Confounding. Confounding and effect modification. Example (after Rothman, 1998) Beer and Rectal Ca. Confounding (after Rothman, 1998)

Size: px
Start display at page:

Download "Confounding. Confounding and effect modification. Example (after Rothman, 1998) Beer and Rectal Ca. Confounding (after Rothman, 1998)"

Transcription

1 Confounding Confounding and effect modification Epidemiology 511 W. A. Kukull vember A function of the complex interrelationships between various exposures and disease. Occurs when the disease - exposure association under study is mixed with the effect of another factor Example (after Rothman, 1998) Is frequent beer consumption is associated with rectal cancer Beer consumption is associated with consumption of pizza Is pizza consumption a confounder Is pizza, by itself, causally associated with Ca if yes, then its a confounder; otherwise not Beer and Rectal Ca Rectal Ca control Beer Beer OR= 0.67 ( ) Beer Beer Pizza consumption Rectal Ca Control Rectal Ca Control Confounding (after Rothman, 1998) Confounding factor must be risk factor for disease (causally associated) Confounding factor must be associated with exposure in the source (study) population Confounding factor must not be affected by exposure or disease it cannot be the result of exposure it cannot be an intermediate step in causal path 1

2 Confounding (after Koepsell & Weiss, 2003) A factor that occurs only as a consequence of the exposure cannot distort (confound) the diseaseexposure association. To be a confounder, the factor would have to give rise to the exposure or be associated with something that did. matter how strongly a variable is related to exposure status, if it is not also related to the occurrence of the disease in question, it cannot be a confounder. Confounder Exposure Disease: some finer distinctions (Koepsell & Weiss, 2003) A confounder can be an actual cause of disease. A confounder can be associated with a cause of disease that, in the context of the study, cannot be measured. (e.g., genotype) A variable can be a confounder if it is related to the recognition of the disease even if it has no relationship to the actual occurrence of disease. (e.g., frequency of screening tests for disease) Confounding Exposure Country (exp) Confounder Disease Age Distribution (conf) Mortality = non causal = causal Sexual Activity (exp) Ca Channel Blockers (exp) General Health (conf) Other Meds (conf) Mortality GI Bleeding 2

3 Vitamin C Intake (exp) Low Fat Diet (exp) Diet, SES Lifestyle (conf) Cholesterol (conf ) Colon Cancer Heart disease Consequence of exposure Smoking Quetelet Index Weight Loss (conf ) Abdominal skinfold (conf ) Lung Ca Type II Diabetes Consequence of disease Skinfold is a surrogate measure of body mass Tax Id Number (conf ) Red Meat diet Colon Ca plausible association with disease Confounder or consequence Studying decreased risk of MI and due to moderate alcohol consumption Higher HDL cholesterol is independently associated with lower risk of MI HDL increases as a result of moderate alcohol use Is HDL a Confounder 3

4 Controlling confounding in the design of a study Randomization: ensures known and unknown confounders are evenly distributed in study groups Restriction: Limit subjects to one category of a confounder e.g. if sex confounds, use only men; Matching: equalize groups on confounder (must follow matched analysis) Evaluating Confounder disease and exposure Construct tables for confounder and disease confounder and exposure Examine odds ratios (or effect estimate) are the associations strong are they likely to be causal Stratification in analysis: adjusting for confounding Computing the crude OR from a 2x2 table Stratification breaks the crude table into separate 2x2 tables for each level of the confounding factor analogous to standardization many factors and many levels can cause tables with empty cells Is there Confounding Do stratum specific RR estimates differ from Crude estimate Does adjusted RR estimate differ from Crude estimate Mantel-Haenszel Multivariate modeling differences of >10% in RR when factor is included in the model, indicate confounding present Confounding in stratified analyses stratify by the potential confounder compute stratum-specific OR estimates If uniform but different from crude OR then confounding is probably present: calculate adj. OR (e.g., use Mantel-Haenszel) If NOT uniform across strata then effect modification (interaction) may be present Report stratum specific estimates; do not adjust Is toluene exposure associated with Diabetes Exposed to Toluene t Exposed Crude OR = 1.95 ( ) Diabetes CTRL

5 Does the Age confound the diabetes toluene association <40 > 40 diabetes ctrl diabetes ctrl Why Age confounds because it is associated with diabetes, regardless of toluene exposure Toluene exposed Toluene Diab Ctrl Diab Ctrl Tolu. 5 8 Tolu > > t t < < OR(1) = 1.0 ( ) OR(2) = 1.0 ( ) OR = 4.0 ( ) OR = 4.0 ( ) Stratification example 1 Crude OR = 1.95 OR in each age group is 1.0 when the strata OR s are the roughly equal -- but different from the Crude OR-- it indicates confounding Age is a confounder We should adjust for Age in the analysis Mantel-Haenszel adjusted OR (you will not need to memorize the formula) ETOH and MI MI MI Alcohol OR= 2.26 { } ETOH Stratify by smoking non smokers smokers MI Ctrl MI Ctrl P. A. Physical Activity and Stroke Stroke Stroke High OR=1.0 ( ) OR = 1.0 ( ) Low 176 OR= 0.64 { } 157 5

6 P.A. Hi Lo Stratify by Gender Men Women Stroke Ctrl Stroke Ctrl OR= 0.53 ( ) 112 Hi Lo OR = 1.19 ( ) Controlling Confounding in the Analysis: Adjusted odds ratio Stratified analysis (examine strata OR) Mantel-Haenszel adjusted OR : a weighted average of stratum specific OR s Σ (ad / N) divided by Σ (bc / N) = OR mh Where N= total subjects in each sub table a c b d N 1 c d a b N 2 Mantel-Haenszel Adjusted OR Trisomy 21 and spermicide use: Case-Control Study Down s Ctrl ^ OR mh = (a 1 d 1 )/N 1 + (a 2 d 2 )/N (b 1 c 1 )/N 1 + (b 2 c 2 )/N Sp + Sp OR= Sp + Sp - Stratify by Maternal Age < Down Ctrl Down Ctrl OR= Sp + Sp OR= ^ OR mh = = Mantel-Haenszel Adjusted OR (a 1 d 1 )/N 1 + (a 2 d 2 )/N (b 1 c 1 )/N 1 + (b 2 c 2 )/N [(3)(1059) / (1175)] + [(1)(86) / (95)] [(9)(104) / (1175)] + [(3)(5) / (95)] = 3.8 6

7 Multivariate Statistics Linear: y = b 0 + b 1 x 1 + b 2 x b k x k Logistic: exp (b) gives you adjusted OR log(odds) = b 0 + b 1 x 1 + b 2 x b k x k for b 1 coded as a [0,1] variable, the OR x1 = e b1 (adjusted for all other x i ) Cox : exp (b) gives you adjusted RR log(haz) = b 0 + b 1 x 1 + b 2 x b k x k Logistic Regression Coding Variables Continuous x causes b to be interpreted as: increase in log odds per unit change in x Interaction of two variables is represented by a single product term: x 1 x 2 (with only one b) interpretation of models which include interaction and continuous terms can be tricky Consult a friendly Biostatistician Recognizing Confounding in logistic regression models Logistic Regression: ln[y/(1-y)] = a + b 1 X 1 + b 2 X 2 + b n X n e (b i) = OR (xi) (per unit change in X i ) does b xi change when X k factor(s) are added Does crude OR differ from adjusted OR does model log-likelihood change (score test) Logistic coefficients and OR s Variable (x) Coefficient (b) Odds Ratio intercept gender (1=m,0=F) smoking (1=yes,0=no) HTN (1=yes,0=no) e b = OR Interaction (Effect Modification) Statistical, Biological and Social semantic meanings differ. Does the RR estimate differ at each level of a third variable Homogeneity of RR Biological reasoning: is there something about the third factor that changes the way the Exposure-Disease association works Hepatitis C Virus infection Stratification Example: Crude table Hepatocellular carcinoma Case Control Crude OR = 9.2 ( ) 7

8 HepC+ - Stratify by HBV infection Are the stratum specific odds ratios statistically different HBV+ HBV- Case Ctrl Case Ctrl HepC OR(1)= 25.9 (4.2 - * ) OR(2)= 6.0 ( ) ORs are not statistically different: should we adjust or report strata ORs M-H adjusted odds ratio OR= 8.1 Stratification Example 2: HBV, HepC and Liver Ca The OR s in the HBV strata look quite different Does this indicate effect modification Effect modification is a finding in the data that needs to be elaborated; it is a natural phenomena that exists independently Confounding is a nuisance that needs to be eliminated (by adjusting, matching, restriction, etc.) Effect Modification (also known as interaction ) When the measure of effect differs between strata Can apply to RR or risk difference (AR) measures Presumed additive or multiplicative effect model depends on biology of disease and factor Synergy: when effect exceeds that expected under the chosen model RR (A+B) >> RR (A) + RR (B) RR (A x B) >> RR (A) x RR (B) Schematic of additive model for case control data (Szklo & Nieto, 2000) 7.0 Additive model effects: Expected = OR(A) + OR(Z) Excess joint 4.0 increase 3.0 A A 2.0 OR=1.0 A Z Z Z BL BL BL BL BL Expected Observed RR estimates in strata: guidelines for heterogeneity[szklo & Nieto 2000] Suspected E-M factor absent Suspected E-M factor present Adjust or report strata RR s Adjust Report Report (qualitative diff) Maybe both Is there an association between risk factor (X) and disease (Y) YES Is it affected by Bias Are STRATUM RR s different from crude RR confounding by Strata factor Stratified analysis flow chart YES Estimate magnitude and direction of effect on RR Stratum RRs are similar to each other: Confounding: Adjust for stratum factor Stratum RRs are statistically different from each other: Interaction/effect modification report strata RRs, don t adjust 8

9 Considerations Collect data on potential confounders if you don t get it you can t control for it Try to reason what the potential effect of confounding might be Magnitude and direction (as with bias) Coffee drinking and MI: smoking may be a positive confounder because smokers are at increased risk of MI Generally speaking... A strong association is less likely to be explained by confounding than a weak one For an observed association to be the sole result of confounding by another factor: the factor must have a stronger association with disease than the one observed if RR= 10.0 for smoking and Lung ca, then a confounder would need RR> 10.0 Logistic Regression Allows simultaneous adjustment for several confounders (also allows interactions ) multiple variables to predict disease status (dichotomous outcome) Odds ratios can be obtained directly from the regression coefficients Standard method seen in most casecontrol study analyses (matched and unmatched analyses) Conclusion What is confounding How do we recognize, evaluate and control it What is effect modification How do we recognize and evaluate it Why is it important [also know as interaction, effect measure modification, etc.] 9

Stratified Tables. Example: Effect of seat belt use on accident fatality

Stratified Tables. Example: Effect of seat belt use on accident fatality Stratified Tables Often, a third measure influences the relationship between the two primary measures (i.e. disease and exposure). How do we remove or control for the effect of the third measure? Issues

More information

Confounding, Effect modification, and Stratification

Confounding, Effect modification, and Stratification Confounding, Effect modification, and Stratification Tunisia, 30th October 2014 Acknowledgment: Kostas Danis Takis Panagiotopoulos National Schoool of Public Health, Athens, Greece takis.panagiotopoulos@gmail.com

More information

Controlling Bias & Confounding

Controlling Bias & Confounding Controlling Bias & Confounding Chihaya Koriyama August 5 th, 2015 QUESTIONS FOR BIAS Key concepts Bias Should be minimized at the designing stage. Random errors We can do nothing at Is the nature the of

More information

Confounding and Interaction

Confounding and Interaction Confounding and Interaction Why did you do clinical research? To find a better diagnosis tool To determine risk factor of disease To identify prognosis factor To evaluate effectiveness of therapy To decide

More information

INTERNAL VALIDITY, BIAS AND CONFOUNDING

INTERNAL VALIDITY, BIAS AND CONFOUNDING OCW Epidemiology and Biostatistics, 2010 J. Forrester, PhD Tufts University School of Medicine October 6, 2010 INTERNAL VALIDITY, BIAS AND CONFOUNDING Learning objectives for this session: 1) Understand

More information

Joseph W Hogan Brown University & AMPATH February 16, 2010

Joseph W Hogan Brown University & AMPATH February 16, 2010 Joseph W Hogan Brown University & AMPATH February 16, 2010 Drinking and lung cancer Gender bias and graduate admissions AMPATH nutrition study Stratification and regression drinking and lung cancer graduate

More information

115 remained abstinent. 140 remained abstinent. Relapsed Remained abstinent Total

115 remained abstinent. 140 remained abstinent. Relapsed Remained abstinent Total Chapter 10 Exercises 1. Intent-to-treat analysis: Example 1 In a randomized controlled trial to determine whether the nicotine patch reduces the risk of relapse among smokers who have committed to quit,

More information

Main objective of Epidemiology. Statistical Inference. Statistical Inference: Example. Statistical Inference: Example

Main objective of Epidemiology. Statistical Inference. Statistical Inference: Example. Statistical Inference: Example Main objective of Epidemiology Inference to a population Example: Treatment of hypertension: Research question (hypothesis): Is treatment A better than treatment B for patients with hypertension? Study

More information

Confounding Bias: Stratification

Confounding Bias: Stratification OUTLINE: Confounding- cont. Generalizability Reproducibility Effect modification Confounding Bias: Stratification Example 1: Association between place of residence & Chronic bronchitis Residence Chronic

More information

Biases in clinical research. Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University

Biases in clinical research. Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University Biases in clinical research Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University Learning objectives Describe the threats to causal inferences in clinical studies Understand the role of

More information

Measures of Association

Measures of Association Measures of Association Lakkana Thaikruea M.D., M.S., Ph.D. Community Medicine Department, Faculty of Medicine, Chiang Mai University, Thailand Introduction One of epidemiological studies goal is to determine

More information

University of Wollongong. Research Online. Australian Health Services Research Institute

University of Wollongong. Research Online. Australian Health Services Research Institute University of Wollongong Research Online Australian Health Services Research Institute Faculty of Business 2011 Measurement of error Janet E. Sansoni University of Wollongong, jans@uow.edu.au Publication

More information

Confounding and Bias

Confounding and Bias 28 th International Conference on Pharmacoepidemiology and Therapeutic Risk Management Barcelona, Spain August 22, 2012 Confounding and Bias Tobias Gerhard, PhD Assistant Professor, Ernest Mario School

More information

Effect measure modification. Outline. Definition. Gustaf Edgren, PhD Karolinska Institutet

Effect measure modification. Outline. Definition. Gustaf Edgren, PhD Karolinska Institutet Effect measure modification Gustaf Edgren, PhD Karolinska Institutet Outline Definition and terminology Effect modification vs. confounding Scale dependence Assessment of effect measure modification Examples

More information

Strategies for Data Analysis: Cohort and Case-control Studies

Strategies for Data Analysis: Cohort and Case-control Studies Strategies for Data Analysis: Cohort and Case-control Studies Post-Graduate Course, Training in Research in Sexual Health, 24 Feb 05 Isaac M. Malonza, MD, MPH Department of Reproductive Health and Research

More information

WORKSHEET: Etiology/Harm

WORKSHEET: Etiology/Harm Updated 9/10/2013 Name: WORKSHEET: Etiology/Harm Citation: McGregor SE, Courneya KS, Kopciuk KA, Tosevski C, Friedenreich CM. Case control study of lifetime alcohol intake and prostate cancer risk. Cancer

More information

Strategies for data analysis: case-control studies

Strategies for data analysis: case-control studies Strategies for data analysis: case-control studies Gilda Piaggio UNDP/UNFPA/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction World Health Organization

More information

Causal Association : Cause To Effect. Dr. Akhilesh Bhargava MD, DHA, PGDHRM Prof. Community Medicine & Director-SIHFW, Jaipur

Causal Association : Cause To Effect. Dr. Akhilesh Bhargava MD, DHA, PGDHRM Prof. Community Medicine & Director-SIHFW, Jaipur Causal Association : Cause To Effect Dr. MD, DHA, PGDHRM Prof. Community Medicine & Director-SIHFW, Jaipur Measure of Association- Concepts If more disease occurs in a group that smokes compared to the

More information

Epidemiologic Methods I & II Epidem 201AB Winter & Spring 2002

Epidemiologic Methods I & II Epidem 201AB Winter & Spring 2002 DETAILED COURSE OUTLINE Epidemiologic Methods I & II Epidem 201AB Winter & Spring 2002 Hal Morgenstern, Ph.D. Department of Epidemiology UCLA School of Public Health Page 1 I. THE NATURE OF EPIDEMIOLOGIC

More information

PubH 7405: REGRESSION ANALYSIS. Propensity Score

PubH 7405: REGRESSION ANALYSIS. Propensity Score PubH 7405: REGRESSION ANALYSIS Propensity Score INTRODUCTION: There is a growing interest in using observational (or nonrandomized) studies to estimate the effects of treatments on outcomes. In observational

More information

BIOSTATISTICAL METHODS

BIOSTATISTICAL METHODS BIOSTATISTICAL METHODS FOR TRANSLATIONAL & CLINICAL RESEARCH PROPENSITY SCORE Confounding Definition: A situation in which the effect or association between an exposure (a predictor or risk factor) and

More information

Chapter 2. Epidemiological and Toxicological Studies

Chapter 2. Epidemiological and Toxicological Studies Chapter 2 Epidemiological and Toxicological Studies Introduction Epidemiological and toxicological studies seek to determine the cause of a particular illness or disease. Etiology is the study of causes.

More information

Case-control studies. Hans Wolff. Service d épidémiologie clinique Département de médecine communautaire. WHO- Postgraduate course 2007 CC studies

Case-control studies. Hans Wolff. Service d épidémiologie clinique Département de médecine communautaire. WHO- Postgraduate course 2007 CC studies Case-control studies Hans Wolff Service d épidémiologie clinique Département de médecine communautaire Hans.Wolff@hcuge.ch Outline Case-control study Relation to cohort study Selection of controls Sampling

More information

Modeling Binary outcome

Modeling Binary outcome Statistics April 4, 2013 Debdeep Pati Modeling Binary outcome Test of hypothesis 1. Is the effect observed statistically significant or attributable to chance? 2. Three types of hypothesis: a) tests of

More information

Observational Medical Studies. HRP 261 1/13/ am

Observational Medical Studies. HRP 261 1/13/ am Observational Medical Studies HRP 261 1/13/03 10-11 11 am To Drink or Not to Drink? Volume 348:163-164 January 9, 2003 Ira J. Goldberg, M.D. A number of epidemiologic studies have found an association

More information

Propensity score methods to adjust for confounding in assessing treatment effects: bias and precision

Propensity score methods to adjust for confounding in assessing treatment effects: bias and precision ISPUB.COM The Internet Journal of Epidemiology Volume 7 Number 2 Propensity score methods to adjust for confounding in assessing treatment effects: bias and precision Z Wang Abstract There is an increasing

More information

Confounding and Effect Modification. John McGready Johns Hopkins University

Confounding and Effect Modification. John McGready Johns Hopkins University This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Understanding Confounding in Research Kantahyanee W. Murray and Anne Duggan. DOI: /pir

Understanding Confounding in Research Kantahyanee W. Murray and Anne Duggan. DOI: /pir Understanding Confounding in Research Kantahyanee W. Murray and Anne Duggan Pediatr. Rev. 2010;31;124-126 DOI: 10.1542/pir.31-3-124 The online version of this article, along with updated information and

More information

Epidemiologic Methods and Counting Infections: The Basics of Surveillance

Epidemiologic Methods and Counting Infections: The Basics of Surveillance Epidemiologic Methods and Counting Infections: The Basics of Surveillance Ebbing Lautenbach, MD, MPH, MSCE University of Pennsylvania School of Medicine Nothing to disclose PENN Outline Definitions / Historical

More information

Bias and confounding. Mads Kamper-Jørgensen, associate professor, Section of Social Medicine

Bias and confounding. Mads Kamper-Jørgensen, associate professor, Section of Social Medicine Bias and confounding Mads Kamper-Jørgensen, associate professor, maka@sund.ku.dk PhD-course in Epidemiology l 7 February 2017 l Slide number 1 The world according to an epidemiologist Exposure Outcome

More information

Biases in clinical research. Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University

Biases in clinical research. Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University Biases in clinical research Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University Learning objectives Understand goal of measurement and definition of accuracy Describe the threats to causal

More information

Introduction. Step 2: Student Role - Your Plan of Action. Confounding. Good luck and have fun!

Introduction. Step 2: Student Role - Your Plan of Action. Confounding. Good luck and have fun! Confounding Introduction You have learned that random error and bias must be considered as possible explanations for an observed association between an exposure and disease. This week we will examine the

More information

Analyzing diastolic and systolic blood pressure individually or jointly?

Analyzing diastolic and systolic blood pressure individually or jointly? Analyzing diastolic and systolic blood pressure individually or jointly? Chenglin Ye a, Gary Foster a, Lisa Dolovich b, Lehana Thabane a,c a. Department of Clinical Epidemiology and Biostatistics, McMaster

More information

UNIT 5 - Association Causation, Effect Modification and Validity

UNIT 5 - Association Causation, Effect Modification and Validity 5 UNIT 5 - Association Causation, Effect Modification and Validity Introduction In Unit 1 we introduced the concept of causality in epidemiology and presented different ways in which causes can be understood

More information

Biostatistics for Med Students. Lecture 1

Biostatistics for Med Students. Lecture 1 Biostatistics for Med Students Lecture 1 John J. Chen, Ph.D. Professor & Director of Biostatistics Core UH JABSOM JABSOM MD7 February 14, 2018 Lecture note: http://biostat.jabsom.hawaii.edu/education/training.html

More information

Biostatistics and Epidemiology Step 1 Sample Questions Set 1

Biostatistics and Epidemiology Step 1 Sample Questions Set 1 Biostatistics and Epidemiology Step 1 Sample Questions Set 1 1. A study wishes to assess birth characteristics in a population. Which of the following variables describes the appropriate measurement scale

More information

EPI 200C Final, June 4 th, 2009 This exam includes 24 questions.

EPI 200C Final, June 4 th, 2009 This exam includes 24 questions. Greenland/Arah, Epi 200C Sp 2000 1 of 6 EPI 200C Final, June 4 th, 2009 This exam includes 24 questions. INSTRUCTIONS: Write all answers on the answer sheets supplied; PRINT YOUR NAME and STUDENT ID NUMBER

More information

Person-years; number of study participants (number of cases) HR (95% CI) P for trend

Person-years; number of study participants (number of cases) HR (95% CI) P for trend Table S1: Spearman rank correlation coefficients for cumulative factor score means of dietary and nutrient patterns among adults 18 years and above, the China Health and Nutrition Survey by age and sex

More information

Study Design STUDY DESIGN CASE SERIES AND CROSS-SECTIONAL STUDY DESIGN

Study Design STUDY DESIGN CASE SERIES AND CROSS-SECTIONAL STUDY DESIGN STUDY DESIGN CASE SERIES AND CROSS-SECTIONAL Daniel E. Ford, MD, MPH Vice Dean for Clinical Investigation Johns Hopkins School of Medicine Introduction to Clinical Research July 15, 2014 STUDY DESIGN Provides

More information

Improved control for confounding using propensity scores and instrumental variables?

Improved control for confounding using propensity scores and instrumental variables? Improved control for confounding using propensity scores and instrumental variables? Dr. Olaf H.Klungel Dept. of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute of Pharmaceutical Sciences

More information

m 11 m.1 > m 12 m.2 risk for smokers risk for nonsmokers

m 11 m.1 > m 12 m.2 risk for smokers risk for nonsmokers SOCY5061 RELATIVE RISKS, RELATIVE ODDS, LOGISTIC REGRESSION RELATIVE RISKS: Suppose we are interested in the association between lung cancer and smoking. Consider the following table for the whole population:

More information

ONLINE MATERIAL THAT ACCOMPANIES CHAPTER 11. Box 1. Assessing additive interaction using ratio measures

ONLINE MATERIAL THAT ACCOMPANIES CHAPTER 11. Box 1. Assessing additive interaction using ratio measures ONLINE MATERIAL THAT ACCOMPANIES CHAPTER 11 Box 1. Assessing additive interaction using ratio measures Often times we may not be able to estimate risk or rate differences when assessing interaction. For

More information

Department of International Health

Department of International Health JOHNS HOPKINS U N I V E R S I T Y Center for Clinical Trials Department of Biostatistics Department of Epidemiology Department of International Health Memorandum Department of Medicine Department of Ophthalmology

More information

An Introduction to Epidemiology

An Introduction to Epidemiology An Introduction to Epidemiology Wei Liu, MPH Biostatistics Core Pennington Biomedical Research Center Baton Rouge, LA Last edited: January, 14 th, 2014 TABLE OF CONTENTS Introduction.................................................................

More information

PhD Course in Biostatistics

PhD Course in Biostatistics PhD Course in Biostatistics Univ.-Prof. DI Dr. Andrea Berghold Institute for Medical Informatics, Statistics and Documentation Medical University of Graz andrea.berghold@medunigraz.at Content Introduction

More information

Observational Study Designs. Review. Today. Measures of disease occurrence. Cohort Studies

Observational Study Designs. Review. Today. Measures of disease occurrence. Cohort Studies Observational Study Designs Denise Boudreau, PhD Center for Health Studies Group Health Cooperative Today Review cohort studies Case-control studies Design Identifying cases and controls Measuring exposure

More information

Aetiology versus Prediction - correct for Confounding? Friedo Dekker ERA-EDTA Registry / LUMC

Aetiology versus Prediction - correct for Confounding? Friedo Dekker ERA-EDTA Registry / LUMC Aetiology versus Prediction - correct for Confounding? Friedo Dekker ERA-EDTA Registry / LUMC Aetiology Study effect of a risk factor on an outcome Consider potential confounding: other risk factor for

More information

Nutritional Risk Factors for Peripheral Vascular Disease: Does Diet Play a Role?

Nutritional Risk Factors for Peripheral Vascular Disease: Does Diet Play a Role? Nutritional Risk Factors for Peripheral Vascular Disease: Does Diet Play a Role? John S. Lane MD, Cheryl P. Magno MPH, Karen T. Lane MD, Tyler Chan BS, Sheldon Greenfield MD University of California, Irvine

More information

16:35 17:20 Alexander Luedtke (Fred Hutchinson Cancer Research Center)

16:35 17:20 Alexander Luedtke (Fred Hutchinson Cancer Research Center) Conference on Causal Inference in Longitudinal Studies September 21-23, 2017 Columbia University Thursday, September 21, 2017: tutorial 14:15 15:00 Miguel Hernan (Harvard University) 15:00 15:45 Miguel

More information

observational studies Descriptive studies

observational studies Descriptive studies form one stage within this broader sequence, which begins with laboratory studies using animal models, thence to human testing: Phase I: The new drug or treatment is tested in a small group of people for

More information

Bias. A systematic error (caused by the investigator or the subjects) that causes an incorrect (overor under-) estimate of an association.

Bias. A systematic error (caused by the investigator or the subjects) that causes an incorrect (overor under-) estimate of an association. Bias A systematic error (caused by the investigator or the subjects) that causes an incorrect (overor under-) estimate of an association. Here, random error is small, but systematic errors have led to

More information

Biases in clinical research. Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University

Biases in clinical research. Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University Biases in clinical research Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University Learning objectives Describe the threats to causal inferences in clinical studies Understand the role of

More information

Analysis of TB prevalence surveys

Analysis of TB prevalence surveys Workshop and training course on TB prevalence surveys with a focus on field operations Analysis of TB prevalence surveys Day 8 Thursday, 4 August 2011 Phnom Penh Babis Sismanidis with acknowledgements

More information

sickness, disease, [toxicity] Hard to quantify

sickness, disease, [toxicity] Hard to quantify BE.104 Spring Epidemiology: Test Development and Relative Risk J. L. Sherley Agent X? Cause Health First, Some definitions Morbidity = Mortality = sickness, disease, [toxicity] Hard to quantify death Easy

More information

Cardiovascular Outcome

Cardiovascular Outcome Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children: Cardiovascular Outcome D R. J E F F R E Y G O L D B E R G E R U

More information

INTRODUCTION TO EPIDEMIOLOGICAL STUDY DESIGNS PHUNLERD PIYARAJ, MD., MHS., PHD.

INTRODUCTION TO EPIDEMIOLOGICAL STUDY DESIGNS PHUNLERD PIYARAJ, MD., MHS., PHD. INTRODUCTION TO EPIDEMIOLOGICAL STUDY DESIGNS PHUNLERD PIYARAJ, MD., MHS., PHD. 1 OBJECTIVES By the end of this section, you will be able to: Provide a definition of epidemiology Describe the major types

More information

Sensitivity Analysis in Observational Research: Introducing the E-value

Sensitivity Analysis in Observational Research: Introducing the E-value Sensitivity Analysis in Observational Research: Introducing the E-value Tyler J. VanderWeele Harvard T.H. Chan School of Public Health Departments of Epidemiology and Biostatistics 1 Plan of Presentation

More information

Comparison And Application Of Methods To Address Confounding By Indication In Non- Randomized Clinical Studies

Comparison And Application Of Methods To Address Confounding By Indication In Non- Randomized Clinical Studies University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 Dissertations and Theses 2013 Comparison And Application Of Methods To Address Confounding By Indication

More information

Regression Methods for Estimating Attributable Risk in Population-based Case-Control Studies: A Comparison of Additive and Multiplicative Models

Regression Methods for Estimating Attributable Risk in Population-based Case-Control Studies: A Comparison of Additive and Multiplicative Models American Journal of Epidemralogy Vol 133, No. 3 Copyright 1991 by The Johns Hopkins University School of Hygiene and Pubfc Health Printed m U.S.A. Al rights reserved Regression Methods for Estimating Attributable

More information

Outline. Case control studies. Study Designs. Case Control Study. Start with OUTCOME Go backwards Check for EXPOSURE. Experimental studies

Outline. Case control studies. Study Designs. Case Control Study. Start with OUTCOME Go backwards Check for EXPOSURE. Experimental studies Outline Case control studies Study Designs Experimental studies Observational studies Analytic studies Descriptive studies Randomized Controlled trials Case control Cohort Cross sectional Case Control

More information

Challenges in design and analysis of large register-based epidemiological studies

Challenges in design and analysis of large register-based epidemiological studies FMS/DSBS autumn meeting 2014 Challenges in design and analysis of large register-based epidemiological studies Caroline Weibull & Anna Johansson Department of Medical Epidemiology and Biostatistics (MEB)

More information

Is There An Association?

Is There An Association? Is There An Association? Exposure (Risk Factor) Outcome Exposures Risk factors Preventive measures Management strategy Independent variables Outcomes Dependent variable Disease occurrence Lack of exercise

More information

Propensity Score Methods to Adjust for Bias in Observational Data SAS HEALTH USERS GROUP APRIL 6, 2018

Propensity Score Methods to Adjust for Bias in Observational Data SAS HEALTH USERS GROUP APRIL 6, 2018 Propensity Score Methods to Adjust for Bias in Observational Data SAS HEALTH USERS GROUP APRIL 6, 2018 Institute Institute for Clinical for Clinical Evaluative Evaluative Sciences Sciences Overview 1.

More information

Methods to control for confounding - Introduction & Overview - Nicolle M Gatto 18 February 2015

Methods to control for confounding - Introduction & Overview - Nicolle M Gatto 18 February 2015 Methods to control for confounding - Introduction & Overview - Nicolle M Gatto 18 February 2015 Learning Objectives At the end of this confounding control overview, you will be able to: Understand how

More information

Diabetologia 9 Springer-Verlag 1991

Diabetologia 9 Springer-Verlag 1991 Diabetologia (1991) 34:757-762 Diabetologia 9 Springer-Verlag 1991 The Swedish Childhood Diabetes Study- a multivariate analysis of risk determinants for diabetes in different age groups G. Dahlquist 1,

More information

Study design. Chapter 64. Research Methodology S.B. MARTINS, A. ZIN, W. ZIN

Study design. Chapter 64. Research Methodology S.B. MARTINS, A. ZIN, W. ZIN Chapter 64 Study design S.B. MARTINS, A. ZIN, W. ZIN Research Methodology Scientific methodology comprises a set of rules and procedures to investigate the phenomena of interest. These rules and procedures

More information

Chapter 13 Estimating the Modified Odds Ratio

Chapter 13 Estimating the Modified Odds Ratio Chapter 13 Estimating the Modified Odds Ratio Modified odds ratio vis-à-vis modified mean difference To a large extent, this chapter replicates the content of Chapter 10 (Estimating the modified mean difference),

More information

What Are Your Odds? : An Interactive Web Application to Visualize Health Outcomes

What Are Your Odds? : An Interactive Web Application to Visualize Health Outcomes What Are Your Odds? : An Interactive Web Application to Visualize Health Outcomes Abstract Spreading health knowledge and promoting healthy behavior can impact the lives of many people. Our project aims

More information

A Comparison of Methods of Analysis to Control for Confounding in a Cohort Study of a Dietary Intervention

A Comparison of Methods of Analysis to Control for Confounding in a Cohort Study of a Dietary Intervention Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2012 A Comparison of Methods of Analysis to Control for Confounding in a Cohort Study of a Dietary Intervention

More information

he objectives of this paper are to describe the commonly used observational

he objectives of this paper are to describe the commonly used observational C. Craig Blackmore 1 Peter Cummings 2 Received May 24, 2004; accepted after revision June 2, 2004. Supported in part by the Agency for Healthcare Research and Quality grant K08 HS11291-02. Series editors:

More information

Age (continuous) Gender (0=Male, 1=Female) SES (1=Low, 2=Medium, 3=High) Prior Victimization (0= Not Victimized, 1=Victimized)

Age (continuous) Gender (0=Male, 1=Female) SES (1=Low, 2=Medium, 3=High) Prior Victimization (0= Not Victimized, 1=Victimized) Criminal Justice Doctoral Comprehensive Exam Statistics August 2016 There are two questions on this exam. Be sure to answer both questions in the 3 and half hours to complete this exam. Read the instructions

More information

5 Bias and confounding

5 Bias and confounding Bias and confounding 37 5 Bias and confounding Learning objectives In this chapter students learn about Most important factors that can systematically impair the results of a population based study, like

More information

Epidemiology 101. Nutritional Epidemiology Methods and Interpretation Criteria

Epidemiology 101. Nutritional Epidemiology Methods and Interpretation Criteria Slide 1 Epidemiology 101 Nutritional Epidemiology Methods and Interpretation Criteria Andrew Milkowski PhD Adjunct Professor University of Wisconsin Muscle Biology Laboratory amilkowski@ansci.wisc.edu

More information

Understanding Statistics for Research Staff!

Understanding Statistics for Research Staff! Statistics for Dummies? Understanding Statistics for Research Staff! Those of us who DO the research, but not the statistics. Rachel Enriquez, RN PhD Epidemiologist Why do we do Clinical Research? Epidemiology

More information

Selected Topics in Biostatistics Seminar Series. Missing Data. Sponsored by: Center For Clinical Investigation and Cleveland CTSC

Selected Topics in Biostatistics Seminar Series. Missing Data. Sponsored by: Center For Clinical Investigation and Cleveland CTSC Selected Topics in Biostatistics Seminar Series Missing Data Sponsored by: Center For Clinical Investigation and Cleveland CTSC Brian Schmotzer, MS Biostatistician, CCI Statistical Sciences Core brian.schmotzer@case.edu

More information

Understanding Odds Ratios

Understanding Odds Ratios Statistically Speaking Understanding Odds Ratios Kristin L. Sainani, PhD The odds ratio and the risk ratio are related measures of relative risk. The risk ratio is easier to understand and interpret, but,

More information

Cigarette Smoking and Lung Cancer

Cigarette Smoking and Lung Cancer Centers for Disease Control and Prevention Epidemiology Program Office Case Studies in Applied Epidemiology No. 731-703 Cigarette Smoking and Lung Cancer Learning Objectives After completing this case

More information

The effect of joint exposures: examining the presence of interaction

The effect of joint exposures: examining the presence of interaction http://www.kidney-international.org & 2009 International Society of Nephrology abc of epidemiology The effect of joint exposures: examining the presence of interaction Renée de Mutsert 1, Kitty J. Jager

More information

Primary and Secondary Prevention of Diverticular Disease

Primary and Secondary Prevention of Diverticular Disease Primary and Secondary Prevention of Diverticular Disease Walid.H. Aldoori Wyeth Consumer Healthcare Inc. CANADA Falk Symposium Diverticular Disease: Emerging Evidence in a Common Condition Munich, June

More information

General Biostatistics Concepts

General Biostatistics Concepts General Biostatistics Concepts Dongmei Li Department of Public Health Sciences Office of Public Health Studies University of Hawai i at Mānoa Outline 1. What is Biostatistics? 2. Types of Measurements

More information

Finland and Sweden and UK GP-HOSP datasets

Finland and Sweden and UK GP-HOSP datasets Web appendix: Supplementary material Table 1 Specific diagnosis codes used to identify bladder cancer cases in each dataset Finland and Sweden and UK GP-HOSP datasets Netherlands hospital and cancer registry

More information

What is Statistics? (*) Collection of data Experiments and Observational studies. (*) Summarizing data Descriptive statistics.

What is Statistics? (*) Collection of data Experiments and Observational studies. (*) Summarizing data Descriptive statistics. What is Statistics? The science of collecting, summarizing and analyzing data. In particular, Statistics is concerned with drawing inferences from a sample about the population from which the sample was

More information

Pearce, N (2016) Analysis of matched case-control studies. BMJ (Clinical research ed), 352. i969. ISSN DOI: https://doi.org/ /bmj.

Pearce, N (2016) Analysis of matched case-control studies. BMJ (Clinical research ed), 352. i969. ISSN DOI: https://doi.org/ /bmj. Pearce, N (2016) Analysis of matched case-control studies. BMJ (Clinical research ed), 352. i969. ISSN 0959-8138 DOI: https://doi.org/10.1136/bmj.i969 Downloaded from: http://researchonline.lshtm.ac.uk/2534120/

More information

Epidemiologic Measure of Association

Epidemiologic Measure of Association Measures of Disease Occurrence: Epidemiologic Measure of Association Basic Concepts Confidence Interval for population characteristic: Disease Exposure Present Absent Total Yes A B N 1 = A+B No C D N 2

More information

Unit 1 Exploring and Understanding Data

Unit 1 Exploring and Understanding Data Unit 1 Exploring and Understanding Data Area Principle Bar Chart Boxplot Conditional Distribution Dotplot Empirical Rule Five Number Summary Frequency Distribution Frequency Polygon Histogram Interquartile

More information

The population attributable fraction and confounding: buyer beware

The population attributable fraction and confounding: buyer beware SPECIAL ISSUE: PERSPECTIVE The population attributable fraction and confounding: buyer beware Linked Comment: www.youtube.com/ijcpeditorial Linked Comment: Ghaemi & Thommi. Int J Clin Pract 2010; 64: 1009

More information

Selection Bias in the Assessment of Gene-Environment Interaction in Case-Control Studies

Selection Bias in the Assessment of Gene-Environment Interaction in Case-Control Studies American Journal of Epidemiology Copyright 2003 by the Johns Hopkins Bloomberg School of Public Health All rights reserved Vol. 158, No. 3 Printed in U.S.A. DOI: 10.1093/aje/kwg147 Selection Bias in the

More information

Title: Epidemiology of breast cancer in Cyprus: a population based case control study

Title: Epidemiology of breast cancer in Cyprus: a population based case control study Author's response to reviews Title: Epidemiology of breast cancer in Cyprus: a population based case control study Authors: Andreas Hadjisavvas (ahsavvas@cing.ac.cy) Maria A Loizidou (loizidou@cing.ac.cy)

More information

Supplementary Table 1. Association of rs with risk of obesity among participants in NHS and HPFS

Supplementary Table 1. Association of rs with risk of obesity among participants in NHS and HPFS Supplementary Table 1. Association of rs3826795 with risk of obesity among participants in NHS and HPFS Case/control NHS (1990) HPFS (1996) OR (95% CI) P- value Case/control OR (95% CI) P- value Obesity

More information

Epidemiologic Study Designs. (RCTs)

Epidemiologic Study Designs. (RCTs) Epidemiologic Study Designs Epidemiologic Study Designs Experimental (RCTs) Observational Analytical Descriptive Case-Control Cohort + cross-sectional & ecologic Epidemiologic Study Designs Descriptive

More information

8/10/2012. Education level and diabetes risk: The EPIC-InterAct study AIM. Background. Case-cohort design. Int J Epidemiol 2012 (in press)

8/10/2012. Education level and diabetes risk: The EPIC-InterAct study AIM. Background. Case-cohort design. Int J Epidemiol 2012 (in press) Education level and diabetes risk: The EPIC-InterAct study 50 authors from European countries Int J Epidemiol 2012 (in press) Background Type 2 diabetes mellitus (T2DM) is one of the most common chronic

More information

3. Factors such as race, age, sex, and a person s physiological state are all considered determinants of disease. a. True

3. Factors such as race, age, sex, and a person s physiological state are all considered determinants of disease. a. True / False 1. Epidemiology is the basic science of public health. LEARNING OBJECTIVES: CNIA.BOYL.17.2.1 - Define epidemiology. 2. Within the field of epidemiology, the term distribution refers to the relationship

More information

Does Body Mass Index Adequately Capture the Relation of Body Composition and Body Size to Health Outcomes?

Does Body Mass Index Adequately Capture the Relation of Body Composition and Body Size to Health Outcomes? American Journal of Epidemiology Copyright 1998 by The Johns Hopkins University School of Hygiene and Public Health All rights reserved Vol. 147, No. 2 Printed in U.S.A A BRIEF ORIGINAL CONTRIBUTION Does

More information

Logistic Regression Predicting the Chances of Coronary Heart Disease. Multivariate Solutions

Logistic Regression Predicting the Chances of Coronary Heart Disease. Multivariate Solutions Logistic Regression Predicting the Chances of Coronary Heart Disease Multivariate Solutions What is Logistic Regression? Logistic regression in a nutshell: Logistic regression is used for prediction of

More information

TEST YOURSELF: Multiple Choice 1 QUESTIONS

TEST YOURSELF: Multiple Choice 1 QUESTIONS 1. In the investigation of an epidemic the most appropriate measure to describe the frequency of occurrence of illness is the: A. Prevalence B. Incidence rate C. Case-fatality rate D. Attack rate E. Mortality

More information

Lecture 4. Confounding

Lecture 4. Confounding Lecture 4 Confounding Learning Objectives In this set of lectures we will: - Formally define confounding and give explicit examples of it s impact - Define adjustment and adjusted estimates conceptually

More information

Types of Biomedical Research

Types of Biomedical Research INTRODUCTION & MEASUREMENT IN CLINICAL RESEARCH Sakda Arj Ong Vallipakorn, MD MSIT, MA (Information Science) Pediatrics, Pediatric Cardiology Emergency Medicine, Ped Emergency Family Medicine Section of

More information

Dylan Small Department of Statistics, Wharton School, University of Pennsylvania. Based on joint work with Paul Rosenbaum

Dylan Small Department of Statistics, Wharton School, University of Pennsylvania. Based on joint work with Paul Rosenbaum Instrumental variables and their sensitivity to unobserved biases Dylan Small Department of Statistics, Wharton School, University of Pennsylvania Based on joint work with Paul Rosenbaum Overview Instrumental

More information

Self-assessment test of prerequisite knowledge for Biostatistics III in R

Self-assessment test of prerequisite knowledge for Biostatistics III in R Self-assessment test of prerequisite knowledge for Biostatistics III in R Mark Clements, Karolinska Institutet 2017-10-31 Participants in the course Biostatistics III are expected to have prerequisite

More information