80-90 Nonsyndromic Deafness - Molecular Update Open Access Piatto V.B. *,1, Secches L.V. 1, Arroyo M.A.S. 1, Lopes A.C.P. 2 and Maniglia J.V. 1 1 Department of Otorhinolaryngology,

More information

REPORT Utilizing Ethnic-Specific Differences in Minor Allele Frequency to Recategorize Reported Pathogenic Deafness Variants

REPORT Utilizing Ethnic-Specific Differences in Minor Allele Frequency to Recategorize Reported Pathogenic Deafness Variants REPORT Utilizing Ethnic-Specific Differences in Minor Allele Frequency to Recategorize Reported Pathogenic Deafness Variants A. Eliot Shearer, 1 Robert W. Eppsteiner, 1,18 Kevin T. Booth, 1,18 Sean S.

More information

A Sound Foundation Through Early Amplification

A Sound Foundation Through Early Amplification A Sound Foundation Through Early Amplification Proceedings of the 7th International Conference 2016 17 Next-gen diagnostics and newborn screening for hearing loss Cynthia Casson Morton, Ph.D. Abstract

More information

Genetic Testing for Nonsyndromic Hearing Loss

Genetic Testing for Nonsyndromic Hearing Loss 252Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc.(collectively referred to as the Company ), unless otherwise provided

More information

Deafness in the genomics era

Deafness in the genomics era University of Iowa Iowa Research Online Theses and Dissertations Spring 2014 Deafness in the genomics era Aiden Eliot Shearer University of Iowa Copyright 2014 Aiden Eliot Shearer This dissertation is

More information

Clinical Auditory Phenotypes Associated with GATA3 Gene Mutations in Familial Hypoparathyroidism-deafness-renal Dysplasia Syndrome

Clinical Auditory Phenotypes Associated with GATA3 Gene Mutations in Familial Hypoparathyroidism-deafness-renal Dysplasia Syndrome Original Article Clinical Auditory Phenotypes Associated with GATA3 Gene Mutations in Familial Hypoparathyroidism-deafness-renal Dysplasia Syndrome Li Wang 1,2, Qiong-Fen Lin 3, Hong-Yang Wang 1, Jing

More information

Advances in Drug Therapy for Usher Syndrome. Jennifer J. Lentz Usher Syndrome Family Conference July 11, 2015

Advances in Drug Therapy for Usher Syndrome. Jennifer J. Lentz Usher Syndrome Family Conference July 11, 2015 Advances in Drug Therapy for Usher Syndrome Jennifer J. Lentz Usher Syndrome Family Conference July 11, 2015 Ø Overall goal Ø Usher syndrome update and current hypotheses Ø New therapeuec approaches Ø

More information

2. stereocilia make contact with membrane, feel vibration. Tiplink is deflected, allows ions to go inside cell body and chemical signal is generated.

2. stereocilia make contact with membrane, feel vibration. Tiplink is deflected, allows ions to go inside cell body and chemical signal is generated. Hearing Loss 1. Most common sensory deficit in human 2. 3 in ten people over age 60 have hearing loss 3. At least 1.4 million children have hearing problems 4. Estimated that 3 in 1,000 infants are born

More information

Index. FSCN2, Fz, 49 50

Index. FSCN2, Fz, 49 50 A AAV. See Adeno-associated virus ABCA5, 120 ABR. See Auditory brainstem response AC6, 63 ACAN, 276 ACOT7, 120 ADAM10, 303 Adeno-associated virus (AAV) channelrhodopsin delivery for optogenetic cochlear

More information

Hereditary deafness and phenotyping in humans

Hereditary deafness and phenotyping in humans Hereditary deafness and phenotyping in humans Maria Bitner-Glindzicz Unit of Clinical and Molecular Genetics, Institute of Child Health, London, UK Correspondence to: Dr Maria Bitner-Glindzicz, Unit of

More information

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier/Additional Provider

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier/Additional Provider Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier/Additional Provider TEST DISEASE/CONDITION POPULATION TRIAD Submitting laboratory: London North East RGC GOSH Approved: September

More information

What Should Audiologists Know about Genetics. Jackie L. Clark, PhD UT Dallas; U Witwatersrand

What Should Audiologists Know about Genetics. Jackie L. Clark, PhD UT Dallas; U Witwatersrand What Should Audiologists Know about Genetics Jackie L. Clark, PhD UT Dallas; U Witwatersrand Some Material and Slides from Annual Summer Genetics Workshop at Gallaudet University; Washington, D.C. Disclaimer

More information

Non-syndromic hereditary sensorineural hearing loss: review of the genes involved

Non-syndromic hereditary sensorineural hearing loss: review of the genes involved The Journal of Laryngology & Otology, 1 of 9. JLO (1984) Limited, 2014 doi:10.1017/s0022215113003265 REVIEW ARTICLE Non-syndromic hereditary sensorineural hearing loss: review of the genes involved F STELMA

More information

Non-syndromic, autosomal-recessive deafness

Non-syndromic, autosomal-recessive deafness Clin Genet 2006: 69: 371 392 Printed in Singapore. All rights reserved Review Non-syndromic, autosomal-recessive deafness # 2006 The Authors Journal compilation # 2006BlackwellMunksgaard CLINICAL GENETICS

More information

Genetics of Hearing Loss

Genetics of Hearing Loss 11 Genetics of Hearing Loss Nejat Mahdieh 1,2, Bahareh Rabbani 1 and Ituro Inoue 1 1 Division of Human Genetics, National Institute of Genetics, Mishima, Shizuoka, 2 Medical Genetic Group, Faculty of Medicine,

More information

Value of Genetic Testing in the Otological Approach for Sensorineural Hearing Loss. Tatsuo Matsunaga

Value of Genetic Testing in the Otological Approach for Sensorineural Hearing Loss. Tatsuo Matsunaga REVIEW Value of Genetic Testing in the Otological Approach for Sensorineural Hearing Loss Tatsuo Matsunaga Department of Otolaryngology, Laboratory of Auditory Disorders, National Institute of Sensory

More information

A genetic approach to understanding auditory function

A genetic approach to understanding auditory function A genetic approach to understanding auditory function Karen P. Steel 1 & Corné J. Kros 2 Little is known of the molecular basis of normal auditory function. In contrast to the visual or olfactory senses,

More information

Compound heterozygosity Yurii S. Aulchenko yurii [dot] aulchenko [at] gmail [dot] com. Thursday, April 11, 13

Compound heterozygosity Yurii S. Aulchenko yurii [dot] aulchenko [at] gmail [dot] com. Thursday, April 11, 13 Compound heterozygosity Yurii S. Aulchenko yurii [dot] aulchenko [at] gmail [dot] com 1 Outline Recessive model Examples of Compound Heterozygosity Compound Double Heterozygosity (CDH) test 2 Recessive

More information

UKGTN Testing Criteria

UKGTN Testing Criteria UKGTN Testing Criteria Approved name and symbol of disease/condition(s): Retinal Degeneration panel test Approved name and symbol of gene(s): a panel of 105 genes, variants of which have been shown to

More information

Genetics of Hearing Loss Updates

Genetics of Hearing Loss Updates Genetics of Hearing Loss 2013 Updates Definitions Hearing loss any degree of impairment of the ability to apprehend sound Deaf people with profound hearing loss such that they cannot benefit from amplification

More information

Variant prioritization

Variant prioritization Variant prioritization University of Cambridge Marta Bleda Latorre Cambridge, UK mb2033@cam.ac.uk 30th September 2014 Research Assistant at the Department of Medicine University of Cambridge Cambridge,

More information

A Comprehensive Study on the Etiology of Patients Receiving Cochlear Implantation With Special Emphasis on Genetic Epidemiology

A Comprehensive Study on the Etiology of Patients Receiving Cochlear Implantation With Special Emphasis on Genetic Epidemiology Otology & Neurotology 37:e16 e13 ß 16, Otology & Neurotology, Inc. A Comprehensive Study on the Etiology of Patients Receiving Cochlear Implantation With Special Emphasis on Genetic Epidemiology ymaiko

More information

Index 341. Cadherin, 23, Calcium, binding proteins, dysregulation, ARHL, hair cell damage, 285

Index 341. Cadherin, 23, Calcium, binding proteins, dysregulation, ARHL, hair cell damage, 285 Index A1555G mutation, 226 Acidity, endolymph, 71 Acoustic overstimulation axon growth, 263 264 effect on central auditory system, 263 265 effects in cat, 265 effects in chinchilla, 264 fiber degeneration

More information

Issues arising from UKNEQAS schemes. Ottie O Brien, Northern Genetics Service, Newcastle, UK 15 th May 2014

Issues arising from UKNEQAS schemes. Ottie O Brien, Northern Genetics Service, Newcastle, UK 15 th May 2014 Issues arising from UKNEQAS schemes Ottie O Brien, Northern Genetics Service, Newcastle, UK 15 th May 2014 2013 schemes There was great variation in the way HGVS nomenclature was applied Scheme would like

More information

Clinical and Genetic Studies of Hearing Impairment

Clinical and Genetic Studies of Hearing Impairment Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 286 Clinical and Genetic Studies of Hearing Impairment CARINA FRYKHOLM ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2007

More information

Usher Syndrome: Why a definite diagnosis matters

Usher Syndrome: Why a definite diagnosis matters Usher Syndrome: Why a definite diagnosis matters Margaret Kenna, MD, MPH Katherine Lafferty, MS, CGC Heidi Rehm, PhD Anne Fulton, MD Boston Children s Hospital Harvard Medical School Harvard Medical School

More information

Genomic copy number alterations in non-syndromic hearing loss

Genomic copy number alterations in non-syndromic hearing loss Clin Genet 2016: 89: 473 477 Printed in Singapore. All rights reserved Short Report 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd CLINICAL GENETICS doi: 10.1111/cge.12683 Genomic copy

More information

Hearing Loss in Infants and Children: Could it be Usher Syndrome?

Hearing Loss in Infants and Children: Could it be Usher Syndrome? Hearing Loss in Infants and Children: Could it be Usher Syndrome? Margaret A. Kenna, MD, MPH Dept. of Otolaryngology and Communication Enhancement Boston Children s Hospital Dept. of Otology and Laryngology

More information

One in every 1,000 newborn suffers from congenital

One in every 1,000 newborn suffers from congenital Rev Bras Otorrinolaringol. V.71, n.2, 216-23, mar./apr. 2005 ARTIGO ORIGINAL REVIEW ARTICLES Molecular genetics of nonsyndromic deafness Vânia B. Piatto 1, Ellen C.T. Nascimento 2, Fabiana Alexandrino

More information

Variant association and prioritization

Variant association and prioritization Variant association and prioritization Edinburgh Genomics Marta Bleda Latorre Edinburgh, UK mb2033@cam.ac.uk 23rd October 2015 Research Assistant at the Department of Medicine University of Cambridge Cambridge,

More information

Phenotype Report. Num. Positions Not Called (Missing data) Num. Variants Assessed

Phenotype Report. Num. Positions Not Called (Missing data) Num. Variants Assessed Report Date: August 19, 2015 Software Annotation Version: 8 Report Name: NA12144 NW European Genome : NA12144_S1 Sequencing Provider: Illumina Sequencing Type: Exome : Retinitis Pigmentosa Description:

More information

C ritical Review: Can individuals with hearing impairment associated with Usher Syndrome benefit from a cochlear implant?

C ritical Review: Can individuals with hearing impairment associated with Usher Syndrome benefit from a cochlear implant? C ritical Review: Can individuals with hearing impairment associated with Usher Syndrome benefit from a cochlear implant? Chantal Arsenault M.Cl.Sc. (AUD) Candidate University of Western Ontario: School

More information

Clinical Policy Title: Genomic tests in sensorineural hearing loss

Clinical Policy Title: Genomic tests in sensorineural hearing loss Clinical Policy Title: Genomic tests in sensorineural hearing loss Clinical Policy Number: 02.01.18 Effective Date: January 1, 2016 Initial Review Date: October 16, 2015 Most Recent Review Date: October

More information

Cochlear Implantation in Individuals with Usher Syndrome

Cochlear Implantation in Individuals with Usher Syndrome Cochlear Implantation in Individuals with Usher Syndrome Xue Zhong Liu, M.D., PhD., F.A.C.S. Professor of Otolaryngology, Human Genetics, Biochemistry, and Pediatrics Vice Chairman & Director of Miami

More information

Concurrent Practical Session ACMG Classification

Concurrent Practical Session ACMG Classification Variant Effect Prediction Training Course 6-8 November 2017 Prague, Czech Republic Concurrent Practical Session ACMG Classification Andreas Laner / Anna Benet-Pagès 1 Content 1. Background... 3 2. Aim

More information

Hearing loss is an etiologically heterogeneous trait with

Hearing loss is an etiologically heterogeneous trait with The new england journal of medicine review article Current Concepts Newborn Hearing Screening A Silent Revolution Cynthia C. Morton, Ph.D., and Walter E. Nance, M.D., Ph.D. Hearing loss is an etiologically

More information

Human Chromosomes. Lesson Overview. Lesson Overview Human Chromosomes

Human Chromosomes. Lesson Overview. Lesson Overview Human Chromosomes Lesson Overview 14.1 THINK ABOUT IT If you had to pick an ideal organism for the study of genetics, would you choose one that produced lots of offspring, was easy to grow in the lab, and had a short life

More information

Research Article Mutation in the Hair Cell Specific Gene POU4F3 Is a Common Cause for Autosomal Dominant Nonsyndromic Hearing Loss in Chinese Hans

Research Article Mutation in the Hair Cell Specific Gene POU4F3 Is a Common Cause for Autosomal Dominant Nonsyndromic Hearing Loss in Chinese Hans Neural Plasticity Volume 2016, Article ID 9890827, 6 pages http://dx.doi.org/10.1155/2016/9890827 Research Article Mutation in the Hair Cell Specific Gene POU4F3 Is a Common Cause for Autosomal Dominant

More information

ClinGen. Clinical Genome Resource. Heidi Rehm on behalf of ClinGen

ClinGen. Clinical Genome Resource. Heidi Rehm on behalf of ClinGen ClinGen Clinical Genome Resource Heidi Rehm on behalf of ClinGen Improving our knowledge of genomic variation will require a massive effort in data sharing and collaborative curation www.clinicalgenome.org

More information

Surgical and Non-Surgical Causes of Progressive Hearing Loss in Children: What can be done about it?

Surgical and Non-Surgical Causes of Progressive Hearing Loss in Children: What can be done about it? Surgical and Non-Surgical Causes of Progressive Hearing Loss in Children: What can be done about it? Daniela Carvalho, MD, MMM, FAAP Professor, Surgery Department UCSD Pediatric Otolaryngology Rady Children

More information

Genetics of Hearing and Deafness

Genetics of Hearing and Deafness Genetics of Hearing and Deafness Simon Angeli, University of Miami Xi Erick Lin, Emory University Xue Zhong Liu, University of Miami Journal Title: Anatomical Record: Advances in Integrative Anatomy and

More information

Management of Hearing Loss in Children

Management of Hearing Loss in Children Management of Hearing Loss in Children Margaret Kenna, MD, MPH Dept. of Otolaryngology and Communication Enhancement Children s Hospital Boston Dept. of Otology and Laryngology Harvard Medical School Harvard

More information

Copy number variants are a common cause of non-syndromic hearing loss

Copy number variants are a common cause of non-syndromic hearing loss Shearer et al. Genome Medicine 2014, 6:37 RESEARCH Open Access Copy number variants are a common cause of non-syndromic hearing loss A Eliot Shearer 1, Diana L Kolbe 1,2, Hela Azaiez 1, Christina M Sloan

More information

Genetic stories behind village sign languages

Genetic stories behind village sign languages Genetic stories behind village sign languages the co-evolution of deafness with sign language June, 2013 Minerva-Gentner Symposium on Emergent Languages and Cultural Evolution Berg en Dal, The Netherlands

More information

Syndromic Deafness Variant of Waardenburg syndrome

Syndromic Deafness Variant of Waardenburg syndrome International Journal of Pharmaceutical Science Invention ISSN (Online): 2319 6718, ISSN (Print): 2319 670X Volume 3 Issue 4 April 2014 PP.18-22 Syndromic Deafness Variant of Waardenburg syndrome 1, Dr.

More information

NGS in neurodegenerative disorders - our experience

NGS in neurodegenerative disorders - our experience Neurology Clinic, Clinical Center of Serbia Faculty of Medicine, University of Belgrade Belgrade, Serbia NGS in neurodegenerative disorders - our experience Marija Branković, MSc Belgrade, 2018 Next Generation

More information

Exploration of molecular genetic etiology for Korean cochlear implantees with severe to profound hearing loss and its implication

Exploration of molecular genetic etiology for Korean cochlear implantees with severe to profound hearing loss and its implication Park et al. Orphanet Journal of Rare Diseases 014, 9:167 RESEARCH Exploration of molecular genetic etiology for Korean cochlear implantees with severe to profound hearing loss and its implication Joo Hyun

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): 10.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): 10. Prasad, R., Hadjidemetriou, I., Maharaj, A., Meimaridou, E., Buonocore, F., Saleem, M.,... Metherell, L. A. (2017). Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant

More information

LMM / emerge III Network Reference Sequences October 2016 LMM / emerge III Network Consensus Actionable Gene List *ACMG56 gene

LMM / emerge III Network Reference Sequences October 2016 LMM / emerge III Network Consensus Actionable Gene List *ACMG56 gene LMM / emerge III Network Consensus Actionable Gene List *ACMG56 gene ACTA2* Exon 02-09 NM_001613.2 DSG2* Exon 01-15 NM_001943.3 ACTC1* Exon 01-06 NM_005159.4 DSP* Exon 01-24 NM_004415.2 APC* Exon 01-15

More information

Genetic Testing and Analysis. (858) MRN: Specimen: Saliva Received: 07/26/2016 GENETIC ANALYSIS REPORT

Genetic Testing and Analysis. (858) MRN: Specimen: Saliva Received: 07/26/2016 GENETIC ANALYSIS REPORT GBinsight Sample Name: GB4411 Race: Gender: Female Reason for Testing: Type 2 diabetes, early onset MRN: 0123456789 Specimen: Saliva Received: 07/26/2016 Test ID: 113-1487118782-4 Test: Type 2 Diabetes

More information

EPS8L2 is a new causal gene for childhood onset autosomal recessive progressive hearing loss

EPS8L2 is a new causal gene for childhood onset autosomal recessive progressive hearing loss Dahmani et al. Orphanet Journal of Rare Diseases (2015) 10:96 DOI 10.1186/s13023-015-0316-8 RESEARCH EPS8L2 is a new causal gene for childhood onset autosomal recessive progressive hearing loss Open Access

More information

THE IMPORTANCE OF GENETICS WHEN TREATING HYPERINSULINISM

THE IMPORTANCE OF GENETICS WHEN TREATING HYPERINSULINISM THE IMPORTANCE OF GENETICS WHEN TREATING HYPERINSULINISM HEATHER MCKNIGHT-MENCI, MSN, CRNP CHILDREN S HOSPITAL OF PHILADELPHIA WHAT IS HYPERINSULINISM? The leading cause of hypoglycemia in infants and

More information

World Journal of Pharmaceutical and Life Sciences WJPLS

World Journal of Pharmaceutical and Life Sciences WJPLS wjpls, 2015, Vol. 1, Issue 1, 175-181 Case Reports ISSN 2454-2229 WJPLS www.wjpls.org WAARDENBURG SYNDROME TYPE I A CASE SERIES FROM A SINGLE FAMILY Dr. D. Manikyamba 1*, Dr. S. Chandra Sekhar 2, Dr. G.

More information

Genetics of Hearing Loss

Genetics of Hearing Loss 2 Genetics of Hearing Loss Ella Shalit and Karen B. Avraham 1. Introduction The revolution in genetics in the past decades has enabled identification of many of the genes associated with human hereditary

More information

Dysmorphology And The Paediatric Eye. Jill Clayton-Smith Manchester Centre For Genomic Medicine

Dysmorphology And The Paediatric Eye. Jill Clayton-Smith Manchester Centre For Genomic Medicine Dysmorphology And The Paediatric Eye Jill Clayton-Smith Manchester Centre For Genomic Medicine Why Make A Syndrome Diagnosis? Why did it happen? What does the future hold? How can you treat/manage it?

More information

Investigating Seven Recently Identified Genes in 100 Iranian Families with Autosomal Recessive Non-syndromic Hearing Loss

Investigating Seven Recently Identified Genes in 100 Iranian Families with Autosomal Recessive Non-syndromic Hearing Loss Iranian Rehabilitation Journal, Vol. 13, Issue 3, Autumn 2015 Original Article Investigating Seven Recently Identified Genes in 100 Iranian Families with Autosomal Recessive Non-syndromic Hearing Loss

More information

Trackstar Genetics Pre/Post Test

Trackstar Genetics Pre/Post Test Name Date Period Olson/Trackstar Genetics Trackstar Genetics Pre/Post Test Directions: On the computer type in the following address: http://trackstar.4teachers.org/trackstar/ Once you are on the Trackstar

More information

Aim: To develop a screening in order to determine

Aim: To develop a screening in order to determine Rev Bras Otorrinolaringol 2007;73(3):412-7. REVIEW ARTICLE Diagnosis routine and approach in genetic sensorineural hearing loss Fatima Regina Abreu Alves 1, Fernando de Andrade Quintanilha Ribeiro 2 Keywords:

More information

Diagnosis, management and new treatments for Spinal Muscular Atrophy Special Focus: SMA Type 1

Diagnosis, management and new treatments for Spinal Muscular Atrophy Special Focus: SMA Type 1 Diagnosis, management and new treatments for Spinal Muscular Atrophy Special Focus: SMA Type 1 17 th April 2018 Adnan Manzur Consultant Paediatric Neurologist Dubowitz Neuromuscular Centre, GOSH & ICH,

More information

Original Article. Children with GJB2 gene mutations have various audiological phenotypes

Original Article. Children with GJB2 gene mutations have various audiological phenotypes 19 Original Article BioScience Trends. 018; 1():19-5. DOI: 10.558/bst.018.01159 Children with GJB gene mutations have various audiological phenotypes Xianlei Wang 1, Lihui Huang 1, *, Xuelei Zhao 1, Xueyao

More information

Molecular Diagnostic Laboratory 18 Sequencing St, Gene Town, ZY Tel: Fax:

Molecular Diagnostic Laboratory 18 Sequencing St, Gene Town, ZY Tel: Fax: Molecular Diagnostic Laboratory 18 Sequencing St, Gene Town, ZY 01234 Tel: 555-920-3333 Fax: 555-920-3334 www.moldxlaboratory.com Patient Name: Jane Doe Specimen type: Blood, peripheral DOB: 04/05/1990

More information

Genomics for Rare Diseases

Genomics for Rare Diseases Genomics for Rare Diseases Gemma Chandratillake & Karola Rehnström East of England NHS Genomic Medicine Centre 21 st March 2018 Overview The genetic basis of rare disease Why is it useful to know the genetic

More information

WHAT CAUSES PERMANENT ANALYZING THE PROPORTIONS

WHAT CAUSES PERMANENT ANALYZING THE PROPORTIONS SUBMITTED 2 ATTRIBUTED WHAT CAUSES PERMANENT CHILDHOOD HEARING IMPAIRMENT? ANALYZING THE PROPORTIONS TO THE AETIOLOGY A.M.H. KORVER R.J.C. ADMIRAAL S.G. KANT F.W. DEKKER C.C. WEVER H.P.M. KUNST J.H.M.

More information

Genomic analysis of a heterogeneous Mendelian phenotype: Multiple novel alleles for inherited hearing loss in the Palestinian population

Genomic analysis of a heterogeneous Mendelian phenotype: Multiple novel alleles for inherited hearing loss in the Palestinian population PRIMARY RESEARCH Genomic analysis of a heterogeneous Mendelian phenotype: Multiple novel alleles for inherited hearing loss in the Palestinian population TomWalsh, 1 Amal Abu Rayan, 2 Judeh Abu Sa ed,

More information

The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation

The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation Anita Becker-Heck#, Irene Zohn#, Noriko Okabe#, Andrew Pollock#, Kari Baker Lenhart,

More information

DFNB93, a novel locus for autosomal recessive moderate-to-severe hearing impairment

DFNB93, a novel locus for autosomal recessive moderate-to-severe hearing impairment Clin Genet 2011: 79: 594 598 Printed in Singapore. All rights reserved 2011 John Wiley & Sons A/S CLINICAL GENETICS doi: 10.1111/j.1399-0004.2010.01593.x DFNB93, a novel locus for autosomal recessive moderate-to-severe

More information

1 eye 1 Set of trait cards. 1 tongue 1 Sheet of scrap paper

1 eye 1 Set of trait cards. 1 tongue 1 Sheet of scrap paper Access prior knowledge Why do offspring often resemble their parents? Yet rarely look exactly alike? Is it possible for offspring to display characteristics that are not apparent in their parents? What

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/156495

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Invasive Prenatal (Fetal) Diagnostic Testing File Name: Origination: Last CAP Review: Next CAP Review: Last Review: invasive_prenatal_(fetal)_diagnostic_testing 12/2014 3/2018

More information

MEDICAL GENOMICS LABORATORY. Non-NF1 RASopathy panel by Next-Gen Sequencing and Deletion/Duplication Analysis of SPRED1 (NNP-NG)

MEDICAL GENOMICS LABORATORY. Non-NF1 RASopathy panel by Next-Gen Sequencing and Deletion/Duplication Analysis of SPRED1 (NNP-NG) Non-NF1 RASopathy panel by Next-Gen Sequencing and Deletion/Duplication Analysis of SPRED1 (NNP-NG) Ordering Information Acceptable specimen types: Blood (3-6ml EDTA; no time limitations associated with

More information

Copy Number Variants of Uncertain Significance in Prenatal diagnosis Are the Goalposts Moving? Lisa Burvill-Holmes Bristol Genetics Laboratory

Copy Number Variants of Uncertain Significance in Prenatal diagnosis Are the Goalposts Moving? Lisa Burvill-Holmes Bristol Genetics Laboratory Copy Number Variants of Uncertain Significance in Prenatal diagnosis Are the Goalposts Moving? Lisa Burvill-Holmes Bristol Genetics Laboratory http://www.nbt.nhs.uk/genetics Microarray CGH in Prenatal

More information

CHAPTER IV RESULTS Microcephaly General description

CHAPTER IV RESULTS Microcephaly General description 47 CHAPTER IV RESULTS 4.1. Microcephaly 4.1.1. General description This study found that from a previous study of 527 individuals with MR, 48 (23 female and 25 male) unrelated individuals were identified

More information

Lab Activity Report: Mendelian Genetics - Genetic Disorders

Lab Activity Report: Mendelian Genetics - Genetic Disorders Name Date Period Lab Activity Report: Mendelian Genetics - Genetic Disorders Background: Sometimes genetic disorders are caused by mutations to normal genes. When the mutation has been in the population

More information

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Test Disease Population Triad Disease name OMIM number for disease Disease alternative names please provide any alternative

More information

Assessing Laboratory Performance for Next Generation Sequencing Based Detection of Germline Variants through Proficiency Testing

Assessing Laboratory Performance for Next Generation Sequencing Based Detection of Germline Variants through Proficiency Testing Assessing Laboratory Performance for Next Generation Sequencing Based Detection of Germline Variants through Proficiency Testing Karl V. Voelkerding, MD Professor of Pathology University of Utah Medical

More information

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Test Disease Population Triad Disease name Leber congenital amaurosis OMIM number for disease 204000 Disease alternative

More information

Some genes. Genes and language, Part VI: Dan Dediu. Dan Dediu

Some genes. Genes and language, Part VI: Dan Dediu. Dan Dediu Genes and language, Part VI: Some genes DGFS Summer School 2013 Berlin 26th 30th of August, 2013 Language and Genetics Max Planck Institute for Psycholinguistics Nijmegen The Netherlands 1 Overview Part

More information