One in every 1,000 newborn suffers from congenital

Size: px
Start display at page:

Download "One in every 1,000 newborn suffers from congenital"

Transcription

1 Rev Bras Otorrinolaringol. V.71, n.2, , mar./apr ARTIGO ORIGINAL REVIEW ARTICLES Molecular genetics of nonsyndromic deafness Vânia B. Piatto 1, Ellen C.T. Nascimento 2, Fabiana Alexandrino 3, Camila A. Oliveira 4, Ana Cláudia P. Lopes 5, Edi Lúcia Sartorato 6, José Victor Maniglia 7 Key words: deafness, non-syndromic, molecular genetics. Summary One in every 1,000 newborn suffers from congenital hearing impairment. More than 60% of the congenital cases are caused by genetic factors. In most cases, hearing loss is a multifactorial disorder caused by both genetic and environmental factors. Molecular genetics of deafness has experienced remarkable progress in the last decade. Genes responsible for hereditary hearing impairment are being mapped and cloned progressively. This review focuses on non-syndromic hearing loss, since the gene involved in this type of hearing loss have only recently begun to be identified. 1 Professor, Department of Anatomy (FAMERP), Pediatrician (Hospital de Base FUNFARME). 2 Medical school undergraduate FAMERP. 3 Biomedics, Ph.D. in Medical Sciences under course UNICAMP. 4 Biomedics, Ph.D. in Medical Sciences under course UNICAMP. 5 Professor, Department of Anatomy FAMERP. 6 Researcher, Laboratory of Human Genetics, Center of Molecular Biology and Genetic Engineering (CBMEG) UNICAMP. 7 Head of the Discipline of Otorhinolaryngology, Executive Director of Medical School, São José do Rio Preto, SP FAMERP. Affiliation: Medical School, São José do Rio Preto, SP (FAMERP) Av. Brigadeiro Faria Lima 5416, Vila São Pedro São José do Rio Preto SP Tel (55 17) Address correspondence to: Vânia Belintani Piatto Rua Frei Baltazar 415 Vila Maria São José do Rio Preto SP. vabp@bol.com.br Paper presented at Simpósio Eventos em Otorrinolaringologia, May 16-17, 2003 (FAMERP), 7º Congresso da Sociedade Centro-Brasileiro de ORL, June 20-21, 2003 (Ribeirão Preto, SP). Article submited on July 01, Article accepted on March 26,

2 INTRODUCTION In developed countries, approximately 1/1,000 children have severe or profound hearing loss at birth or during childhood, at pre-lingual stage. About 60% of the cases have hereditary etiology, 30% of the cases are acquired, and 10% are idiopathic. Non-syndromic forms are responsible for 70% of the cases of hereditary etiology and syndromic cases represent 30% of them. Among the forms of heritage, autonomic recessive is the most frequent one (75%-85%), followed by dominant heritage (12-13%) and X-linked or mitochondrial, with 2-3% of the cases of non-syndromic hearing loss. 1,2 Syndromic or autosomal dominant hearing losses may cause conductive, sensorineural or both losses. Conversely, pre-lingual non-syndromic cases of autosomal recessive losses are almost always sensorineural 1, 2. Syndromic abnormalities caused by rubella, toxoplasmosis, cytomegalovirus, syphilis or use of drugs in gestational period may cause hearing disorders, which are congenital but not genetically-based, such as other syndromic forms of hearing loss. Many of these syndromes have already been described, and genes have been mapped and cloned. 1 Some of the identified genes that cause syndromic forms are also responsible for isolated forms of hearing loss. There does not seem to be a direct correlation between this type of mutations and the association with syndromic or non-syndromic hearing loss. Moreover, analyses of phenotypes together with mutations in some affected families by Pendred or Usher syndrome, for example, revealed that mutating gene of these syndromes may also cause non-syndromic hearing loss. In such cases, it is highly likely that modifying genes are contributing factors 3. The purpose of the present study was to review some genes described to present that, if mutating, cause the most varied forms of non-syndromic hearing loss: autosomal recessive, dominant, X-linked and mitochondrial. We selected articles that were part of OMIM database using MedLine, and the search mechanism used key words such as deafness and non-syndromic. Selected articles were those that provided the more recent information on genes involved and their respective proteins, sites of expression in the cochlea and audiological clinical picture. LITERATURE REVIEW Nomenclature of Non-syndromic Hearing Losses Different chromosome sites of non-syndromic forms of genetic deafness are named under the acronym DFN (from English deafness) followed by letters A or B, meaning autosomal dominant transmission (DFNA) and recessive transmission (DFNB), respectively. When using DFN isolated, it is X-linked deafness. After the letters, there is a whole number, indicating the order of gene discovery. 2 Hearing Physiology To understand the consequences of gene mutations that regulate the hearing process, we have to know about normal cochlear physiology 4. After sound stimulus, sound mechanical energy is converted into electrical signal (mechanic-electrical transduction) in outer hair cells of the cochlea. On the apical surface of these hair cells, there are specialized microvillus - stereocilia - comprising corium with actin and external recover of myosin, which oscillate in response to sound, which is secondary to oval window stapes movement, which moves the liquid that surrounds hair cells. The deflection of neighboring stereocilia opens the transduction channels in them, allowing inflow of potassium from endolymph to both hair cells, causing depolarization of cell membrane and activating calcium channels on the basolateral surface of the membrane, which are sensitive to voltage modifications. There is subsequent inflow of calcium causing release of vesicles that contain neurotransmitters, in the synaptic endings of 8th cranial nerve. Thus, after sound stimulus, hair cells are hyperpolarized with high concentration of intracellular potassium. So that new excitation is made possible, potassium has to be removed. This movement of potassium ions from hair cells to cochlear supporting cells, going back to the endolymph, is made by intercellular and specialized communications, the so-called communicating junctions or gap junctions that exist between supporting cells, fibrocytes of spiral ligament and spiral limbus. 4 Molecular Genetics of Non-Syndromic Hearing Loss Genetically-codified proteins with expression on cochlear hair cells: 1) Non-conventional myosin proteins: Non-conventional myosin proteins form a family that is divided into 16 classes, found in most non-muscular cells 5. They are smaller than muscle myosin and for this reason they are called mini-myosin. These motor proteins form filaments that move in actin filaments using energy generated by ATP hydrolysis. In the cochlea, they have been implied in the formation and movements of expansion of cytoplasmatic membrane, synaptic vesicle movements and transduction signals of outer and inner hair cells. 5 a) Myosin VIIA: it is expressed in inner ear outer hair cells and in a great variety of epithelial cells that present apical microvilosities, in addition to retina photoreceptor cells. In the cochlea, the protein is present along the stereocilia, close to the junction between hair cells and supporting cells and present in the synaptic region, Gene MYO7A, located in chromosome 11 (11q13.5), has 49 exons that codify non-conventional myosin protein VIIA (2215 amino acids). 6 Mutations in the gene cause structural defects of the protein and consequent affections in auditory function, 217

3 responsible for non-syndromic firms of hearing loss, one of profound recessive autosomal transmission DFNB2, comprising different grades of vestibular dysfunction and variable age of onset, and another one that is autosomal dominant DFNA11, whose onset takes place only after complete speech acquisition and causes progressive hearing loss. 6 When the mutations cause also retina cell abnormalities, phenotypic picture is characterized as Usher syndrome. The chromosomic site for one of the genetic types of Usher syndrome USH1B was also mapped in the same region of chromosome 11, responsible for 75% of the cases of USH type 1 7. Usher syndrome is the more frequent cause of hearing loss associated with blindness and vestibular pathology since childhood. Studies on mutation of gene MYO7A that causes DFNB2, DFNB11 and Usher1B were the first ones to show that one single gene could determine both forms of hearing loss, syndromic and non-syndromic 7. b) Myosin XV: non-conventional protein (3,530 amino acids) codified by gene MYO15 with at least 50 exons and located on chromosome 17 (17p11.2). In the inner ear, the expression of this gene seems to be restricted to hair cells, on the cuticular plaque. Mutations of this gene determine DFNB3. 8 c) Myosin VI: gene MYO6 (32 exons), located at chromosome 6 (6q13), codifies non-conventional protein myosin VI (1262 amino acids), concentrated on cuticular plaque of hair cells 1. Mutations determine DFNA22 and DFNB37, characterized by progressive hearing loss, post-lingual, which starts during childhood (8 to 10 years to start symptoms, 6 to 8 years for onset of audiometric affections), progressing to profound level at the age of 50 anos. 9 d) Myosin III: non-conventional protein recently described in a Jewish family of Mosul, in Iraq, codified by gene MYO3A (10p11.1). 10 Mutations determine DFNB30, characterized by bilateral progressive hearing loss that affects primarily high frequencies, starting on the second decade, and at age 50 years, it reaches severe level in high and medium frequencies and moderate level in low frequencies. 10 2) Harmonin: gene site, if mutant, causes DFNB18, and was mapped at chromosome 11 (11p15.1), at the same gene location as USH1C (Usher Syndrome Type IC 11p15.1). 7,11 Gene USH1C (28 exons) codifies a protein that contains domain PDZ, denominated harmonin. At the cochlea, harmonin is restricted to hair cells, in which it is present in the cellular body and stereocilia. In patients with pre-lingual and severe DFNB18, mutation of gene USH1 has been recently detected, located in an alternative exon present in the transcription to the inner ear, but not to the retina transcription 11. Functional characterization of domain corresponding to harmonin protein provides the understanding of the pathogenesis of DFNB18 and USH1C syndrome. 7 3) Villin: protein that belongs to the molecule that contains PDZ domain; it acts as an organizer of submembranous molecular complexes that control and coordinate polymerization of actin for the growth of membrane in stereocilia of inner and outer hair cells. Gene villin (9q32- q34), with 12 exons, codifies protein of the same name, with 465 amino acids and if mutant they are responsible for pre-lingual profound DFNB31. Protein villin is similar to protein harmonin because it shares 95% of its three PDZ domains. 12 4) Cadherin-23: it belongs to the family of transmembrane proteins, dependent on Ca 2+ ions, with over 20 different members, making part of a molecular structure of intercellular adhesion junctions or zones of adhesion (zonnula adherens). Chromosome sites for DFNB12 (10q21-q22) 13 and Usher syndrome Type I (USH1D 10q) 7 were mapped in chromosome 10. Gene CDH23, with 69 exons codifies protein cadherin-23 (3354 amino acids) expressed in both cochlear hair cells, promoting strong adhesion between each of their types, maintaining polarization of plasma membrane depending on occlusion junctions (claudin-14 protein) and cytoskeleton. Mutations of gene CDH23 were detected in families with DFNB12, which presented pre-lingual profound hearing loss 13. Conversely, only deletions or displacements were found in patients with USH1D. 7 Therefore, the type of mutation can have a crucial role in phenotypic expression. 5) Diaphanus-1: it belongs to family of proteins related to formins, involved in cell polarization and cytokinesis. Gene DIAPH1 or HDIA1 (26 exons), located at chromosome 5 (5q31), codifies protein diaphanous-1 (1252 amino acids), 14 homologous to protein diaphanous of Drosophila. At the cochlea, the protein is found in hair cells and external supporting cells, but in small concentrations. Gene mutations affect the cytoskeleton of actin in outer hair cells and cause DFNA1, described in a family in Costa Rica, in which they located the first affected ancestral named Monge. 14 It is characterized by progressive hearing loss that at first affects low frequencies (Konigsmark syndrome, by identification of three families with hearing loss and this audiological pattern). At the age of 40 years, approximately, hearing loss reaches severe level in all frequencies. 14 6) KCNQ4: gene KCNQ4, with 14 exons, mapped in chromosome 1 (1p34), codifies a protein subunit of family 218

4 KCNQ of potassium channels, protein KCNQ4 (695 amino acids). In the cochlea, channels KCNQ4 are expressed not only in outer hair cells, but also in inner hair cells, whose main function is to promote the outflow of potassium from the cells to supporting cells. 15 Mutations of this gene were identified in families affected by progressive hearing loss DFNA2, starting at adolescence or at the age of 20 years, and preferably involving high frequencies, becoming profound within 10 years. 15 7) Otoferlin: gene OTOF, with 48 exons, codified protein otoferlin (1977 amino acids) located at chromosome 2 (2p22-p23), whose mutation determines DFNB9, characterized by pre-lingual profound hearing loss involving all frequencies. 16 Protein otoferlin is expressed in inner hair cells and it is involved in the fusion, triggered by calcium, of synaptic vesicles with the plasma membrane, releasing glutamate neurotransmitter to the afferent innervation system to take the sound message codified by inner hair cells in the form of electrical impulses to the central auditory areas. 16 8) POU4F3: A deletion of only 8 base pairs was the mutation found in gene POU4F3 (2 exons), located in chromosome 5 (5q31), determining DFNA15, starting between 18 and 30 years, progressive, and which reaches moderate to severe level at the age of 50, approximetaly. 17 Gene POU4F3 codifies transcription factor of the same name (338 amino acids), belonging to the family of proteins of domain POU. In both hair cells in the cochlea, gene POU4F3 seems to express the migration of the same layers of supporting cells for the hair cell layer of the lumen in addition to their maturation and survival. 17 Proteins genetically codified with expression on cochlear non-sensorial cells: 1) Protein connexin: Protein connexin is the structural component of intercellular gap junctions, which are responsible for flow of potassium of supporting cells for fibrocytes of spiral ligament and spiral limbus back to endorphin, after it has been out from the hair cells. a) Connexin 26: in 1997, gene connexin 26 (13q11-12) was discovered, whose mutations caused DFNA3 and DFNB1. 18 It has taken to the assumption that gene Cx26 or GJB2, with only one exon, codifies protein connexin 26 (226 amino acids), which can be responsible for both forms of hearing loss. Hearing loss is characterized by being pre-lingual, non-progressive, profound, with high threshold values in all frequencies. 18 b) Connexin 31: it has not been determined yet if protein connexin 31 (270 amino acids) is present in all gap junctions of the inner ear. The site of Cx31 or GJB3, in chromosome 1 (1p34) is the same for gene KCNQ4, expressed in both hair cells, and if mutant, it causes DFNA2. 19 Owing to that, mutations of gene Cx31 also cause dominant hearing loss, but even with the expression in different site of gene KCNQ4, both received the same name DFNA2. c) Connexin 30: the gene that codifies connexin 30 (261 amino acids) is located in chromosome 13 (13q12) 20 and if mutant it causes DFNA3 and DFNB1 (both forms also caused by Cx26). If no mutation is found in gene Cx26 or in heterozygote patients for 35delG, mutations of gene Cx30, by its close relation (about 76% of identical amino acids) and proximity of its chromosomic location to gene Cx26, they may be considered responsible for hearing loss, named similarly to Cx26. This fact is explained, in addition to proximity, by the fact that Cx26 and Cx30 may form heterotopic channels of connexons and they have the same cellular distribution in the cochlea. Therefore, pathophysiological hypotheses concerning hearing loss associated with Cx26 and Cx30 are similar. 20 2) Pendrin: Protein pendrin (780 amino acids) is codified by gene PDS (21 exons), located at chromosome 7. Mutations in this gene are responsible both by Pendred Syndrome (7q21-34) and DFNB4 (gene SLC26A4 7q31). 21 DFNB4 is characterized by progressive hearing loss and widening of vestibular aqueduct, without thyroid affection. In the mature cochlea, protein pendrin is expressed in prominent spiral cells and cells adjacent to external spiral sulcus. 21 3) Claudin-14: gene CLDN14, located in chromosome 21 (21q22), codified protein claudin (239 amino acids), one of the components of gap junctions or tight junctions. 22 Occlusion or gap junctions limit the passive diffusion of ions and small molecules through intercellular space, in addition to maintaining cellular polarity together with cytoskeleton and adhesion junctions (cadherin-23 protein). In the cochlea, the gene is expressed in hair cells and supporting cells. Mutations of this gene are responsible for DFNB ) Cocline: protein cocline (550 amino acids) is codified by COCH (11 exons), located in chromosome 14 (14q12- q13). In the cochlea, the gene is expressed in spiral ganglion and extracellular matrix especially spiral limbus, spiral ligament and bone spiral lamina. 23 Mutations are responsible for DFNA9, which starts between the ages of 20 and 30 years, approximately. Initially, it is profound in high frequencies with variable progression to anacusis at the age of years. The spectrum of vestibular involvement varies from absence of symptoms to presence of vertigo and vestibular hypofunction. Mutations of gene COCH may be one of the genetic factors that contribute to symptoms of Mèniére Disease, and this hypothesis should be 219

5 considered in patients with symptoms of the disease. 23 Histopathological analyses of temporal bone in patients with DFNA9 showed deposits of mucopolysaccharides in cochlear and vestibular nerve channels. These findings suggest that deposits may take to degeneration of inner ear neural fibers, causing hearing loss. 1 5) EYA4: gene EYA4 (21 exons), a member of family EYA homologous to Drosophila eyes absent (regulator of ocular development of Drosophila), was mapped in chromosome 6 (6q ) that codifies protein EYA4 (639 amino acids). 24 Genes EYA are expressed in different tissues at the beginning of embryogenesis, and even though each gene EYA has one single pattern of expression, there is major overlapping, that is, EYA1 and EYA4 are both expressed in the optic vesicle and in its derivates. Differently from the phenotype resulting from mutations in gene EYA1 (Brachio-Oto-Renal Syndrome), no congenital anomaly is part of phenotype of DFNA10, characterized by progressive hearing loss whose onset is from 2nd to 5th decades, progressing from severe to profound loss. Losses start in medium frequencies and eventually involve low and high frequencies. 24 6) POU3F4: Gene POU3F4 (1 exon), mapped in chromosome X (Xq21.1) is responsible for transcription regulating elements. 25 Expression of gene POU3F4 in the development of the inner ear is restricted to the mesenchyma. Transcription starts when mesenchyma is condensed to originate the optical capsule and protein POU3F4 (361 amino acids), remaining in the nuclei of mesenchymal cells. They then migrate to cavitary regions of temporal bone to form scala vestibularis, scale tympany and internal acoustic canal. In adult cochlea, the gene is expressed in the fibrocytes of spiral ligament. Mutations in these genes cause DFN3, the first non-syndrome form that is X-linked. It has a unique phenotype because affected patients present conductive hearing loss that is probably caused by fixation of stapes, together with progressive profound hearing loss. 25 Genetically codified proteins with expression on tectorial membrane: 1) Collagen XI (alpha2 chain): Collagen XI protein, codified by gene COL11A2 (62 exons) located in chromosome 6, is one of the components of tectorial membrane. 26 It is an acellular membrane comprising many different types of collagen (II, V, IX, XI), non-collagen proteins and proteoglicans, and it is involved in deflection of ciliary bundle of cochlear outer hair cells, immediately after sound stimulus. 5 Mutations of gene COL11A2 cause both DFNA13 (6p21), such as Stickler syndrome Type 2 (STL2 6p21.3, progressive myopia, early vitreo-retina and articular degeneration, facial hypoplasia, deafness). DFNA13 is characterized by post-lingual progressive loss starting from the 2nd and 4th decades of life and there are some rare patients with vestibular disorders. 26 2) Alpha-tectorine: many different types of cells synthesize alpha-tectorine protein during development of the inner ear. Due to sequence of DNA in TECTA gene, it is assumed that tectorine protein is synthesized from a precursor adjacent to plasma membrane, via glycosil-phosphatidyninositol, released from the membrane by proteolytic cleavage of precursor. Gene TECTA (23 exons), located in chromosome 11, codifies alpha-tectorine protein (2155 amino acids) and it is one of the components of tectorial membrane. 27 Mutations in gene cause two forms of autosomal dominant hearing loss (DFNA8 and DFNA12 11q22-24, both pre-lingual and they may be progressive and non-progressive) and an autosomal recessive form (DFNB21 11q, pre-lingual, severe to profound). 27 Phenotypic expression may range depending on the occurrence of impaired alleles, because s Swiss family was identified as possibly being a digenic penetrance of hearing loss, involving location of DFNA12, in chromosome 11, and location DFNA2 in chromosome Forms of hearing loss caused by mitochondrial DNA affections: Diseases related to mitochondrial DNA are transmitted to both genders, only by the mother, and they may be syndromic or non-syndromic. Mitochondral DNA codifies 13 RNA messenger (RNA-m), 2 RNA ribosomic (RNA-r) and 22 RNA-transporters (RNA-t). Mutation 1555A->G was detected in mitochondrial gene 12S rrna in patients with family hearing loss and also in isolated cases of hearing loss induced by the use of aminoglycoside antibiotics. 29 This mutation takes susceptible subjects to hearing loss after treatment with aminoglycosides in concentrations that would not normally affect hearing. 29 To present, other described non-syndromic mitochondrial mutations that cause hearing loss followed or not by other affections are located in gene RNA-transporter gene trna Ser (UCN): 7445A->G= keratoderm palmoplantar; 7472insC= neurological dysfunction ataxia, dysarthria and myoclonus; 7510T->C and 7511T->C= only hearing loss. Syndromic mitochondrial mutations can also be located in RNA-t, causing hearing loss associated with neuromuscular syndrome or diabetes mellitus. Recent studies suggested that mitochondrial mutations, such as deletions del4977 pb, del4834 pb and del3867 pb may be responsible for family cases of presbyacusis. 1,3 Otosclerosis Hearing loss caused by clinical otosclerosis has prevalence of 0.2 to 1% among Caucasian adults. The mean age of onset is 3rd decade and 90% of affected patients are 220

6 below the age of 50 years at the time of diagnosis. Conductive hearing loss is developed when the focus invades stapedial-vestibular articulation, on the oval window, interfering with free movement of stapes. Profound sensorineural hearing loss, reaching all frequencies, may also be present, characterizing cochlear otosclerosis, in about 10% of affected subejcts. 1,3 Location of OTSC1, OTSC2 and OTSC3, respectively, in chromosomes 15 (15q26.1-qter), 7 (7q34-q36) and 6 (6p ) were identified in families with autosomal dominant transmission for otosclerosis. However, in most cases, etiology remains unknown. 30 DISCUSSION The fact that one same mutation leads to different clinical presentations may be the indication that the knowledge of molecular genetics has not reached the details of auditory dynamics yet, as well as the myriad of neurological abnormalities involved. However, it seems to move towards that. New mutations are described, new genes are cloned and mapped, and there are about 34 genes already identified to form recessive autosomal non-syndromic forms, 40 genes for dominant autosomal forms, 8 for X-linked forms, and 2 genes for mitochondrial heritage. 1,2 Despite the significant advances in understanding molecular basis of hearing loss, precise identification of genetic cause still presents some difficulties, owing to phenotypical variation. First we have to rule out non-genetic causes, then syndromic causes, and then look for nonsyndromic causes. Most non-syndromic recessive autosomal forms cause pre-lingual loss that is severe to profound and not associated with radiological findings. Exception to this rule are DFNB2 (MYO7A) 6, DFNB8/10 (TMPRSS3) and DFNB16 (STRC) 1,3 in which age at onset may occur in later phases of childhood; DFNB4 (SLC26A4) 21 in which there may be dilation of vestibular aqueduct and endolymphatic sac, and DFNA9 (COCH) 23 that may be associated with degeneration of cochlear nerve fibers by deposits of mucopolysaccharides. Not very frequent phenotypes in autosomal dominant forms of hearing loss include low frequency hearing loss in DFNA1 (HDIA1) and DFNA6/14/38 (WFS1), 1,3 medium frequency loss in DFNA8/12 (TECTA) 27 and DFNA13 (COL11A2) 26 and vestibular signs and symptoms in DFNA9 (COCH) 23 and sometimes in DFNA11 (MYO7A). 6 Owing to the great variety of genes involved, and in view of costs, assessment should be the most specific possible, maybe based on clinical picture. Expectations concerning results and conclusion in relation to them should be very careful. Otorhinolaryngologists, pediatricians and geneticists should be aware of this phenotypical variety and especially that DFNB1 is the most frequent form of non-syndromic recessive autosomal hearing loss; molecular investigation should be made in such cases, reducing the costs of complementary tests normally requested for the investigation of patients with hearing loss. Facility and benefits of genetic tracking, especially for mutations that cause DFNB1, should make it an important public health issue so that determinations of early diagnosis of hearing loss can be properly established. Molecular tests can not help all children with hearing loss and it is not reasonable to wait for these tests to replace already existing screening programs. Whether or not screening programs with acoustic otoemissions and brainstem evoked audiometry should include molecular tests for DFNB1 is another different issue. Genetic counseling of families whose parents have normal hearing and one single hearing child has been very difficult owing to nonexistence of genetic tests to identify specific mutations, especially in developing countries. In most cases, considering the important role of environmental causes of pre-lingual hearing loss, it is difficult to recognize whether hearing loss is of genetic origin. It is essential to inform healthcare professionals, the general population, and the hearing impaired population about genetic advances, and to train professionals on genetic counseling. Genetic tests for hearing loss are a reality because they have changed the assessment pattern of patients with hearing impairment and should be used by physicians for diagnostic purposes. In the next years, there will certainly be an expansion in the role of these tests and counseling will not be limited to reproductive results. Even though tests may be confusing for medical professionals that are not used to them, in daily practice, they are an important part of medical care. New findings and technologies will expand and enhance complexity of these tests and it will be on Otorhinolaryngologists and Pediatricians to get familiar with recent discoveries and include them in their investigation protocols - the genetic tests. Reaction to sounds is the first sign that a child has his auditory capacity preserved. Owing to delay in speech acquisition, absence of reaction to sounds or other disorders, parents are the first ones to suspect of hearing loss. The delay between suspicion and diagnosis reduces significantly the possibilities of rehabilitation, because if intervention does not take place early, it will cause communication deficits that have significant morbidity, which can be manifested by paucity of social activities and professional opportunity losses. Conversely, it is surprising that some parents and even some professionals hesitate to accept hearing loss, considering it as unimportant, translating lack of knowledge about the importance of auditory function for the development of conceptual processes that support human s reasoning and speech. REFERENCES 1. Bitner-Glindzicz M. Hereditary deafness and phenotyping in humans. Br Med Bull 2002; 63:

7 2. Van Laer L, Cryns K, Smith RJ, Van Camp G. Nonsyndromic hearing loss. Ear Hear 2003; 24: Cryns K, Van Camp G. Deafness genes and their diagnostic applications. Audiol Neurootol 2004; 9: Davis RL. Gradients of neurotrophins, ion channels, and tuning in the cochlea. Neuroscientist 2003; 9: Libby RT, Steel KP. The roles of unconventional myosins in hearing and deafness. Essays Biochem 2000; 35: Tamagawa Y, Ishikawa, K, Ishida T, Kitamura K, Makino S, Tsuru T, Ichimura K. Phenotype of DFNA11: a nonsyndromic hearing loss caused by a myosin VIIA mutation. Laryngoscope 2002; 112: Ahmed ZM, Riazuddin S, Wilcox ER. The molecular genetics of Usher syndrome. Clin Genet 2003; 63: Belyantseva IA, Boger ET, Friedman TB. Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci USA 2003; 25: Ahmed ZM, Morell RJ, Riazuddin S, Gropman A, Shaukat S, Ahmad MM, et al. Mutations of MYO6 are associated with recessive deafness, DFNB37. Am J Hum Genet 2003; 72: Walsh T, Walsh V, Vreugde S, Dertzano R, Shahin H, Haika, et al. From flies eyes to our ears: mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30. Proc Natl Acad Sci USA 2002; 99: Johnson KR, Gagnon LH, Webb LS, Peters LL, Hawes NL, Chang B, Zheng QY. Mouse models of UHS1C and DFBN18: phenotypic and molecular analyses of two new spontaneous mutations of the Ush1c gene. Hum Mol Genet 2003; 12: Mburu P, Mustapha M, Varela A, Weil D, El-Amraoui A, Holme RH, et al. Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nat Genet 2003; 34: Bork JM, Morell RJ, Khan S, Riazuddin S, Wilcox ER, Friedman TB, Griffith AJ. Clinical presentation of DFNB12 and Usher syndrome type 1D. Adv Otorhinolaryngol : Leon PE, Lalwani AK. Auditory phenotype of DFNA1. Adv Otorhinolaryngol 2002; 61: De Leenheer EM, Ensink RJ, Kunst HP, Marres HA, Talebizadeh Z, Declau F, et al. DFNA2/KCNQ4 and its manifestations. Adv Otorhinolaryngol 2002; 61: Denoyelle F, Petit C. DFNB9. Adv Otorhinolaryngol 2002; 61: Wiess S, Gottfried I, Mayrose I, Khare SL, Xiang M, Dawson SJ, Avraham KB. The DFNA15 deafness mutation affects POU4F3 protein stability, localization, and transcriptional activity. Mol Cell Biol 2003; 23: Wang HL, Chang WT, Li AH, Yeh TH, Wu CY, Chen MS, Huang PC. Functional analysis of connexin-26 mutants associated with hereditary recessive deafness. J Neurochem 2003; 84: Mhatre AN, Weld E, Lalwani AK. Mutation analysis of Connexin 31 (GJB3) in sporadic non-syndromic hearing impairment. Clin Genet 2003; 63: Del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ, Alvare Telleria D, Menendez I, Moreno F. A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N Engl J Med 2002; 346: Wilcox ER, Everett LA, Li XC, Lalwani AK, Green ED. The PDS gene, Pendred syndrome and non-syndromic deafness DFNB4. Adv Otorhinolaryngol 2000; 56: Ahmed ZM, Riazuddin S, Friedman TB, Riazuddin S, Wilcox ER, Griffith AJ. Clinical manifestations of DFNB29 deafness. Adv Otorhinolaryngol 2002; 61: Usami S, Takahashi K, Yuge I, Ohtsuka A, Namba A, Abe S, et al. Mutations in the COCH gene are a frequent cause of autosomal dominant progressive cochleo-vestibular dysfunction, but not of Ménière s disease. Eur J Hum Genet 2003; 11: De Leenheer EM, Huygen PL, Wayne S, Verstreken M, Declau F, Van Camp G, et al. DFNA10/EYA4 the clinical picture. Adv Otorhinolaryngol 2002; 61: Cremers CW, Snik AF, Huygen PL, Joosten FB, Cremers FP. X- linked mixed deafness syndrome with congenital fixation of the stapedial footplate and perilymphatic gusher (DFNB3). Adv Otorhinolaryngol 2002; 61: De Leenheer EM, McGuirt WT, Kunst HP, Huygen PL, Smith RJ, Cremers CW. The phenotype of DFNA13/COL11A2. Adv Otorhinolaryngol 2002; 61: Denoyelle F, Mustapha M, Petit C. DFNB21. Adv Otorhinolaryngol 2002; 61: Borg E, Samuelsson E, Dahal N. Audiometric characterization of a family with digenic autosomal, dominant, progressive sensorineural hearing loss. Acta Otolaryngol 2000; 120: del Castillo FJ, Rodriguez-Ballesteros M, Martin Y, Arellano B, Gallo-Teran J, Morales-Angulo C, et al. Heteroplasmy for the 1555A->G mutation in the mitochondrial 12S rrna gene in six Spanish families with non-syndromic hearing loss. J Med Genet 2003; 40: Van Den Bogaert K, Govaerts PJ, Schatteman I, Brown MR, Caethoven G, Offeciers FE, et al. A second gene for otosclerosis, OTSC2, maps to chromosome 7q Am J Hum Genet 2001; 68:

Prevalence of Hearing Impairment

Prevalence of Hearing Impairment Prevalence of Hearing Impairment 28 million Americans 2 million profoundly deaf 1/1000 congenitally deaf 1/3 impaired by age 65 1/2 impaired by age 80 NIDCD National Strategic Research Plan, 1989 Genetic

More information

2. stereocilia make contact with membrane, feel vibration. Tiplink is deflected, allows ions to go inside cell body and chemical signal is generated.

2. stereocilia make contact with membrane, feel vibration. Tiplink is deflected, allows ions to go inside cell body and chemical signal is generated. Hearing Loss 1. Most common sensory deficit in human 2. 3 in ten people over age 60 have hearing loss 3. At least 1.4 million children have hearing problems 4. Estimated that 3 in 1,000 infants are born

More information

Genetic Hearing Loss in Children

Genetic Hearing Loss in Children Genetic Hearing Loss in Children José Faibes Lubianca & Ricardo Godinho The prevalence of genetic hearing loss reaches very high numbers. In developed countries, about 50% of the cases of pre-lingual severe

More information

Nonsyndromic Deafness - Molecular Update

Nonsyndromic Deafness - Molecular Update 80 The Open Biology Journal, 2009, 2, 80-90 Nonsyndromic Deafness - Molecular Update Open Access Piatto V.B. *,1, Secches L.V. 1, Arroyo M.A.S. 1, Lopes A.C.P. 2 and Maniglia J.V. 1 1 Department of Otorhinolaryngology,

More information

Genetic Hearing Impairment

Genetic Hearing Impairment Genetic Hearing Impairment Advances in Oto-Rhino-Laryngology Vol. 61 Series Editor W. Arnold Munich Genetic Hearing Impairment Its Clinical Presentations Volume Editors Cor W.R.J. Cremers Richard J.H.

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Genetic Testing for Hereditary Hearing Loss File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_testing_for_hereditary_hearing_loss 10/2013 7/2018 7/2019

More information

Aim: To develop a screening in order to determine

Aim: To develop a screening in order to determine Rev Bras Otorrinolaringol 2007;73(3):412-7. REVIEW ARTICLE Diagnosis routine and approach in genetic sensorineural hearing loss Fatima Regina Abreu Alves 1, Fernando de Andrade Quintanilha Ribeiro 2 Keywords:

More information

Usher Syndrome: When to Suspect it and How to Find It

Usher Syndrome: When to Suspect it and How to Find It Usher Syndrome: When to Suspect it and How to Find It Margaret Kenna, MD, MPH Katherine Lafferty, MS, CGC Heidi Rehm, PhD Anne Fulton, MD Harvard Medical School Harvard Medical School Center for Hereditary

More information

The Genetics of Usher Syndrome

The Genetics of Usher Syndrome The Genetics of Usher Syndrome Heidi L. Rehm, PhD, FACMG Assistant Professor of Pathology, BWH and HMS Director, Laboratory for Molecular Medicine, PCPGM DNA is Highly Compacted into Chromosomes The DNA

More information

What is the effect on the hair cell if the stereocilia are bent away from the kinocilium?

What is the effect on the hair cell if the stereocilia are bent away from the kinocilium? CASE 44 A 53-year-old man presents to his primary care physician with complaints of feeling like the room is spinning, dizziness, decreased hearing, ringing in the ears, and fullness in both ears. He states

More information

Unit VIII Problem 9 Physiology: Hearing

Unit VIII Problem 9 Physiology: Hearing Unit VIII Problem 9 Physiology: Hearing - We can hear a limited range of frequency between 20 Hz 20,000 Hz (human hearing acuity is between 1000 Hz 4000 Hz). - The ear is divided into 3 parts. Those are:

More information

Cochlear anatomy, function and pathology I. Professor Dave Furness Keele University

Cochlear anatomy, function and pathology I. Professor Dave Furness Keele University Cochlear anatomy, function and pathology I Professor Dave Furness Keele University d.n.furness@keele.ac.uk Aims and objectives of these lectures Introduction to gross anatomy of the cochlea Focus (1) on

More information

Usher Syndrome and Progressive Hearing Loss

Usher Syndrome and Progressive Hearing Loss Usher Syndrome and Progressive Hearing Loss Margaret A. Kenna, MD, MPH Otolaryngology and Communication Enhancement Boston Children s Hospital Professor of Otology and Laryngology Harvard Medical School

More information

GENETIC TESTING FOR HEREDITARY HEARING LOSS

GENETIC TESTING FOR HEREDITARY HEARING LOSS GENETIC TESTING FOR HEREDITARY HEARING LOSS Non-Discrimination Statement and Multi-Language Interpreter Services information are located at the end of this document. Coverage for services, procedures,

More information

Non-syndromic, autosomal-recessive deafness

Non-syndromic, autosomal-recessive deafness Clin Genet 2006: 69: 371 392 Printed in Singapore. All rights reserved Review Non-syndromic, autosomal-recessive deafness # 2006 The Authors Journal compilation # 2006BlackwellMunksgaard CLINICAL GENETICS

More information

Protocol. Genetic Testing for Nonsyndromic Hearing Loss

Protocol. Genetic Testing for Nonsyndromic Hearing Loss Protocol Genetic Testing for Nonsyndromic Hearing Loss (20487) Medical Benefit Effective Date: 04/01/14 Next Review Date: 01/15 Preauthorization Yes Review Dates: 01/14 The following Protocol contains

More information

Auditory System Feedback

Auditory System Feedback Feedback Auditory System Feedback Using all or a portion of the information from the output of a system to regulate or control the processes or inputs in order to modify the output. Central control of

More information

Ear. Utricle & saccule in the vestibule Connected to each other and to the endolymphatic sac by a utriculosaccular duct

Ear. Utricle & saccule in the vestibule Connected to each other and to the endolymphatic sac by a utriculosaccular duct Rahaf Jreisat *You don t have to go back to the slides. Ear Inner Ear Membranous Labyrinth It is a reflection of bony labyrinth but inside. Membranous labyrinth = set of membranous tubes containing sensory

More information

Cochlear anatomy, function and pathology III. Professor Dave Furness Keele University

Cochlear anatomy, function and pathology III. Professor Dave Furness Keele University Cochlear anatomy, function and pathology III Professor Dave Furness Keele University d.n.furness@keele.ac.uk Aims and objectives of this lecture Focus (3) on the cochlear lateral wall and Reissner s membrane:

More information

Cochlear Implantation in Individuals with Usher Syndrome

Cochlear Implantation in Individuals with Usher Syndrome Cochlear Implantation in Individuals with Usher Syndrome Xue Zhong Liu, M.D., PhD., F.A.C.S. Professor of Otolaryngology, Human Genetics, Biochemistry, and Pediatrics Vice Chairman & Director of Miami

More information

Structure, Energy Transmission and Function. Gross Anatomy. Structure, Function & Process. External Auditory Meatus or Canal (EAM, EAC) Outer Ear

Structure, Energy Transmission and Function. Gross Anatomy. Structure, Function & Process. External Auditory Meatus or Canal (EAM, EAC) Outer Ear Gross Anatomy Structure, Energy Transmission and Function IE N O ME 1 Structure, Function & Process 4 External Auditory Meatus or Canal (EAM, EAC) Outer third is cartilaginous Inner 2/3 is osseous Junction

More information

Genetic stories behind village sign languages

Genetic stories behind village sign languages Genetic stories behind village sign languages the co-evolution of deafness with sign language June, 2013 Minerva-Gentner Symposium on Emergent Languages and Cultural Evolution Berg en Dal, The Netherlands

More information

Surgical and Non-Surgical Causes of Progressive Hearing Loss in Children: What can be done about it?

Surgical and Non-Surgical Causes of Progressive Hearing Loss in Children: What can be done about it? Surgical and Non-Surgical Causes of Progressive Hearing Loss in Children: What can be done about it? Daniela Carvalho, MD, MMM, FAAP Professor, Surgery Department UCSD Pediatric Otolaryngology Rady Children

More information

Hereditary deafness and phenotyping in humans

Hereditary deafness and phenotyping in humans Hereditary deafness and phenotyping in humans Maria Bitner-Glindzicz Unit of Clinical and Molecular Genetics, Institute of Child Health, London, UK Correspondence to: Dr Maria Bitner-Glindzicz, Unit of

More information

ORIGINAL ARTICLE. Autosomal Dominant Inherited Hearing Impairment Caused by a Missense Mutation in COL11A2 (DFNA13)

ORIGINAL ARTICLE. Autosomal Dominant Inherited Hearing Impairment Caused by a Missense Mutation in COL11A2 (DFNA13) ORIGINAL ARTICLE Autosomal Dominant Inherited Hearing Impairment Caused by a Missense Mutation in COL11A2 (DFNA13) Els M. R. De Leenheer, MD; Henricus P. M. Kunst, PhD; Wyman T. McGuirt, MD; Sai D. Prasad,

More information

Some genes. Genes and language, Part VI: Dan Dediu. Dan Dediu

Some genes. Genes and language, Part VI: Dan Dediu. Dan Dediu Genes and language, Part VI: Some genes DGFS Summer School 2013 Berlin 26th 30th of August, 2013 Language and Genetics Max Planck Institute for Psycholinguistics Nijmegen The Netherlands 1 Overview Part

More information

Genetic Testing for Hereditary Hearing Loss Section 2.0 Medicine Subsection 2.04 Pathology/Laboratory

Genetic Testing for Hereditary Hearing Loss Section 2.0 Medicine Subsection 2.04 Pathology/Laboratory 2.04.87 Genetic Testing for Hereditary Hearing Loss Section 2.0 Medicine Subsection 2.04 Pathology/Laboratory Effective Date 1/30/2015 Original Policy Date 1/30/2015 Next Review Date January 2016 Description

More information

Genetics of Hearing Loss

Genetics of Hearing Loss Genetics of Hearing Loss Daryl A. Scott MD/PhD Molecular & Human Genetics 1/20/2015 Why do we care? 1 100% 75% Hearing Loss 500:1000 50% 314:1000 25% 1:1000 17:1000 Newborn 18 yrs 65 yrs 75 yrs 60% Members

More information

A genetic approach to understanding auditory function

A genetic approach to understanding auditory function A genetic approach to understanding auditory function Karen P. Steel 1 & Corné J. Kros 2 Little is known of the molecular basis of normal auditory function. In contrast to the visual or olfactory senses,

More information

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier/Additional Provider

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier/Additional Provider Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier/Additional Provider TEST DISEASE/CONDITION POPULATION TRIAD Submitting laboratory: London North East RGC GOSH Approved: September

More information

Audiological Evaluation of Affected Members from a Dutch DFNA8/12 (TECTA) Family

Audiological Evaluation of Affected Members from a Dutch DFNA8/12 (TECTA) Family : JARO 8: 1 7 (2006) DOI: 10.1007/s10162-006-0060-9 JARO Journal of the Association for Research in Otolaryngology Audiological Evaluation of Affected Members from a Dutch DFNA8/12 (TECTA) Family RUTGER

More information

Usher Syndrome: Why a definite diagnosis matters

Usher Syndrome: Why a definite diagnosis matters Usher Syndrome: Why a definite diagnosis matters Margaret Kenna, MD, MPH Katherine Lafferty, MS, CGC Heidi Rehm, PhD Anne Fulton, MD Boston Children s Hospital Harvard Medical School Harvard Medical School

More information

Auditory Neuropathy Spectrum Disorder. Yvonne S. Sininger PhD Professor of Head & Neck Surgery University of California Los Angeles

Auditory Neuropathy Spectrum Disorder. Yvonne S. Sininger PhD Professor of Head & Neck Surgery University of California Los Angeles Auditory Neuropathy Spectrum Disorder Yvonne S. Sininger PhD Professor of Head & Neck Surgery University of California Los Angeles 1 Financial Disclosure Information I have no relevant financial relationship

More information

Index 341. Cadherin, 23, Calcium, binding proteins, dysregulation, ARHL, hair cell damage, 285

Index 341. Cadherin, 23, Calcium, binding proteins, dysregulation, ARHL, hair cell damage, 285 Index A1555G mutation, 226 Acidity, endolymph, 71 Acoustic overstimulation axon growth, 263 264 effect on central auditory system, 263 265 effects in cat, 265 effects in chinchilla, 264 fiber degeneration

More information

Genetics of Hearing Loss Updates

Genetics of Hearing Loss Updates Genetics of Hearing Loss 2013 Updates Definitions Hearing loss any degree of impairment of the ability to apprehend sound Deaf people with profound hearing loss such that they cannot benefit from amplification

More information

So now to The Ear. Drawings from Max Brodel, an Austrian artist who came to Johns Hopkins in the 1920s. My point in showing this figure is to

So now to The Ear. Drawings from Max Brodel, an Austrian artist who came to Johns Hopkins in the 1920s. My point in showing this figure is to So now to The Ear. Drawings from Max Brodel, an Austrian artist who came to Johns Hopkins in the 1920s. My point in showing this figure is to emphasize the intricate and well-protected structure of the

More information

Auditory System. Barb Rohrer (SEI )

Auditory System. Barb Rohrer (SEI ) Auditory System Barb Rohrer (SEI614 2-5086) Sounds arise from mechanical vibration (creating zones of compression and rarefaction; which ripple outwards) Transmitted through gaseous, aqueous or solid medium

More information

Chapter 3: Anatomy and physiology of the sensory auditory mechanism

Chapter 3: Anatomy and physiology of the sensory auditory mechanism Chapter 3: Anatomy and physiology of the sensory auditory mechanism Objectives (1) Anatomy of the inner ear Functions of the cochlear and vestibular systems Three compartments within the cochlea and membranes

More information

Introduction. IAPA: June 04 1

Introduction. IAPA: June 04 1 Introduction Conflicting views on the prevalence and nature of otoacoustic emission [OAE] abnormalities in ARNSHL families (Morell et al, 1998; Cohn & Kelley, 1999). Detailed study of OAEs in greater number

More information

FEP Medical Policy Manual

FEP Medical Policy Manual FEP Medical Policy Manual Effective Date: July 15, 2018 Related Policies: 2.04.102 Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders Genetic Testing for Hereditary Hearing Loss

More information

Genetic Testing for Hereditary Hearing Loss

Genetic Testing for Hereditary Hearing Loss Protocol Genetic Testing for Hereditary Hearing Loss (20487) Medical Benefit Effective Date: 01/01/18 Next Review Date: 11/18 Preauthorization Yes Review Dates: 01/14, 11/14, 11/15, 11/16, 11/17 Preauthorization

More information

DIAGNOSIS Causes/Etiology of Hearing Loss

DIAGNOSIS Causes/Etiology of Hearing Loss DIAGNOSIS Causes/Etiology of Hearing Loss DIAGNOSIS Causes/Etiology of Hearing Loss VI. How Do We Hear? Sound waves enter our ears and are amplified by the ear drum and middle ear bones (ossicles), allowing

More information

Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium!

Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! SECTION 17-5! Equilibrium sensations originate within the inner ear, while hearing involves the detection and interpretation of sound waves!

More information

Chapter 17, Part 2! Chapter 17 Part 2 Special Senses! The Special Senses! Hearing and Equilibrium!

Chapter 17, Part 2! Chapter 17 Part 2 Special Senses! The Special Senses! Hearing and Equilibrium! Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! SECTION 17-5! Equilibrium sensations originate within the inner ear, while hearing involves the detection and interpretation of sound waves!

More information

Genetics of Hearing Loss

Genetics of Hearing Loss 2 Genetics of Hearing Loss Ella Shalit and Karen B. Avraham 1. Introduction The revolution in genetics in the past decades has enabled identification of many of the genes associated with human hereditary

More information

Pediatric Temporal Bone

Pediatric Temporal Bone Pediatric Temporal Bone Suresh K. Mukherji, MD, FACR Professor and Chief of Neuroradiology Professor of Radiology, Otolaryngology Head Neck Surgery, Radiation Oncology and Periodontics & Oral Medicine

More information

The cochlea: auditory sense. The cochlea: auditory sense

The cochlea: auditory sense. The cochlea: auditory sense Inner ear apparatus 1- Vestibule macula and sacculus sensing acceleration of the head and direction of gravity 2- Semicircular canals mainly for sensing direction of rotation of the head 1 3- cochlea in

More information

Temporal bone imaging in osteogenesis imperfecta patients with hearing loss

Temporal bone imaging in osteogenesis imperfecta patients with hearing loss Temporal bone imaging in osteogenesis imperfecta patients with hearing loss F. Swinnen 1, J. Casselman 2, P. Coucke 3, C. Cremers 4, E. De Leenheer 1, I. Dhooge 1 (1) Departement of Otorhinolaryngology,

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,000 116,000 120M Open access books available International authors and editors Downloads Our

More information

Presentation On SENSATION. Prof- Mrs.Kuldeep Kaur

Presentation On SENSATION. Prof- Mrs.Kuldeep Kaur Presentation On SENSATION Prof- Mrs.Kuldeep Kaur INTRODUCTION:- Sensation is a specialty area within Psychology that works at understanding how are senses work and how we perceive stimuli in the environment.

More information

Intro to Audition & Hearing

Intro to Audition & Hearing Intro to Audition & Hearing Lecture 16 Chapter 9, part II Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Fall 2017 1 Sine wave: one of the simplest kinds of sounds: sound for which pressure

More information

-Detect heat or cold and help maintain body temperature

-Detect heat or cold and help maintain body temperature Sensory Receptors -Transduce stimulus energy and transmit signals to the central nervous system -Reception occurs when a receptor detectd a stimulus -Perception occurs in the brain as this information

More information

Auditory Physiology Richard M. Costanzo, Ph.D.

Auditory Physiology Richard M. Costanzo, Ph.D. Auditory Physiology Richard M. Costanzo, Ph.D. OBJECTIVES After studying the material of this lecture, the student should be able to: 1. Describe the morphology and function of the following structures:

More information

Audiologic and Genetic Determination of Hearing Loss in Osteogenesis Imperfecta

Audiologic and Genetic Determination of Hearing Loss in Osteogenesis Imperfecta Ghent University Hospital Ghent University Audiologic and Genetic Determination of Hearing Loss in Osteogenesis Imperfecta Swinnen F 1, De Leenheer E 1, Coucke P 2, Cremers C 3, Dhooge I 1 1 Department

More information

Systems Neuroscience Oct. 16, Auditory system. http:

Systems Neuroscience Oct. 16, Auditory system. http: Systems Neuroscience Oct. 16, 2018 Auditory system http: www.ini.unizh.ch/~kiper/system_neurosci.html The physics of sound Measuring sound intensity We are sensitive to an enormous range of intensities,

More information

STUDY OF RECESSIVE DEAFNESS LOCUS (DFNB1) BY LINKAGE ANALYSIS IN SOME FAMILIES FROM BALOCHISTAN

STUDY OF RECESSIVE DEAFNESS LOCUS (DFNB1) BY LINKAGE ANALYSIS IN SOME FAMILIES FROM BALOCHISTAN STUDY OF RECESSIVE DEAFNESS LOCUS (DFNB1) BY LINKAGE ANALYSIS IN SOME FAMILIES FROM BALOCHISTAN A synopsis submitted to BALOCHISTAN UNIVERSITY OF INFORMATION TECHNOLOGY ENGINEERING & MANAGEMENT SCIENCES

More information

Cochlear anatomy, function and pathology II. Professor Dave Furness Keele University

Cochlear anatomy, function and pathology II. Professor Dave Furness Keele University Cochlear anatomy, function and pathology II Professor Dave Furness Keele University d.n.furness@keele.ac.uk Aims and objectives of this lecture Focus (2) on the biophysics of the cochlea, the dual roles

More information

ENT 318 Artificial Organs Physiology of Ear

ENT 318 Artificial Organs Physiology of Ear ENT 318 Artificial Organs Physiology of Ear Lecturer: Ahmad Nasrul Norali The Ear The Ear Components of hearing mechanism - Outer Ear - Middle Ear - Inner Ear - Central Auditory Nervous System Major Divisions

More information

Stem Cell Therapy for Acquired Hearing Loss in Children; FDA-Approved Study. Linda Baumgartner, CCC-SLP, Cert.AVT James Baumgartner, MD

Stem Cell Therapy for Acquired Hearing Loss in Children; FDA-Approved Study. Linda Baumgartner, CCC-SLP, Cert.AVT James Baumgartner, MD Stem Cell Therapy for Acquired Hearing Loss in Children; FDA-Approved Study Linda Baumgartner, CCC-SLP, Cert.AVT James Baumgartner, MD Stem Cell Basics I'll never grow up, never grow up, never grow up

More information

Base of Audiology Anatomy and Physiology of the organ of hearing. Examinations of hearing losses with different origin.

Base of Audiology Anatomy and Physiology of the organ of hearing. Examinations of hearing losses with different origin. UNIVERSITY of SZEGED Department of Oto-Rhino- Laryngology and Head- Neck Surgery Base of Audiology Anatomy and Physiology of the organ of hearing. Examinations of hearing losses with different origin.

More information

Deaf Children and Young People

Deaf Children and Young People Deaf Children and Young People Professor Barry Wright Clinical Lead - National Deaf Children Young People and Family Service, York National Deaf Child and Adolescent Mental Health Service (NDCAMHS) Definitions

More information

THE COCHLEA AND AUDITORY PATHWAY

THE COCHLEA AND AUDITORY PATHWAY Dental Neuroanatomy Suzanne S. Stensaas, PhD February 23, 2012 Reading: Waxman, Chapter 16, Review pictures in a Histology book Computer Resources: http://www.cochlea.org/ - Promenade around the Cochlea

More information

Hearing. By Jack & Tori

Hearing. By Jack & Tori Hearing By Jack & Tori 3 Main Components of the Human Ear. Outer Ear. Middle Ear. Inner Ear Outer Ear Pinna: >Visible part of ear and ear canal -Acts as a funnel to direct sound Eardrum: >Airtight membrane

More information

Hearing. By: Jimmy, Dana, and Karissa

Hearing. By: Jimmy, Dana, and Karissa Hearing By: Jimmy, Dana, and Karissa Anatomy - The ear is divided up into three parts - Sound enters in through the outer ear and passes into the middle where the vibrations are received and sent to the

More information

Deafness and hearing impairment

Deafness and hearing impairment Auditory Physiology Deafness and hearing impairment About one in every 10 Americans has some degree of hearing loss. The great majority develop hearing loss as they age. Hearing impairment in very early

More information

Genetics of Hearing and Deafness

Genetics of Hearing and Deafness Genetics of Hearing and Deafness Simon Angeli, University of Miami Xi Erick Lin, Emory University Xue Zhong Liu, University of Miami Journal Title: Anatomical Record: Advances in Integrative Anatomy and

More information

Hearing Loss in Infants and Children: Could it be Usher Syndrome?

Hearing Loss in Infants and Children: Could it be Usher Syndrome? Hearing Loss in Infants and Children: Could it be Usher Syndrome? Margaret A. Kenna, MD, MPH Dept. of Otolaryngology and Communication Enhancement Boston Children s Hospital Dept. of Otology and Laryngology

More information

Special Senses. Mechanoreception Electroreception Chemoreception Others

Special Senses. Mechanoreception Electroreception Chemoreception Others Special Senses Mechanoreception Electroreception Chemoreception Others Recall our receptor types Chemically regulated: Respond to particular chemicals Voltage regulated: respond to changing membrane potential

More information

(Thomas Lenarz) Ok, thank you, thank you very much for inviting me to be here and speak to you, on cochlear implant technology.

(Thomas Lenarz) Ok, thank you, thank you very much for inviting me to be here and speak to you, on cochlear implant technology. (Thomas Lenarz) Ok, thank you, thank you very much for inviting me to be here and speak to you, on cochlear implant technology. I want to briefly mention what hearing loss is. And what a cochlear implant

More information

What does it mean to analyze the frequency components of a sound? A spectrogram such as that shown here is the usual display of frequency components

What does it mean to analyze the frequency components of a sound? A spectrogram such as that shown here is the usual display of frequency components 1 2 3 4 What does it mean to analyze the frequency components of a sound? A spectrogram such as that shown here is the usual display of frequency components as a function of time here during the production

More information

Genotype phenotype correlations for hearing impairment: Approaches to management

Genotype phenotype correlations for hearing impairment: Approaches to management Clin Genet 2014: 85: 514 523 Printed in Singapore. All rights reserved Review 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd CLINICAL GENETICS doi: 10.1111/cge.12339 Genotype phenotype

More information

Non-syndromic hereditary sensorineural hearing loss: review of the genes involved

Non-syndromic hereditary sensorineural hearing loss: review of the genes involved The Journal of Laryngology & Otology, 1 of 9. JLO (1984) Limited, 2014 doi:10.1017/s0022215113003265 REVIEW ARTICLE Non-syndromic hereditary sensorineural hearing loss: review of the genes involved F STELMA

More information

Management of Hearing Loss in Children

Management of Hearing Loss in Children Management of Hearing Loss in Children Margaret Kenna, MD, MPH Dept. of Otolaryngology and Communication Enhancement Children s Hospital Boston Dept. of Otology and Laryngology Harvard Medical School Harvard

More information

POLICY PRODUCT VARIATIONS DESCRIPTION/BACKGROUND RATIONALE DEFINITIONS BENEFIT VARIATIONS DISCLAIMER REFERENCES CODING INFORMATION POLICY HISTORY

POLICY PRODUCT VARIATIONS DESCRIPTION/BACKGROUND RATIONALE DEFINITIONS BENEFIT VARIATIONS DISCLAIMER REFERENCES CODING INFORMATION POLICY HISTORY Original Issue Date (Created): November 26, 2013 Most Recent Review Date (Revised): November 26, 2013 Effective Date: February 01, 2014 POLICY PRODUCT VARIATIONS DESCRIPTION/BACKGROUND RATIONALE DEFINITIONS

More information

Hearing Impairment: A Panoply of Genes and Functions

Hearing Impairment: A Panoply of Genes and Functions Hearing Impairment: A Panoply of Genes and Functions Amiel A. Dror 1 and Karen B. Avraham 1, * 1 Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University,

More information

Patients with CDH23 mutations and the 1555A>G mitochondrial mutation are good candidates for electric acoustic stimulation (EAS)

Patients with CDH23 mutations and the 1555A>G mitochondrial mutation are good candidates for electric acoustic stimulation (EAS) Acta Oto-Laryngologica, 2; 132: 377 384 ORIGINAL ARTICLE Patients with CDH23 mutations and the 55A>G mitochondrial mutation are good candidates for electric acoustic stimulation (EAS) SHIN-ICHI USAMI 1,

More information

Investigating Seven Recently Identified Genes in 100 Iranian Families with Autosomal Recessive Non-syndromic Hearing Loss

Investigating Seven Recently Identified Genes in 100 Iranian Families with Autosomal Recessive Non-syndromic Hearing Loss Iranian Rehabilitation Journal, Vol. 13, Issue 3, Autumn 2015 Original Article Investigating Seven Recently Identified Genes in 100 Iranian Families with Autosomal Recessive Non-syndromic Hearing Loss

More information

Required Slide. Session Objectives

Required Slide. Session Objectives Auditory Physiology Required Slide Session Objectives Auditory System: At the end of this session, students will be able to: 1. Characterize the range of normal human hearing. 2. Understand the components

More information

Copyright 2009 Pearson Education, Inc.

Copyright 2009 Pearson Education, Inc. Outline Nervous System Sensory Systems I. II. III. IV. V. VI. Biol 105 Lecture 11 Chapter 9 Senses Sensory receptors Touch Vision Hearing and balance Smell Senses Sensory receptor cells Sensory receptors

More information

What Should Audiologists Know about Genetics. Jackie L. Clark, PhD UT Dallas; U Witwatersrand

What Should Audiologists Know about Genetics. Jackie L. Clark, PhD UT Dallas; U Witwatersrand What Should Audiologists Know about Genetics Jackie L. Clark, PhD UT Dallas; U Witwatersrand Some Material and Slides from Annual Summer Genetics Workshop at Gallaudet University; Washington, D.C. Disclaimer

More information

Introduction to Neurobiology

Introduction to Neurobiology Biology 240 General Zoology Introduction to Neurobiology Nervous System functions: communication of information via nerve signals integration and processing of information control of physiological and

More information

Biology 3201 The Nervous System Test

Biology 3201 The Nervous System Test Biology 3201 The Nervous System Test 1. The central nervous system consists of: a. Nerves and neurons c. spinal chord and nerves b. brain and neurons d. brain and spinal chord 2. This part of the brain

More information

Morphological Aspects of Inner Ear Disease

Morphological Aspects of Inner Ear Disease Morphological Aspects of Inner Ear Disease Yasuya Nomura Morphological Aspects of Inner Ear Disease Yasuya Nomura President The Society for Promotion of International Oto-Rhino-Laryngology Tokyo, Japan

More information

UKGTN Testing Criteria Test name: Syndromic and Non Syndromic Hearing Loss 95 Gene Panel

UKGTN Testing Criteria Test name: Syndromic and Non Syndromic Hearing Loss 95 Gene Panel UKGTN Testing Criteria Test name: Syndromic and Non Syndromic Hearing Loss 95 Gene Panel Approved name and symbol of disorder/condition(s): See Appendix 1 Approved name and symbol of gene(s): See Appendix

More information

to vibrate the fluid. The ossicles amplify the pressure. The surface area of the oval window is

to vibrate the fluid. The ossicles amplify the pressure. The surface area of the oval window is Page 1 of 6 Question 1: How is the conduction of sound to the cochlea facilitated by the ossicles of the middle ear? Answer: Sound waves traveling through air move the tympanic membrane, which, in turn,

More information

J.P.S. Bakshi Manual of Ear, Nose and Throat

J.P.S. Bakshi Manual of Ear, Nose and Throat J.P.S. Bakshi Manual of Ear, Nose and Throat Reading excerpt Manual of Ear, Nose and Throat of J.P.S. Bakshi Publisher: B. Jain http://www.narayana-publishers.com/b5603 Copying excerpts is not permitted.

More information

Kumar N. Alagramam, PhD Associate Professor Director of Research UH Ear, Nose & Throat Institute Anthony J. Maniglia Chair for Research and Education

Kumar N. Alagramam, PhD Associate Professor Director of Research UH Ear, Nose & Throat Institute Anthony J. Maniglia Chair for Research and Education Kumar N. Alagramam, PhD Associate Professor Director of Research UH Ear, Nose & Throat Institute Anthony J. Maniglia Chair for Research and Education University Hospitals Cleveland Medical Center Case

More information

GENETICS OF DEAFNESS: RECENT ADVANCES AND CLINICAL IMPLICATIONS

GENETICS OF DEAFNESS: RECENT ADVANCES AND CLINICAL IMPLICATIONS GENETICS OF DEAFNESS: RECENT ADVANCES AND CLINICAL IMPLICATIONS Abraham Goldfarb 1,2 and Karen B. Avraham 2 1 Department of Otolaryngology/Head and Neck Surgery, Hadassah University Hospital, Jerusalem

More information

AUDITORY APPARATUS. Mr. P Mazengenya. Tel 72204

AUDITORY APPARATUS. Mr. P Mazengenya. Tel 72204 AUDITORY APPARATUS Mr. P Mazengenya Tel 72204 Describe the anatomical features of the external ear Describe the tympanic membrane (ear drum) Describe the walls of the middle ear Outline the structures

More information

thorough physical and laboratory investigations fail to define the etiology of hearing loss. (2000, p. 16). In a report produced for the Maternal and

thorough physical and laboratory investigations fail to define the etiology of hearing loss. (2000, p. 16). In a report produced for the Maternal and GUIDELINES FOR GENETIC EVALUATON REFERRAL The prevalence of permanent hearing loss in infants is estimated to be 2-3/1000 in the United States (Finitzo et al., 1998; Prieve et al., 2000). One or both ears

More information

MECHANISM OF HEARING

MECHANISM OF HEARING MECHANISM OF HEARING Sound: Sound is a vibration that propagates as an audible wave of pressure, through a transmission medium such as gas, liquid or solid. Sound is produced from alternate compression

More information

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

PSY 310: Sensory and Perceptual Processes 1

PSY 310: Sensory and Perceptual Processes 1 Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

Gene Mutations: One of the Many Roads to Deafness

Gene Mutations: One of the Many Roads to Deafness Eukaryon, Vol. 4, March 2008, Lake Forest College Review Article Gene Mutations: One of the Many Roads to Deafness Shaun Davis*, Laura Hoholik*, Kushal Modi*, Lindsey Rockwell* Department of Biology Lake

More information

Hearing loss is an etiologically heterogeneous trait with

Hearing loss is an etiologically heterogeneous trait with The new england journal of medicine review article Current Concepts Newborn Hearing Screening A Silent Revolution Cynthia C. Morton, Ph.D., and Walter E. Nance, M.D., Ph.D. Hearing loss is an etiologically

More information

CELLS. Cells. Basic unit of life (except virus)

CELLS. Cells. Basic unit of life (except virus) Basic unit of life (except virus) CELLS Prokaryotic, w/o nucleus, bacteria Eukaryotic, w/ nucleus Various cell types specialized for particular function. Differentiation. Over 200 human cell types 56%

More information

Carlson (7e) PowerPoint Lecture Outline Chapter 7: Audition, the Body Senses, and the Chemical Senses

Carlson (7e) PowerPoint Lecture Outline Chapter 7: Audition, the Body Senses, and the Chemical Senses Carlson (7e) PowerPoint Lecture Outline Chapter 7: Audition, the Body Senses, and the Chemical Senses This multimedia product and its contents are protected under copyright law. The following are prohibited

More information

The mammalian cochlea possesses two classes of afferent neurons and two classes of efferent neurons.

The mammalian cochlea possesses two classes of afferent neurons and two classes of efferent neurons. 1 2 The mammalian cochlea possesses two classes of afferent neurons and two classes of efferent neurons. Type I afferents contact single inner hair cells to provide acoustic analysis as we know it. Type

More information

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Module 11.1 Overview of the Nervous System (Figures 11.1-11.3) A. The nervous system controls our perception and experience

More information

Progressive Hearing Loss and Increased Susceptibility to Noise-Induced Hearing Loss in Mice Carrying a Cdh23 but not a Myo7a Mutation

Progressive Hearing Loss and Increased Susceptibility to Noise-Induced Hearing Loss in Mice Carrying a Cdh23 but not a Myo7a Mutation JARO 5: 66 79 (2004) DOI: 10.1007/s10162-003-4021-2 JARO Journal of the Association for Research in Otolaryngology Progressive Hearing Loss and Increased Susceptibility to Noise-Induced Hearing Loss in

More information