Protocol. Genetic Testing for Nonsyndromic Hearing Loss

Size: px
Start display at page:

Download "Protocol. Genetic Testing for Nonsyndromic Hearing Loss"

Transcription

1 Protocol Genetic Testing for Nonsyndromic Hearing Loss (20487) Medical Benefit Effective Date: 04/01/14 Next Review Date: 01/15 Preauthorization Yes Review Dates: 01/14 The following Protocol contains medical necessity criteria that apply for this service. It is applicable to Medicare Advantage products unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Preauthorization is required. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient s contract at the time the services are rendered. Description Congenital deafness and childhood-onset hearing loss is caused by genetic mutations in a large percentage of cases. Genetic testing for hearing loss is primarily intended either to determine whether hearing loss is hereditary, or to determine carrier status of parents in order to better define the likelihood of hearing loss in their offspring. Background Description of disease. Hearing loss is a common birth defect. Approximately one of every 500 newborns in developed countries is affected by bilateral, permanent hearing loss of moderate or greater severity ( 40 db). (1) Syndromic hearing loss refers to hearing loss associated with other medical or physical findings. Since syndromic hearing loss occurs as part of a syndrome of multiple clinical manifestations, it is often recognized more readily as hereditary in nature. Nonsyndromic hearing loss (NSHL) is defined as hearing loss that is not associated with other physical signs or symptoms. For NSHL, it is more difficult to determine whether the etiology is hereditary or acquired, since by definition there are no other clinical manifestations. NSHL accounts for 70% to 80% of genetically-determined deafness. (2) Autosomal recessive patterns of inheritance predominate and account for 80% of congenital NSHL. A typical clinical presentation of autosomal recessive NSHL involves the following characteristics: Sensorineural hearing loss Mild to profound (more commonly) degree of hearing impairment Congenital onset Usually non-progressive No associated medical findings The majority of the remaining 20% of patients have an autosomal dominant inheritance pattern, with a small number having X-linked or mitochondrial inheritance. Patients with autosomal dominant inheritance typically show progressive NSHL which begins in the second through fourth decades of life. (3) Diagnosis of nonsyndromic hearing loss requires an evaluation with appropriate core medical personnel with expertise in the genetics of hearing loss, dysmorphology, audiology, otolaryngology, genetic counseling, and communication with deaf patients. The evaluation should include a family history, as well as a physical examination consisting of otologic examination, airway examination, documentation of dysmorphisms and Page 1 of 6

2 neurologic evaluation. (4) However, the clinical diagnosis of nonsyndromic hearing loss is non-specific since there are a number of underlying etiologies, and often it cannot be determined with certainty whether a genetic cause for hearing loss exists. Treatment of congenital and early-onset hearing loss typically involves enrollment in an educational curriculum for hearing impaired persons and fitting with an appropriate hearing aid. In some patients with profound deafness, a cochlear implant can be performed. Early identification of infants with hearing impairment may be useful in facilitating early use of amplification by six months of age and early intervention to achieve ageappropriate communication, speech and language development. (5) Delays in development of hearing treatment have been shown to delay development of communication. The primary method for identification of hearing impairment has been newborn screening with audiometry. Genetic testing has not been proposed as a primary screen for hearing loss. Genetic mutations in NSHL. The genetic loci on which mutations associated with NSHL are usually found are termed DFN, and NSHL is sometimes called DFN-associated hearing loss. DFNA3-associated NSHL is caused by autosomal dominant mutations present in the GJB2 or GJB6 genes, which alters the coding sequence for the connexin proteins Cx26 or Cx30, respectively. (6) DFNB1-associated NSHL are autosomal recessive syndromes in which more than 99% of cases are caused by mutations to the GJB2 gene with less than 1% of remaining cases arising from mutations to GJB6. (7) A list of available tests for genetic mutations at the DFNA3 and DFNB1 loci is given in Table 1. There are more than 300 individual mutations known to be associated with NSHL. (8) Two of the most commonly mutated genes are GJB2 and GJB6. GJB2 is a small gene with a single coding exon. Mutations of this gene are most common in NSHL, causing an estimated 50% of the cases on NSHL. (9) The carrier rate in the general population for a recessive deafness-causing GJB2 mutation is approximately one in 33. (1) Specific mutations have been observed to be more common in certain ethnic populations. (10, 11) Mutations in the GJB2 gene will impact expression of the Cx26 connexin protein and almost always cause pre-lingual, but not necessarily congenital, deafness. (8) Differing mutations to GJB2 can present high phenotypic variation, but it has been demonstrated that it is possible to correlate the type of associated hearing loss with findings on molecular analysis. Mutations in the GJB6 gene are the second most common genetic defect in NSHL and lead to similar effects on abnormal expression of connexin protein Cx30. However, GJB6 mutations are much less common than mutations in GJB2. Of all the patients with NSHL, approximately 3% are found to have a mutation in the GJB6 gene. Table 1. Clinical Characteristics and Testing Methods for GJB2 and GJB6 Mutations at the DFNA3 and DFNB1 Loci Locus Name Gene Symbol Onset Audioprofile Test Method Mutations Detected DFNA3 GJB2 Prelingual High frequency progressive DFNA3 GJB6 Prelingual High frequency progressive Sequence Analysis/Mutation Scanning Targeted Mutation Analysis Deletion/duplication analysis Sequence Analysis/Mutation Scanning Targeted Mutation Analysis Deletion/duplication analysis Sequence Variants Specified sequence variants Exonic or whole-gene deletions/ duplications Sequence Variants Specified sequence variants Exonic or whole-gene deletions/ duplications Page 2 of 6

3 Locus Name Gene Symbol Onset Audioprofile Test Method Mutations Detected DFNB1 GJB2 Prelingual Usually stable Sequence analysis 2 GJB2 sequence variants Deletion/duplication analysis 4 DFNB1 GJB6 Prelingual Usually stable Targeted Mutation Analysis GJB6 deletions Exon(s) or whole-gene deletions Mutation analysis for GJB6 and GJB2 mutations can be performed by Sanger sequencing analysis of individual genes. This method has a high degree of validity and reliability, but is limited by the ability to sequence one gene at a time. With Sanger sequencing, the gene with the most common mutations is generally sequenced first, followed by sequencing of additional genes if a pathogenic mutation is not found. In addition to the most common mutations that are associated with NSHL, GJB6 and GJB2, there are many less common pathologic mutations. Some of these are: ACTG1, CDH23, CLDN14, COCH, COL11A2, DFNA5, DFNB31, DFNB59, ESPN, EYA4, GJB2, GJB6, KCNQ4, LHFPL5, MT-TS1, MYO15A, MYO6, MYO7A, OTOF, PCDH15, POU3F4, SLC26A4, STRC, TECTA, TMC1, TMIE, TMPRSS3, TRIOBP, USH1C, and WFS1 genes. Because of the large number of genes associated with NSHL, there are a variety of genetic panels for hereditary deafness. Next generation genetic sequencing technology allows targeted sequencing of multiple genes simultaneously, expanding the ability to examine multiple genes. These panels are alternatives to sequencing of individual genes such as GJB6 and GJB2. Some examples of these panels are given in Table 3. These panels include the most common genes associated with NSHL. They may also include many of the less common genes associated with NSHL, as well as genes that are associated with syndromic hearing loss. Regulatory Status No FDA-cleared molecular diagnostic tests were found. Thus, molecular evaluation is offered as a laboratorydeveloped test. Clinical laboratories may develop and validate tests in-house (laboratory-developed tests, formerly home-brew ) and market them as a laboratory service; such tests must meet the general regulatory standards of the Clinical Laboratory Improvement Act (CLIA). The laboratory offering the service must be licensed by CLIA for high-complexity testing. More than a dozen commercial laboratories currently offer a wide variety of diagnostic procedures for GJB2 and GJB6 genetic testing. Related Protocols Preimplantation Genetic Testing Cochlear Implant Policy (Formerly Corporate Medical Guideline) Genetic testing for NSHL mutations (GJB2, GJB6 and other NSHL-related mutations) in individuals with nonsyndromic hearing loss to confirm the diagnosis of hereditary nonsyndromic hearing loss (see Policy Guidelines) may be considered medically necessary. Preconception genetic testing (carrier testing) for nonsyndromic hearing loss (NSHL) mutations (GJB2, GJB6 and other NSHL-related mutations) in parents may be considered medically necessary when at least one of the following conditions has been met: Offspring with hereditary NSHL; OR One or both parents with suspected NSHL; OR First- or second-degree relative affected with hereditary NSHL; OR First-degree relative with offspring who is affected with hereditary NSHL Page 3 of 6

4 Genetic testing for nonsyndromic hearing loss mutations is considered investigational for all other situations (except as addressed in Related Protocols, e.g., Preimplantation Genetic Testing). Policy Guideline The definition of NSHL is hearing loss that is not associated with other physical signs and symptoms. It is differentiated from syndromic hearing loss, which is hearing loss associated with other signs and symptoms characteristic of a specific syndrome. Physical signs of a syndrome often include dysmorphic changes in the maxillofacial region and/or malformations of the external ears. Malfunction of internal organs may also be part of a syndrome. The physical signs can be subtle and easily missed on physical exam, therefore exclusion of syndromic findings is ideally done by an individual with expertise in identifying dysmorphic physical signs. The phenotypic presentation of NSHL varies, but generally involves the following features: Sensorineural hearing loss Mild to profound (more commonly) degree of hearing impairment Congenital onset Usually non-progressive Genetic evaluation and counseling should be offered to all patients who are being considered for NSHL genetic testing. Genetic evaluation and counseling can help define the familial patterns of inheritance, exclude the presence of syndromic hearing loss, and provide information to patients on the future risk of NSHL in offspring. In addition to mutations in the GJB6 and GJB2 genes, there are many less common pathologic mutations found in other genes. Some of these are: ACTG1, CDH23, CLDN14, COCH, COL11A2, DFNA5, DFNB31, DFNB59, ESPN, EYA4, GJB2, GJB6, KCNQ4, LHFPL5, MT-TS1, MYO15A, MYO6, MYO7A, OTOF, PCDH15, POU3F4, SLC26A4, STRC, TECTA, TMC1, TMIE, TMPRSS3, TRIOBP, USH1C, and WFS1 genes. Testing for mutations associated with NSHL should be confined to known pathologic mutations. While research studies using genome-wide associations have uncovered numerous single-nucleotide polymorphisms (SNPs) and copy number variations (CNVs) associated with NSHL, (12, 13) the clinical significance of these findings is unclear. For carrier testing, outcomes are expected to be improved if parents alter their reproductive decision-making as a result of genetic test results. This may occur through the use of preimplantation genetic testing in combination with in vitro fertilization. Other ways that prospective parents may alter their reproductive choices are to proceed with attempts at pregnancy, or to avoid attempts at pregnancy, based on carrier testing results. Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol. It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this Protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area. Page 4 of 6

5 References We are not responsible for the continuing viability of web site addresses that may be listed in any references below. 1. Smith RJH, Shearer AE, Hildebrand MS et al. Deafness and Hereditary Hearing Loss Overview. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, eds. GeneReviews. Seattle (WA) Morton CC, Nance WE. Newborn hearing screening--a silent revolution. N Engl J Med 2006; 354(20): Matsunaga T. Value of genetic testing in the otological approach for sensorineural hearing loss. Keio J Med 2009; 58(4): Genetic Evaluation of Congenital Hearing Loss Expert Panel. Genetics Evaluation Guidelines for the Etiologic Diagnosis of Congenital Hearing Loss. Genetic Evaluation of Congenital Hearing Loss Expert Panel. ACMG statement. Genet Med 2002; 4(3): Milunsky JM, Maher TA, Yosunkaya E et al. Connexin-26 gene analysis in hearing-impaired newborns. Genet Test 2000; 4(4): Smith RJH, Sheffield AM, Van Camp G. Nonsyndromic Hearing Loss and Deafness, DFNA3. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, eds. GeneReviews. Seattle (WA) Smith RJH, Van Camp G. Nonsyndromic Hearing Loss and Deafness, DFNB1. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, eds. GeneReviews. Seattle (WA) Linden Phillips L, Bitner-Glindzicz M, Lench N et al. The future role of genetic screening to detect newborns at risk of childhood-onset hearing loss. Int J Audiol 2013; 52(2): Apps SA, Rankin WA, Kurmis AP. Connexin 26 mutations in autosomal recessive deafness disorders: a review. Int J Audiol 2007; 46(2): Green GE, Scott DA, McDonald JM et al. Carrier rates in the midwestern United States for GJB2 mutations causing inherited deafness. JAMA 1999; 281(23): Bitner-Glindzicz M. Hereditary deafness and phenotyping in humans. Br Med Bull 2002; 63: Tsai EA, Berman MA, Conlin LK et al. PECONPI: A novel software for uncovering pathogenic copy number variations in non-syndromic sensorineural hearing loss and other genetically heterogeneous disorders. American journal of medical genetics. Part A 2013; 161(9): Park MH, Park HJ, Kim KJ et al. Genome-wide SNP-based linkage analysis for ADNSHL families identifies novel susceptibility loci with positive evidence for linkage. Genes & genetic systems 2011; 86(2): Year 2007 position statement: Principles and guidelines for early hearing detection and intervention programs. Pediatrics 2007; 120(4): Abe S, Yamaguchi T, Usami S. Application of deafness diagnostic screening panel based on deafness mutation/gene database using invader assay. Genet Test 2007; 11(3): Gardner P, Oitmaa E, Messner A et al. Simultaneous multigene mutation detection in patients with sensorineural hearing loss through a novel diagnostic microarray: a new approach for newborn screening follow-up. Pediatrics 2006; 118(3): Li CX, Pan Q, Guo YG et al. Construction of a multiplex allele-specific PCR-based universal array (ASPUA) and its application to hearing loss screening. Hum Mutat 2008; 29(2): Siemering K, Manji SS, Hutchison WM et al. Detection of mutations in genes associated with hearing loss using a microarray-based approach. J Mol Diagn 2006; 8(4):483-9; quiz 528. Page 5 of 6

6 19. Kothiyal P, Cox S, Ebert J et al. High-throughput detection of mutations responsible for childhood hearing loss using resequencing microarrays. BMC Biotechnol 2010; 10: Partners Healthcare. Otogenome Test for Hearing Loss and Usher Syndrome Available online at: Last accessed September University of Iowa. Otoscope Genetic Testing Available online at: Last accessed January, Rodriguez-Paris J, Pique L, Colen T et al. Genotyping with a 198 mutation arrayed primer extension array for hereditary hearing loss: assessment of its diagnostic value for medical practice. PLoS One 2010; 5(7):e Dalamon V, Lotersztein V, Beheran A et al. GJB2 and GJB6 genes: molecular study and identification of novel GJB2 mutations in the hearing-impaired Argentinean population. Audiol Neurootol 2010; 15(3): de Oliveira CA, Alexandrino F, Christiani TV et al. Molecular genetics study of deafness in Brazil: 8-year experience. American journal of medical genetics. Part A 2007; 143A(14): Duman D, Sirmaci A, Cengiz FB et al. Screening of 38 genes identifies mutations in 62% of families with nonsyndromic deafness in Turkey. Genet Test Mol Biomarkers 2011; 15(1-2): Joseph AY, Rasool TJ. High frequency of connexin26 (GJB2) mutations associated with nonsyndromic hearing loss in the population of Kerala, India. Int J Pediatr Otorhinolaryngol 2009; 73(3): Fukushima K, Sugata K, Kasai N et al. Better speech performance in cochlear implant patients with GJB2- related deafness. Int J Pediatr Otorhinolaryngol 2002; 62(2): Matsushiro N, Doi K, Fuse Y et al. Successful cochlear implantation in prelingual profound deafness resulting from the common 233delC mutation of the GJB2 gene in the Japanese. Laryngoscope 2002; 112(2): Sinnathuray AR, Toner JG, Clarke-Lyttle J et al. Connexin 26 (GJB2) gene-related deafness and speech intelligibility after cochlear implantation. Otol Neurotol 2004; 25(6): Sinnathuray AR, Toner JG, Geddis A et al. Auditory perception and speech discrimination after cochlear implantation in patients with connexin 26 (GJB2) gene-related deafness. Otol Neurotol 2004; 25(6): Connell SS, Angeli SI, Suarez H et al. Performance after cochlear implantation in DFNB1 patients. Otolaryngol Head Neck Surg 2007; 137(4): Page 6 of 6

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Genetic Testing for Hereditary Hearing Loss File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_testing_for_hereditary_hearing_loss 10/2013 7/2018 7/2019

More information

POLICY PRODUCT VARIATIONS DESCRIPTION/BACKGROUND RATIONALE DEFINITIONS BENEFIT VARIATIONS DISCLAIMER REFERENCES CODING INFORMATION POLICY HISTORY

POLICY PRODUCT VARIATIONS DESCRIPTION/BACKGROUND RATIONALE DEFINITIONS BENEFIT VARIATIONS DISCLAIMER REFERENCES CODING INFORMATION POLICY HISTORY Original Issue Date (Created): November 26, 2013 Most Recent Review Date (Revised): November 26, 2013 Effective Date: February 01, 2014 POLICY PRODUCT VARIATIONS DESCRIPTION/BACKGROUND RATIONALE DEFINITIONS

More information

Genetic Testing for Nonsyndromic Hearing Loss

Genetic Testing for Nonsyndromic Hearing Loss 252Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc.(collectively referred to as the Company ), unless otherwise provided

More information

FEP Medical Policy Manual

FEP Medical Policy Manual FEP Medical Policy Manual Effective Date: July 15, 2018 Related Policies: 2.04.102 Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders Genetic Testing for Hereditary Hearing Loss

More information

Genetic Testing for Hereditary Hearing Loss

Genetic Testing for Hereditary Hearing Loss Protocol Genetic Testing for Hereditary Hearing Loss (20487) Medical Benefit Effective Date: 01/01/18 Next Review Date: 11/18 Preauthorization Yes Review Dates: 01/14, 11/14, 11/15, 11/16, 11/17 Preauthorization

More information

GENETIC TESTING FOR HEREDITARY HEARING LOSS

GENETIC TESTING FOR HEREDITARY HEARING LOSS GENETIC TESTING FOR HEREDITARY HEARING LOSS Non-Discrimination Statement and Multi-Language Interpreter Services information are located at the end of this document. Coverage for services, procedures,

More information

Genetic Testing for Hereditary Hearing Loss Section 2.0 Medicine Subsection 2.04 Pathology/Laboratory

Genetic Testing for Hereditary Hearing Loss Section 2.0 Medicine Subsection 2.04 Pathology/Laboratory 2.04.87 Genetic Testing for Hereditary Hearing Loss Section 2.0 Medicine Subsection 2.04 Pathology/Laboratory Effective Date 1/30/2015 Original Policy Date 1/30/2015 Next Review Date January 2016 Description

More information

The Genetics of Usher Syndrome

The Genetics of Usher Syndrome The Genetics of Usher Syndrome Heidi L. Rehm, PhD, FACMG Assistant Professor of Pathology, BWH and HMS Director, Laboratory for Molecular Medicine, PCPGM DNA is Highly Compacted into Chromosomes The DNA

More information

Prevalence of Hearing Impairment

Prevalence of Hearing Impairment Prevalence of Hearing Impairment 28 million Americans 2 million profoundly deaf 1/1000 congenitally deaf 1/3 impaired by age 65 1/2 impaired by age 80 NIDCD National Strategic Research Plan, 1989 Genetic

More information

Stem Cell Therapy for Acquired Hearing Loss in Children; FDA-Approved Study. Linda Baumgartner, CCC-SLP, Cert.AVT James Baumgartner, MD

Stem Cell Therapy for Acquired Hearing Loss in Children; FDA-Approved Study. Linda Baumgartner, CCC-SLP, Cert.AVT James Baumgartner, MD Stem Cell Therapy for Acquired Hearing Loss in Children; FDA-Approved Study Linda Baumgartner, CCC-SLP, Cert.AVT James Baumgartner, MD Stem Cell Basics I'll never grow up, never grow up, never grow up

More information

Clinical Policy Title: Genomic tests in sensorineural hearing loss

Clinical Policy Title: Genomic tests in sensorineural hearing loss Clinical Policy Title: Genomic tests in sensorineural hearing loss Clinical Policy Number: 02.01.18 Effective Date: January 1, 2016 Initial Review Date: October 16, 2015 Most Recent Review Date: October

More information

Usher Syndrome: When to Suspect it and How to Find It

Usher Syndrome: When to Suspect it and How to Find It Usher Syndrome: When to Suspect it and How to Find It Margaret Kenna, MD, MPH Katherine Lafferty, MS, CGC Heidi Rehm, PhD Anne Fulton, MD Harvard Medical School Harvard Medical School Center for Hereditary

More information

Usher Syndrome and Progressive Hearing Loss

Usher Syndrome and Progressive Hearing Loss Usher Syndrome and Progressive Hearing Loss Margaret A. Kenna, MD, MPH Otolaryngology and Communication Enhancement Boston Children s Hospital Professor of Otology and Laryngology Harvard Medical School

More information

A Comprehensive Study on the Etiology of Patients Receiving Cochlear Implantation With Special Emphasis on Genetic Epidemiology

A Comprehensive Study on the Etiology of Patients Receiving Cochlear Implantation With Special Emphasis on Genetic Epidemiology Otology & Neurotology 37:e16 e13 ß 16, Otology & Neurotology, Inc. A Comprehensive Study on the Etiology of Patients Receiving Cochlear Implantation With Special Emphasis on Genetic Epidemiology ymaiko

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Invasive Prenatal (Fetal) Diagnostic Testing File Name: Origination: Last CAP Review: Next CAP Review: Last Review: invasive_prenatal_(fetal)_diagnostic_testing 12/2014 3/2018

More information

Genetic Characteristics in Children with Cochlear Implants and the Corresponding Auditory Performance

Genetic Characteristics in Children with Cochlear Implants and the Corresponding Auditory Performance The Laryngoscope VC 2011 The American Laryngological, Rhinological and Otological Society, Inc. Genetic Characteristics in Children with Cochlear Implants and the Corresponding Auditory Performance Chen-Chi

More information

Published in: Otology & Neurotology

Published in: Otology & Neurotology Auditory perception and speech discrimination after cochlear implantation in patients with connexin 26 (gjb2) gene-related Deafness Sinnathuray, A. R., Toner, J. G., Geddis, A., Clarke-Lyttle, J., Patterson,

More information

Genetic Hearing Loss in Children

Genetic Hearing Loss in Children Genetic Hearing Loss in Children José Faibes Lubianca & Ricardo Godinho The prevalence of genetic hearing loss reaches very high numbers. In developed countries, about 50% of the cases of pre-lingual severe

More information

Feedback of results. Report via to NTGMC inbox. Review by GMC clinician

Feedback of results. Report via  to NTGMC inbox. Review by GMC clinician Genetic deafness Maria Bitner-Glindzicz Genetics and Genomic Medicine Programme UCL Institute of Child Health, UCL Ear Institute, and Great Ormond Street Hospital for Children Feedback of results Report

More information

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier/Additional Provider

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier/Additional Provider Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier/Additional Provider TEST DISEASE/CONDITION POPULATION TRIAD Submitting laboratory: London North East RGC GOSH Approved: September

More information

A Sound Foundation Through Early Amplification

A Sound Foundation Through Early Amplification A Sound Foundation Through Early Amplification Proceedings of the 7th International Conference 2016 17 Next-gen diagnostics and newborn screening for hearing loss Cynthia Casson Morton, Ph.D. Abstract

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Genetic Testing for Alpha Thalassemia File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_testing_for_alpha_thalassemia 9/2013 7/2017 7/2018 7/2017 Description

More information

CURRENT GENETIC TESTING TOOLS IN NEONATAL MEDICINE. Dr. Bahar Naghavi

CURRENT GENETIC TESTING TOOLS IN NEONATAL MEDICINE. Dr. Bahar Naghavi 2 CURRENT GENETIC TESTING TOOLS IN NEONATAL MEDICINE Dr. Bahar Naghavi Assistant professor of Basic Science Department, Shahid Beheshti University of Medical Sciences, Tehran,Iran 3 Introduction Over 4000

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Genetic Testing for Alpha-1 Antitrypsin Deficiency File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_testing_for_alpha_1_antitrypsin_deficiency 5/2012

More information

High-Frequency Sensorineural Hearing Loss in Children

High-Frequency Sensorineural Hearing Loss in Children The Laryngoscope VC 2015 The American Laryngological, Rhinological and Otological Society, Inc. High-Frequency Sensorineural Hearing Loss in Children Kaalan Johnson, MD; Meredith Tabangin, MPH; Jareen

More information

Genotype phenotype correlations for hearing impairment: Approaches to management

Genotype phenotype correlations for hearing impairment: Approaches to management Clin Genet 2014: 85: 514 523 Printed in Singapore. All rights reserved Review 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd CLINICAL GENETICS doi: 10.1111/cge.12339 Genotype phenotype

More information

Original Article. Children with GJB2 gene mutations have various audiological phenotypes

Original Article. Children with GJB2 gene mutations have various audiological phenotypes 19 Original Article BioScience Trends. 018; 1():19-5. DOI: 10.558/bst.018.01159 Children with GJB gene mutations have various audiological phenotypes Xianlei Wang 1, Lihui Huang 1, *, Xuelei Zhao 1, Xueyao

More information

Investigating Seven Recently Identified Genes in 100 Iranian Families with Autosomal Recessive Non-syndromic Hearing Loss

Investigating Seven Recently Identified Genes in 100 Iranian Families with Autosomal Recessive Non-syndromic Hearing Loss Iranian Rehabilitation Journal, Vol. 13, Issue 3, Autumn 2015 Original Article Investigating Seven Recently Identified Genes in 100 Iranian Families with Autosomal Recessive Non-syndromic Hearing Loss

More information

Surgical and Non-Surgical Causes of Progressive Hearing Loss in Children: What can be done about it?

Surgical and Non-Surgical Causes of Progressive Hearing Loss in Children: What can be done about it? Surgical and Non-Surgical Causes of Progressive Hearing Loss in Children: What can be done about it? Daniela Carvalho, MD, MMM, FAAP Professor, Surgery Department UCSD Pediatric Otolaryngology Rady Children

More information

thorough physical and laboratory investigations fail to define the etiology of hearing loss. (2000, p. 16). In a report produced for the Maternal and

thorough physical and laboratory investigations fail to define the etiology of hearing loss. (2000, p. 16). In a report produced for the Maternal and GUIDELINES FOR GENETIC EVALUATON REFERRAL The prevalence of permanent hearing loss in infants is estimated to be 2-3/1000 in the United States (Finitzo et al., 1998; Prieve et al., 2000). One or both ears

More information

Genetic testing for hearing loss in the United States should include deletion/duplication analysis for the deafness/infertility locus at 15q15.

Genetic testing for hearing loss in the United States should include deletion/duplication analysis for the deafness/infertility locus at 15q15. Hoppman et al. Molecular Cytogenetics 2013, 6:19 RESEARCH Open Access Genetic testing for hearing loss in the United States should include deletion/duplication analysis for the deafness/infertility locus

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Genetic Testing for Hereditary Pancreatitis File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_testing_for_hereditary_pancreatits 9/2013 7/2017 7/2018

More information

C ritical Review: Can individuals with hearing impairment associated with Usher Syndrome benefit from a cochlear implant?

C ritical Review: Can individuals with hearing impairment associated with Usher Syndrome benefit from a cochlear implant? C ritical Review: Can individuals with hearing impairment associated with Usher Syndrome benefit from a cochlear implant? Chantal Arsenault M.Cl.Sc. (AUD) Candidate University of Western Ontario: School

More information

AudGenDB: a Public, Internet-Based, Audiologic - Otologic - Genetic Database for Pediatric Hearing Research

AudGenDB: a Public, Internet-Based, Audiologic - Otologic - Genetic Database for Pediatric Hearing Research AudGenDB: a Public, Internet-Based, Audiologic - Otologic - Genetic Database for Pediatric Hearing Research John Germiller 1,2, Michael Italia 4, Jeffrey Pennington 4, Byron Ruth 4, Peter White 4,5, Joy

More information

Genetics of Hearing Loss

Genetics of Hearing Loss Genetics of Hearing Loss Daryl A. Scott MD/PhD Molecular & Human Genetics 1/20/2015 Why do we care? 1 100% 75% Hearing Loss 500:1000 50% 314:1000 25% 1:1000 17:1000 Newborn 18 yrs 65 yrs 75 yrs 60% Members

More information

FEP Medical Policy Manual

FEP Medical Policy Manual FEP Medical Policy Manual Effective Date: July 15, 2018 Related Policies: None Genetic Testing for PTEN Hamartoma Tumor Syndrome Description The PTEN hamartoma tumor syndrome (PHTS) includes several syndromes

More information

Genomic copy number alterations in non-syndromic hearing loss

Genomic copy number alterations in non-syndromic hearing loss Clin Genet 2016: 89: 473 477 Printed in Singapore. All rights reserved Short Report 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd CLINICAL GENETICS doi: 10.1111/cge.12683 Genomic copy

More information

Usher Syndrome: Why a definite diagnosis matters

Usher Syndrome: Why a definite diagnosis matters Usher Syndrome: Why a definite diagnosis matters Margaret Kenna, MD, MPH Katherine Lafferty, MS, CGC Heidi Rehm, PhD Anne Fulton, MD Boston Children s Hospital Harvard Medical School Harvard Medical School

More information

Value of Genetic Testing in the Otological Approach for Sensorineural Hearing Loss. Tatsuo Matsunaga

Value of Genetic Testing in the Otological Approach for Sensorineural Hearing Loss. Tatsuo Matsunaga REVIEW Value of Genetic Testing in the Otological Approach for Sensorineural Hearing Loss Tatsuo Matsunaga Department of Otolaryngology, Laboratory of Auditory Disorders, National Institute of Sensory

More information

Original Article Etiological factors of deafness and results of aided audiogram among below 12 years deaf children in a deaf school

Original Article Etiological factors of deafness and results of aided audiogram among below 12 years deaf children in a deaf school 103 Bangladesh J Otorhinolaryngol 2012; 18(2): 103-108 Original Article Etiological factors of deafness and results of aided audiogram among below 12 years deaf children in a deaf school Mohammad Nasimul

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Genetic Testing for Heterozygous Familial Hypercholesterolemia File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_ testing_ for_heterozygous_ familial_

More information

CHROMOSOMAL MICROARRAY (CGH+SNP)

CHROMOSOMAL MICROARRAY (CGH+SNP) Chromosome imbalances are a significant cause of developmental delay, mental retardation, autism spectrum disorders, dysmorphic features and/or birth defects. The imbalance of genetic material may be due

More information

Aim: To develop a screening in order to determine

Aim: To develop a screening in order to determine Rev Bras Otorrinolaringol 2007;73(3):412-7. REVIEW ARTICLE Diagnosis routine and approach in genetic sensorineural hearing loss Fatima Regina Abreu Alves 1, Fernando de Andrade Quintanilha Ribeiro 2 Keywords:

More information

MEDICAL POLICY SUBJECT: COCHLEAR IMPLANTS AND AUDITORY BRAINSTEM IMPLANTS

MEDICAL POLICY SUBJECT: COCHLEAR IMPLANTS AND AUDITORY BRAINSTEM IMPLANTS MEDICAL POLICY. PAGE: 1 OF: 6 If the member's subscriber contract excludes coverage for a specific service it is not covered under that contract. In such cases, medical policy criteria are not applied.

More information

The Six Ws of DNA testing A scenario-based activity introducing medical applications of DNA testing

The Six Ws of DNA testing A scenario-based activity introducing medical applications of DNA testing The Six Ws of DNA testing A scenario-based activity introducing medical applications of DNA testing Overview This activity introduces a number of different ways that genetic tests can be used in medicine.

More information

2. stereocilia make contact with membrane, feel vibration. Tiplink is deflected, allows ions to go inside cell body and chemical signal is generated.

2. stereocilia make contact with membrane, feel vibration. Tiplink is deflected, allows ions to go inside cell body and chemical signal is generated. Hearing Loss 1. Most common sensory deficit in human 2. 3 in ten people over age 60 have hearing loss 3. At least 1.4 million children have hearing problems 4. Estimated that 3 in 1,000 infants are born

More information

Corporate Medical Policy Genetic Testing for Alzheimer s Disease

Corporate Medical Policy Genetic Testing for Alzheimer s Disease Corporate Medical Policy Genetic Testing for Alzheimer s Disease File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_testing_for_alzheimers_disease 8/2010 10/2017 10/2018 10/2017

More information

article August 2006 Vol. 8 No. 8

article August 2006 Vol. 8 No. 8 article August 2006 Vol. 8 No. 8 Education in the genetics of hearing loss: A survey of early hearing detection and intervention programs Sarah K. Burton, MS 1, Susan H. Blanton, PhD 2,3, Brandt Culpepper,

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy General Approach to Evaluating the Utility of Genetic Panels File Name: Origination: Last CAP Review: Next CAP Review: Last Review: general_approach_to_evaluating_the_utility_of_genetic_panels

More information

Hearing Loss in Infants and Children: Could it be Usher Syndrome?

Hearing Loss in Infants and Children: Could it be Usher Syndrome? Hearing Loss in Infants and Children: Could it be Usher Syndrome? Margaret A. Kenna, MD, MPH Dept. of Otolaryngology and Communication Enhancement Boston Children s Hospital Dept. of Otology and Laryngology

More information

The relationship between onset of single sided deafness and educational achievement

The relationship between onset of single sided deafness and educational achievement BEHBUT CEVANŞİR KULAK BURUN BOĞAZ HASTALIKLARI VE BAŞ BOYUN CERRAHİSİ DERNEĞİ Tr-ENT 2018;28(1):4-8 Original Article 4 The relationship between onset of single sided deafness and educational achievement

More information

Preimplantation Genetic Testing

Preimplantation Genetic Testing Protocol Preimplantation Genetic Testing (40205) Medical Benefit Effective Date: 01/01/14 Next Review Date: 09/14 Preauthorization No Review Dates: 09/11, 09/12, 09/13 The following Protocol contains medical

More information

Genetic stories behind village sign languages

Genetic stories behind village sign languages Genetic stories behind village sign languages the co-evolution of deafness with sign language June, 2013 Minerva-Gentner Symposium on Emergent Languages and Cultural Evolution Berg en Dal, The Netherlands

More information

Cochlear Implantation in Individuals with Usher Syndrome

Cochlear Implantation in Individuals with Usher Syndrome Cochlear Implantation in Individuals with Usher Syndrome Xue Zhong Liu, M.D., PhD., F.A.C.S. Professor of Otolaryngology, Human Genetics, Biochemistry, and Pediatrics Vice Chairman & Director of Miami

More information

Connexin 26 (GJB2) gene-related deafness and speech intelligibility after cochlear implantation

Connexin 26 (GJB2) gene-related deafness and speech intelligibility after cochlear implantation Connexin 26 (GJB2) gene-related deafness and speech intelligibility after cochlear implantation Sinnathuray, A. R., Toner, J. G., Clarke-lyttle, J., Geddis, A., Patterson, C., & Hughes, A. (2004). Connexin

More information

GJB2. Downloaded from jssu.ssu.ac.ir at 16:32 IRDT on Friday March 22nd delG. Direct Sequencing DHPLC . V153I, V27I, E114G, R127H

GJB2. Downloaded from jssu.ssu.ac.ir at 16:32 IRDT on Friday March 22nd delG. Direct Sequencing DHPLC . V153I, V27I, E114G, R127H 6-708 GJB 8 7 6 5 * 0 Richard J.H. Smith 000 - :. GJB. 80 6. 0.. GJB 5delG. 0 0 : 5delG. ARMS-PCR 5delG Direct Sequencing DHPLC 67delT 5delG :. (). (%7/5) GJB :. V5I, V7I, EG, R7H.del del. GJB : 5delG.

More information

STUDY OF RECESSIVE DEAFNESS LOCUS (DFNB1) BY LINKAGE ANALYSIS IN SOME FAMILIES FROM BALOCHISTAN

STUDY OF RECESSIVE DEAFNESS LOCUS (DFNB1) BY LINKAGE ANALYSIS IN SOME FAMILIES FROM BALOCHISTAN STUDY OF RECESSIVE DEAFNESS LOCUS (DFNB1) BY LINKAGE ANALYSIS IN SOME FAMILIES FROM BALOCHISTAN A synopsis submitted to BALOCHISTAN UNIVERSITY OF INFORMATION TECHNOLOGY ENGINEERING & MANAGEMENT SCIENCES

More information

MEDICAL POLICY SUBJECT: COCHLEAR IMPLANTS AND AUDITORY BRAINSTEM IMPLANTS. POLICY NUMBER: CATEGORY: Technology Assessment

MEDICAL POLICY SUBJECT: COCHLEAR IMPLANTS AND AUDITORY BRAINSTEM IMPLANTS. POLICY NUMBER: CATEGORY: Technology Assessment MEDICAL POLICY PAGE: 1 OF: 5 If the member's subscriber contract excludes coverage for a specific service it is not covered under that contract. In such cases, medical policy criteria are not applied.

More information

Genetic Testing for Li-Fraumeni Syndrome

Genetic Testing for Li-Fraumeni Syndrome Protocol Genetic Testing for Li-Fraumeni Syndrome (204101) Medical Benefit Effective Date: 10/01/18 Next Review Date: 07/19 Preauthorization Yes Review Dates: 07/14, 07/15, 07/16, 07/17, 07/18 Preauthorization

More information

Hereditary deafness and phenotyping in humans

Hereditary deafness and phenotyping in humans Hereditary deafness and phenotyping in humans Maria Bitner-Glindzicz Unit of Clinical and Molecular Genetics, Institute of Child Health, London, UK Correspondence to: Dr Maria Bitner-Glindzicz, Unit of

More information

The carrier rate and mutation spectrum of genes associated with hearing loss in South China hearing female population of childbearing age

The carrier rate and mutation spectrum of genes associated with hearing loss in South China hearing female population of childbearing age Yin et al. BMC Medical Genetics 2013, 14:57 RESEARCH ARTICLE Open Access The carrier rate and mutation spectrum of genes associated with hearing loss in South China hearing female population of childbearing

More information

Cochlear Implant, Bone Anchored Hearing Aids, and Auditory Brainstem Implant

Cochlear Implant, Bone Anchored Hearing Aids, and Auditory Brainstem Implant Origination: 06/23/08 Revised: 10/15/16 Annual Review: 11/10/16 Purpose: To provide cochlear implant, bone anchored hearing aids, and auditory brainstem implant guidelines for the Medical Department staff

More information

3/20/2017. D. Richard Kang, MD, FACS, FAAP Pediatric Otolaryngology Director, ENT Institute Boys Town National Research Hospital

3/20/2017. D. Richard Kang, MD, FACS, FAAP Pediatric Otolaryngology Director, ENT Institute Boys Town National Research Hospital D. Richard Kang, MD, FACS, FAAP Pediatric Otolaryngology Director, ENT Institute Boys Town National Research Hospital Pediatric providers have a reasonable chance to see a child with hearing loss in your

More information

What favorite organism of geneticists is described in the right-hand column?

What favorite organism of geneticists is described in the right-hand column? What favorite organism of geneticists is described in the right-hand column? Model Organism fruit fly?? Generation time 12 days ~ 5000 days Size 2 mm 1500-1800mm Brood size hundreds a couple dozen would

More information

Genetic Testing for Li-Fraumeni Syndrome

Genetic Testing for Li-Fraumeni Syndrome Protocol Genetic Testing for Li-Fraumeni Syndrome (204101) Medical Benefit Effective Date: 10/01/14 Next Review Date: 07/18 Preauthorization Yes Review Dates: 07/14, 07/15, 07/16, 07/17 Preauthorization

More information

Prevalence of the connexin 26 mutation 35delG in nonsyndromic hearing loss in Egypt

Prevalence of the connexin 26 mutation 35delG in nonsyndromic hearing loss in Egypt Prevalence of the connexin 26 mutation 35delG in nonsyndromic hearing loss in Egypt M. W. M. Mustafa Audiology Unit, Sohag University Hospitals, Sohag 82524, Egypt. Correspondence to: Dr. Mohamed Wael

More information

110 DISEASES 3 DISEASES GENE TIC COUNSELING CARRIERMAP Recombine. Others. 30+ minute clinical genetic counseling session.

110 DISEASES 3 DISEASES GENE TIC COUNSELING CARRIERMAP Recombine. Others. 30+ minute clinical genetic counseling session. Recombine CARRIERMAP GENE TIC COUNSELING Genetic diseases, though individually rare, are collectively common; thus, assessing carrier status is one of the most important things you can do for your patients.

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Genetic Testing for Duchenne and Becker Muscular Dystrophy File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_testing_for_duchenne_and_becker_muscular_dystrophy

More information

High incidence of GJB2 gene mutations among assortatively mating hearing impaired families in Kerala: future implications

High incidence of GJB2 gene mutations among assortatively mating hearing impaired families in Kerala: future implications c Indian Academy of Sciences RESEARCH NOTE High incidence of GJB2 gene mutations among assortatively mating hearing impaired families in Kerala: future implications AMRITKUMAR PAVITHRA, JUSTIN MARGRET

More information

ORIGINAL ARTICLE. Autosomal Dominant Inherited Hearing Impairment Caused by a Missense Mutation in COL11A2 (DFNA13)

ORIGINAL ARTICLE. Autosomal Dominant Inherited Hearing Impairment Caused by a Missense Mutation in COL11A2 (DFNA13) ORIGINAL ARTICLE Autosomal Dominant Inherited Hearing Impairment Caused by a Missense Mutation in COL11A2 (DFNA13) Els M. R. De Leenheer, MD; Henricus P. M. Kunst, PhD; Wyman T. McGuirt, MD; Sai D. Prasad,

More information

Christine Yoshinaga-Itano, Ph.D. Professor University of Colorado, Boulder Department of Speech, Language & Hearing Sciences Allison Sedey, Ph.D.

Christine Yoshinaga-Itano, Ph.D. Professor University of Colorado, Boulder Department of Speech, Language & Hearing Sciences Allison Sedey, Ph.D. Christine Yoshinaga-Itano, Ph.D. Professor University of Colorado, Boulder Department of Speech, Language & Hearing Sciences Allison Sedey, Ph.D. Rosalinda Baca, Ph.D. Molly Dalpes, AuD Kristin Uhler,

More information

Patients with CDH23 mutations and the 1555A>G mitochondrial mutation are good candidates for electric acoustic stimulation (EAS)

Patients with CDH23 mutations and the 1555A>G mitochondrial mutation are good candidates for electric acoustic stimulation (EAS) Acta Oto-Laryngologica, 2; 132: 377 384 ORIGINAL ARTICLE Patients with CDH23 mutations and the 55A>G mitochondrial mutation are good candidates for electric acoustic stimulation (EAS) SHIN-ICHI USAMI 1,

More information

Populations Interventions Comparators Outcomes Individuals: With heart transplant

Populations Interventions Comparators Outcomes Individuals: With heart transplant Protocol Laboratory Tests for Heart Transplant Rejection (20168) Medical Benefit Effective Date: 07/01/14 Next Review Date: 05/18 Preauthorization No Review Dates: 05/13, 05/14, 05/15, 05/16, 05/17 This

More information

What Should Audiologists Know about Genetics. Jackie L. Clark, PhD UT Dallas; U Witwatersrand

What Should Audiologists Know about Genetics. Jackie L. Clark, PhD UT Dallas; U Witwatersrand What Should Audiologists Know about Genetics Jackie L. Clark, PhD UT Dallas; U Witwatersrand Some Material and Slides from Annual Summer Genetics Workshop at Gallaudet University; Washington, D.C. Disclaimer

More information

ORIGINAL ARTICLE. Connexin 26 Gene Mutations in Congenitally Deaf Children

ORIGINAL ARTICLE. Connexin 26 Gene Mutations in Congenitally Deaf Children Connexin 26 Gene Mutations in Congenitally Deaf Children Pitfalls for Genetic Counseling ORIGINAL ARTICLE Sandrine Marlin, MD, PhD; Éréa-Noël Garabédian, MD; Gilles Roger, MD; Lucien Moatti, MD; Nicole

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Common Genetic Variants to Predict Risk of Nonfamilial Breast File Name: Origination: Last CAP Review: Next CAP Review: Last Review: common_genetic_variants_to_predict_risk_of_nonfamilial_breast_cancer

More information

Genetic Testing for Single-Gene and Multifactorial Conditions

Genetic Testing for Single-Gene and Multifactorial Conditions Clinical Appropriateness Guidelines Genetic Testing for Single-Gene and Multifactorial Conditions EFFECTIVE DECEMBER 1, 2017 Appropriate.Safe.Affordable 2017 AIM Specialty Health 2069-1217 Table of Contents

More information

Carrier Rates in the Midwestern United States for GJB2 Mutations Causing Inherited Deafness

Carrier Rates in the Midwestern United States for GJB2 Mutations Causing Inherited Deafness ORIGINAL CONTRIBUTION Carrier Rates in the Midwestern United States for GJB2 Mutations Causing Inherited Deafness Glenn E. Green, MD Daryl A. Scott Joshua M. McDonald George G. Woodworth, PhD Val C. Sheffield,

More information

Nonsyndromic Deafness - Molecular Update

Nonsyndromic Deafness - Molecular Update 80 The Open Biology Journal, 2009, 2, 80-90 Nonsyndromic Deafness - Molecular Update Open Access Piatto V.B. *,1, Secches L.V. 1, Arroyo M.A.S. 1, Lopes A.C.P. 2 and Maniglia J.V. 1 1 Department of Otorhinolaryngology,

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Genetic Testing for Marfan Syndrome, Thoracic Aortic Aneurysms and File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_testing_for_marfan_syndrome_thoracic_aortic_aneurysms_and_dissections_and_relat

More information

The Importance of Developing Long Range Plans for Children who are Deaf and Hard of Hearing

The Importance of Developing Long Range Plans for Children who are Deaf and Hard of Hearing The Importance of Developing Long Range Plans for Children who are Deaf and Hard of Hearing Krista S. Heavner, MS CCC-SLP; LSLS Cert AVT Sherri Vernelson, M Ed; LSLS Cert AV Ed ACIA 2014 Nashville, TN

More information

FEP Medical Policy Manual

FEP Medical Policy Manual FEP Medical Policy Manual FEP 2.04.102 Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders Effective Date: April 15, 2017 Related Policies: 2.04.59 Genetic Testing for Developmental

More information

Audiologic and Genetic Determination of Hearing Loss in Osteogenesis Imperfecta

Audiologic and Genetic Determination of Hearing Loss in Osteogenesis Imperfecta Ghent University Hospital Ghent University Audiologic and Genetic Determination of Hearing Loss in Osteogenesis Imperfecta Swinnen F 1, De Leenheer E 1, Coucke P 2, Cremers C 3, Dhooge I 1 1 Department

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,500 108,000 1.7 M Open access books available International authors and editors Downloads Our

More information

RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 22 (1998) Indiana University

RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 22 (1998) Indiana University SPEECH PERCEPTION IN CHILDREN RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 22 (1998) Indiana University Speech Perception in Children with the Clarion (CIS), Nucleus-22 (SPEAK) Cochlear Implant

More information

SNP Array NOTE: THIS IS A SAMPLE REPORT AND MAY NOT REFLECT ACTUAL PATIENT DATA. FORMAT AND/OR CONTENT MAY BE UPDATED PERIODICALLY.

SNP Array NOTE: THIS IS A SAMPLE REPORT AND MAY NOT REFLECT ACTUAL PATIENT DATA. FORMAT AND/OR CONTENT MAY BE UPDATED PERIODICALLY. SAMPLE REPORT SNP Array NOTE: THIS IS A SAMPLE REPORT AND MAY NOT REFLECT ACTUAL PATIENT DATA. FORMAT AND/OR CONTENT MAY BE UPDATED PERIODICALLY. RESULTS SNP Array Copy Number Variations Result: LOSS,

More information

GENETIC AND CLINICAL ANALYSIS OF NONSYNDROMIC HEARING IMPAIRMENT IN PEDIATRIC AND ADULT CASES

GENETIC AND CLINICAL ANALYSIS OF NONSYNDROMIC HEARING IMPAIRMENT IN PEDIATRIC AND ADULT CASES 19 (1), 2016 35-42 DOI: 10.1515/bjmg-2016-0005 ORIGINAL ARTICLE GENETIC AND CLINICAL ANALYSIS OF NONSYNDROMIC HEARING IMPAIRMENT IN PEDIATRIC AND ADULT CASES Xing J, Liu X *, Tian Y, Tan J, Zhao H *Corresponding

More information

Expanded Carrier Screening: What s Best?

Expanded Carrier Screening: What s Best? Expanded Carrier Screening: What s Best? James D Goldberg, MD September 17, 2017 Disclosures James D. Goldberg, M.D. Chief Medical Officer, Counsyl 3 Learning Objectives Guidelines Data Design Practice

More information

Early Educational Placement and Later Language Outcomes for Children With Cochlear Implants

Early Educational Placement and Later Language Outcomes for Children With Cochlear Implants Otology & Neurotology 31:1315Y1319 Ó 2010, Otology & Neurotology, Inc. Early Educational Placement and Later Language Outcomes for Children With Cochlear Implants *Jean Sachar Moog and Ann E. Geers *Moog

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy File Name: Origination: Last CAP Review: Next CAP Review: Last Review: nusinersen_spinraza 03/2017 10/2017 10/2018 10/2017 Description of Procedure or Service Spinal muscular atrophy

More information

Corporate Medical Policy Genetic Testing for Hereditary Hemochromatosis

Corporate Medical Policy Genetic Testing for Hereditary Hemochromatosis Corporate Medical Policy Genetic Testing for Hereditary Hemochromatosis File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_testing_for_hemochromatosis 5/2012 3/2018 3/2019 3/2018

More information

Genetic Testing for Hereditary Hemochromatosis

Genetic Testing for Hereditary Hemochromatosis Medical Policy Manual Genetic Testing, Policy No. 48 Genetic Testing for Hereditary Hemochromatosis Next Review: December 2018 Last Review: December 2017 Effective: February 1, 2018 IMPORTANT REMINDER

More information

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier/Additional Provider

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier/Additional Provider Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier/Additional Provider TEST DISORDER/CONDITION POPULATION TRIAD Submitting laboratory: Exeter RGC Approved: Sept 2013 1. Disorder/condition

More information

Some genes. Genes and language, Part VI: Dan Dediu. Dan Dediu

Some genes. Genes and language, Part VI: Dan Dediu. Dan Dediu Genes and language, Part VI: Some genes DGFS Summer School 2013 Berlin 26th 30th of August, 2013 Language and Genetics Max Planck Institute for Psycholinguistics Nijmegen The Netherlands 1 Overview Part

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_testing_for_rett_syndrome 7/2012 3/2017 3/2018 5/2017 Description of Procedure or Service Rett syndrome

More information

One in every 1,000 newborn suffers from congenital

One in every 1,000 newborn suffers from congenital Rev Bras Otorrinolaringol. V.71, n.2, 216-23, mar./apr. 2005 ARTIGO ORIGINAL REVIEW ARTICLES Molecular genetics of nonsyndromic deafness Vânia B. Piatto 1, Ellen C.T. Nascimento 2, Fabiana Alexandrino

More information

Non-syndromic, autosomal-recessive deafness

Non-syndromic, autosomal-recessive deafness Clin Genet 2006: 69: 371 392 Printed in Singapore. All rights reserved Review Non-syndromic, autosomal-recessive deafness # 2006 The Authors Journal compilation # 2006BlackwellMunksgaard CLINICAL GENETICS

More information

Medical Affairs Policy

Medical Affairs Policy Medical Affairs Policy Service: Cochlear Implants, Bone Anchored Hearing Aids (BAHA), Auditory Brainstem Implants, and Other Hearing Assistive Devices PUM 250-0014 Medical Policy Committee Approval 06/15/18

More information

Supplementary Table 2. Identified causative mutations and/or mutation candidates.

Supplementary Table 2. Identified causative mutations and/or mutation candidates. Supplementary Table 2. Identified causative mutations and/or mutation candidates. Nonsense mutations base change aa change Average depth Result of next generation in 432 patient Hereditary form of the

More information

Original Article GJB2 and SLC26A4 gene mutations in children with non-syndromic hearing loss in Southern China

Original Article GJB2 and SLC26A4 gene mutations in children with non-syndromic hearing loss in Southern China Int J Clin Exp Pathol 2016;9(9):9587-9591 www.ijcep.com /ISSN:1936-2625/IJCEP0030795 Original Article GJB2 and SLC26A4 gene mutations in children with non-syndromic hearing loss in Southern China Yi Xiong

More information