Non Invasive Estimation of Blood Glucose using Near Infra red Spectroscopy and Double Regression Analysis

Size: px
Start display at page:

Download "Non Invasive Estimation of Blood Glucose using Near Infra red Spectroscopy and Double Regression Analysis"

Transcription

1 Non Invasive Estimation of Blood Glucose using Near Infra red Spectroscopy and Double Regression Analysis Swathi Ramasahayam 1, Sri Haindavi K 2 Center for VLSI and Embedded Systems Technology 1,2,4, IIIT-Hyderabad, India Bharat Kavala 3, Shubhajit Roy Chowdhury 4 Department of EEE, IIT-Guwahati, India 3 Abstract This paper presents a unique technique for noninvasive estimation of blood glucose concentration using near infra red spectroscopy. The spectroscopy has been performed at the second overtone of glucose which falls in the near infra red region. The near infra red spectroscopy has been performed using transmission photoplethsymography (PPG). The analog front end system has been implemented to get the PPG signal at the near infra red wavelengths of 1070nm, 950nm, 935nm. The PPG signal that has been obtained is processed and double regression analysis is carried out with the artificial neural network for estimating the glucose levels. The root mean square error of the prediction was 5.84mg/dL. Keywords- Blood glucose; Non-invasive; Near-infrared;Second overtone. I. INTRODUCTION Millions of people suffer from diabetes Miletus which is caused because of the disturbances in the metabolic activity of pancreas. Long term diabetes is dangerous as it can lead to blindness, damage nerves and kidneys. It also increases the risk of heart stroke and other heart diseases [1]. More frequent blood glucose monitoring is required for diabetic patients as the amount insulin intake has to be decided accordingly. Currently used equipment for the self monitoring of blood glucose is invasive and usually requires pricking of finger tip which is painful. It also involves risk of spreading infectious diseases. In order to overcome the disadvantages of the invasive methods some non invasive methods have been proposed. However they have the disadvantages like lack of selectivity like in scattering method [2], or require heavy, delicate and expensive instruments like Raman spectroscopy [3], and polarimetric method [4]. For the non-invasive measurement of the blood glucose most of the research is done based on Photoplethsymography (PPG) in the mid infrared (2µm-2.5µm) and first overtone regions (1.53µm-1.82µm) [5-7] as the fundamental frequencies and first overtones fall under these regions. The absorbance of the glucose bonds(c-h, O-H) is strong in this region. The major disadvantage in these regions is due to three reasons. Firstly the drastic rise in the price of components and secondly the strong absorption due to other components like water and lastly the scattering in fatty tissue [8,9]. This makes the mid and first overtone regions economically not viable for developing a noninvasive glucose meter. This paper details about the ability to measure the blood glucose levels accurately in relevant to the clinical levels in second overtone region ( µm). Here the cost of the components is less but glucose has weaker absorption and it requires the electronic noise in the analog front end to be suppressed much below the signal from the sensor output. Here we have used artificial neural network for regression analysis to accurately predict the blood glucose levels. II. THEORETICAL ANALYSIS A. Molecular composition and relative absorptivities When a photon is incident on a molecule, there will be bond deformations or bond vibrations at different energy levels related to different bonds, depending on the energy of incident photon [10]. So, only the photon with energy that corresponds to the difference between two of its energy levels can be absorbed. The frequency of the vibration is given by the = 1 2 Where k is the bond strength and m is the reduced mass. (1) For a glucose molecule, the molecular structure is as shown in Fig1. Table 1 shows the frequencies corresponding to different bond vibrations in glucose molecule [6]. Figure 1. Molecular structure of D-glucose /13/$ IEEE 631

2 Table 1. Absorption bands of glucose bonds Wave length bond Wave length bond Fundamental 3377nm vc-h 2817nm vo-h First Second 1688nm 2vC-H 1408nm 2vO-H 1126nm 3vC-H 939nm 3vO-H Where A is the absorbance of glucose over a range of wavelengths and f ( ) is the probability density function of intensity of light emitted. By multiplying the relative intensity of the light emitted by the LED shown in Fig.3 and the absorbance value of glucose taken from the spectrum and averaging it over spectral distribution of LED we calculate the mean value of the absorbance which is shown in Fig.4. At a deeper level absorption of light can be seen as dependent on the probability of absorbance of a photon by the molecule. For nth overtone final energy is (n+1)*e, where E is the fundamental energy. As n increases, probability of absorbance decrease rapidly and hence intensities of absorbance decrease as overtones increase. The absorption at fundamental frequency is calculated and from that the absorption at second overtone is calculated relatively [11]. Table 2 depicts the relative absorptivities of C-H bond at different overtones with respect to the fundamental. It is evident that the absorptivity decreases rapidly as one goes from fundamental to the overtones in sequence. Table 2. Relative absorptivities of C-H bond Wave number(cm -1 ) Relative Absorptivity Fundamental First Second * 10-3 B. Selection of the Wavelength of Peak absorption The absorption spectrum of the glucose has been studied in order to choose the wavelengths for LEDs. For this purpose a IR absorption spectrum of 0.1M aqueous glucose solution has been collected and analyzed in second overtone region of the near-infra red spectra using the Bruker tensor 27 FTIR spectrometer. Fig.2 shows the absorption spectrum of the glucose over the second overtone region where the selected wavelengths are shown. We can observe that the absorption peaks in this region are very narrow typically of the order of the 2nm to 5nm but the LED emits the light over a range of wavelengths. The wavelengths are chosen such that the weighted average of the absorption over the spectral bandwidth of the LED is high. While calculating this weighted average the intensity of light emitted by the LED acts as weight for the absorption at that particular wavelength. The expected value of the absorbance over a range has been calculated as = ( ) (2) Figure 2. Spectrum showing the transmitance of glucose Figure 3. Graph showing the relative senstivity of light emitted by 1070nm LED. Figure 4. Intensity weighted mean absorbances over 920nm to 1100nm /13/$ IEEE 632

3 In order to improve the accuracy of the prediction of blood glucose level, the wavelengths have been chosen such that mean value of the absorbance of glucose over the frequency range of LED is high. For the current research, wavelengths of 935nm, 950nm, and 1070nm have been chosen. III. DESIGN METHODOLOGY A. Photoplethysmography (PPG) Photoplethysmography is an optical technique widely used to measure the pulse rate, arterial blood oxygen saturation and blood volume changes. It uses a clip which contains a light source and a detector on the opposite sides to detect the cardio vascular pulse wave that propagates through the body. The PPG waves can be described as containing a DC component due to venous blood and an AC component due to blood volume changes in the arteries. According to Beer-lambert s law the absorbance of light by a liquid is related to the concentration of the material by = (3) Where the molar absorptivity of solute at a particular wavelength, C is is the concentration of the solute and is the path length. Hence for a specific wavelength i, equation (3) may be written as = (4) In our particular case, i=1 corresponds to a wavelength of 935nm, i=2 corresponds to a wavelength of 950nm and i=3 corresponds to a wavelength of 1070nm. As the concentrations and path lengths are same for a person at a particular time, we can write C 1 = C 2 = C 3 (5) = = (6) B. Analog Sensing Circuit As discussed in the previous section, three different wavelengths have been selected which have peak absorption of glucose in the near infrared region of the spectrum, viz 1070, 950 and 935 nm. The block diagram of the glucose sensing system is shown in the Fig.5. This light is converted in to an equivalent current by the detector and is high pass filtered with a cut off frequency of 0.8Hz. Then it is given to the trans impedance amplifier for amplification of the signal. For this a low noise amplifier LMV796 has been used. The input referred noise of the amplifier is less than 17nv/ Hz. After necessary amplification it has to be low pass filtered in order to get PPG wave. A 4 th order Sallen-key topology has been used to build a low pass filter whose cut off frequency is 10Hz. Fig. 6 shows the experimental setup of the sensing circuit and Fig. 7 shows the PPG waveform. Figure 6. Experimental set up of Sensing circuit Figure 7. PPG waveform for 950 nm Figure 5. Block Diagram of the glucose sensing system. It consists of the finger clip with LED acting as a light sensor and the photodiode as the detector to detect the small changes in the incident light as it passes through the finger. For getting glucose level in blood the absorbance which is mainly due to blood glucose is calculated from AC component of PPG wave as follows = log 1 + ( ) ( ) (7) Where is difference between optical densities at time t i and t i+1, ( ) is the pulsatile component at time t i and ( ) is the intensity of light at time t i /13/$ IEEE 633

4 This difference has the effect of removing the venous and the tissue contributions to yield only the change in intensity due to the pulsating arterial blood compartment. [12,13]. The optical densities have been calculated at three wavelengths for 35 subjects. The actual glucose values have also been determined using standard invasive glucometer. Regression analysis has been done on these values using neural network toolbox in MATLAB. IV. REGRESSION ANALYSIS USING ARTIFICIAL NEURAL NETWORKS Multivariate calibration models have come into wide use in quantitative spectroscopic analyses due to their ability to overcome deviations from the Beer Lambert s law caused by effects such as overlapping spectral bands and interactions between components [14]. PLS and PCR are the most widely used chemo-metric techniques for quantitative analysis of complex multicomponent mixtures. These methods are not optimal when the relationship between the IR absorbance s and the constituent concentration deviates from linearity. The theory and the application of Artificial Neural networks (ANN) in modeling chemical data have been widely presented in the literature [15]. In this current work, ANN has been used for function fitting to develop a model based on the PPG data and invasive glucose measurements. For calculating glucose concentration from beer-lambert s law we can say that, = ( ) Where A i (λ ) is the optical density at wavelength λ, of the i th component, whose concentration is C i, A(λ) the optical density of the mixture. If we have the spectra of all the components {A i (λ)} and measure the spectrum of the mixture {A i (λ)}, we can use a mathematical tool to estimate the {C i }. The three wavelengths have been chosen such that glucose has considerable amount of absorption when compared to other components. So we have given the matrix (8) Initially, the first set of regression coefficients are used to estimate Glucose levels. But, if it falls above 110 mg/dl second set of regression coefficients are used to estimate the glucose concentration accurately. The performance of the regression analysis was evaluated in terms of root mean square error of prediction over the first data set which has glucose concentration below 110mg/dL is given by Eq. (9) = 1 (9) The test samples whose estimated glucose concentration fall above 110mg/dl are taken as second data set and regression analysis is performed whose root mean square error of prediction is given by = 2 The overall root mean square error can be obtained as = (10) 11 Results of regression analysis on the first data set are shown in Fig.8 where the parameter R signifies the correlation between estimated glucose and the actual glucose levels, we can observe that R is nearly equal to 1 for training, validation and test. For this a root mean square error (RMSE 1 ) of 5.61mg/dL is obtained. Results of the second regression analysis performed are shown in Fig.9, the root mean square error (RMSE 2 ) is 6.32mg/dL. as input and as output which are measured using standard invasive method. In this way we have three different optical densities as inputs and one output for a single sample. MATLAB neural network toolbox has been used. A two layer feed forward network with sigmoid hidden neurons and linear output neurons has been chosen. Number of hidden layers have been chosen as 10. V. DOUBLE REGRESSION To minimize the deviations and increase the sensitivity of the device regression has been used twice i.e.., double regression. So we get two sets of regression coefficients for two different datasets. Figure 8. Regression analysis on first data set /13/$ IEEE 634

5 Figure 9. Regression analysis on filtered data set (>110mg/dl). [9] Kevin h. hazen,* mark a. arnold,² and gary w. small, Measurement of Glucose in Water with First- Near-Infrared Spectra. Applied Spectroscopy, Vol. 52, Issue 12, pp (1998). [10] Airat k. amerov, jun chen, and mark a. arnold, Molar Absorptivities of Glucose and Other Biological Molecules in Aqueous Solutions over the First and Combination Regions of the Near- InfraredSpectrum. Appliedspectroscopy, Volume 58, Number 10 (Oct. 2004) Page [11] A. I. Pavlyuchko, E. V. Vasilyev, and L. A. Gribovb, calculations of molecular ir spectra in the overtone and combination frequency regions, Journal of Applied Spectroscopy, November 2011, Volume 78, Issue 5, pp [12] K. Yamakoshi,Ogawa M, Yamakoshi T, Tamura T, Yamakoshi K. Multivariate regression and discreminant calibration models for a novel optical non-invasive blood glucose measurement method named pulse glucometry Conf Proc IEEE Eng Med Biol Soc. 2009;2009: doi: /IEMBS [13] Y. Yamakoshi Pulse Glucometry: A New Approach for Non-invasive Blood Glucose Measurement Using Instantaneous Differential Near InfraredSpectrophotometry, JBiomed Opt Sep-Oct;11(5): [14] Bhandare, P., Mendelson, Y., Peura, R.A.: Multivariate Determination of Glucose in Whole Blood Using Partial Least-Squares and Artificial Neural Networks Based on Mid-Infrared Spectroscopy. J. Applied Spectroscopy 47, (1993). [15] Smits, J.R.M., Malssen, W.J., Buydens, L.M.C., Kateman, G.: Using Artificial Neural Net- works for Solving Chemical Problems. Part 1. Multi-layer Feed-forward Networks. J.Chemometrics and Intelligent Laboratory Systems 22, (1994). VI. CONCLUSION In the current work, we have designed a non invasive, low cost, sensitive and user friendly device for glucose measurement. The device is simple, low cost and is widely available as we have used near infra red spectroscopy at second overtones. Accuracy of the prediction model is found to be 5.84mg/dL. Because of the double regression analysis we used, the equipment has become more sensitive and accurate. REFERENCES [1] H.M. Heise, in: R.A. Meyers (Ed.), Encyclopedia of Analytical Chemistry, vol. 1, John Wiley Press, New york, 2000, pp [2] J.S. Maier, S.A. Walker, S. Fantini, M.A. Franceschini, E. Gratton, Opt. Lett. 19(24) (1994) [3] J.P. Wicksted, R.J. Erckens, M. Motamedi, W.F. March, Appl. Spectrosc. 49(7) (1995) [4] G.L. Cote, M.D. Fox, R.B. Northrop, IEEE Trans. Bio-medical Engrg. 39(7) (1992) [5] S. F.Malin, T. L. Ruchiti, T. B. Blank, S. U. Thennadil, and S. L. Monfre, Noninvasive prediction of glucose by near-infrared diffuse reflectancespectroscopy, Clinical Chemistry, vol. 45, pp , 999.)O. S. Khalil, Spectroscopic and clinical aspects of noninvasive glucosemeasurements," Clinical Chemistry, vol. 45, no. 2, pp , [6] K. J. Jeon, I. D. Hwang, S. Hahn, and G. Yoon, Comparison betweentransmittance and reflectance measurements in glucose determinationusing near infrared spectroscopy, Journal of Biomedical Optics, no. 11,p , [7] A. K. Amerov, J. Chen, G. W. Small, and M. A. Arnold, Scatteringand absorption effects in the determination of glucose in whole blood bynear-infrared spectroscopy, Anal. Chem, no. 77, pp , [8] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, Electron spectroscopy studies on magneto-optical media and plastic substrate interface, IEEE Transl. J. Magn. Japan, vol. 2, pp , August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982] /13/$ IEEE 635

BLOOD GLUCOSE LEVEL MONITORING BY NONINVASIVE METHOD USING NEAR INFRA RED SENSOR

BLOOD GLUCOSE LEVEL MONITORING BY NONINVASIVE METHOD USING NEAR INFRA RED SENSOR BLOOD GLUCOSE LEVEL MONITORING BY NONINVASIVE METHOD USING NEAR INFRA RED SENSOR P.Daarani 1 & A.Kavithamani 2 International Journal of Latest Trends in Engineering and Technology pp. 141-147 DOI: http://dx.doi.org/10.21172/1.ires.19

More information

Noninvasive Blood Glucose Analysis using Near Infrared Absorption Spectroscopy. Abstract

Noninvasive Blood Glucose Analysis using Near Infrared Absorption Spectroscopy. Abstract Progress Report No. 2-3, March 31, 1999 The Home Automation and Healthcare Consortium Noninvasive Blood Glucose Analysis using Near Infrared Absorption Spectroscopy Prof. Kamal Youcef-Toumi Principal Investigator

More information

Design and Development of Non-Invasive Prototype to Measure Pulse Rate, Blood Glucose and Oxygen Saturation Level in Arterial Blood

Design and Development of Non-Invasive Prototype to Measure Pulse Rate, Blood Glucose and Oxygen Saturation Level in Arterial Blood Design and Development of Non-Invasive Prototype to Measure Pulse Rate, Blood Glucose and Oxygen Saturation Level in Arterial Blood Nazo Haroon Department of Mechatronics Engineering, CEME National University

More information

Biomedical Instrumentation D. The Photoplethysmogram

Biomedical Instrumentation D. The Photoplethysmogram Biomedical Instrumentation D. The Photoplethysmogram Dr Gari Clifford Based on slides by Prof. Lionel Tarassenko The need for real-time oxygen saturation monitoring Respiratory failure & pulmonary disease

More information

Optical Sensor System for Hemoglobin Measurement

Optical Sensor System for Hemoglobin Measurement International Journal of Computational Engineering Research Vol, 03 Issue, 7 Optical Sensor System for Hemoglobin Measurement Rajashree Doshi 1, Anagha Panditrao 2 1 Department of Instrumentation and Control,

More information

Non-invasive blood glucose measurement by near infrared spectroscopy: Machine drift, time drift and physiological effect

Non-invasive blood glucose measurement by near infrared spectroscopy: Machine drift, time drift and physiological effect Spectroscopy 24 (2010) 629 639 629 DOI 10.3233/SPE-2010-0485 IOS Press Non-invasive blood glucose measurement by near infrared spectroscopy: Machine drift, time drift and physiological effect Simon C.H.

More information

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Research Journal of Pharmaceutical, Biological and Chemical Sciences Research Journal of Pharmaceutical, Biological and Chemical Sciences Oxygen Glucose and Heart rate Monitor: An non Invasive approach Anne Frank Joe A*, Veeramani Saikrupa, and Prajukti Panda Sathyabama

More information

Hybrid EEG-HEG based Neurofeedback Device

Hybrid EEG-HEG based Neurofeedback Device APSIPA ASC 2011 Xi an Hybrid EEG-HEG based Neurofeedback Device Supassorn Rodrak *, Supatcha Namtong, and Yodchanan Wongsawat ** Department of Biomedical Engineering, Faculty of Engineering, Mahidol University,

More information

Development of an Optical Sensor Based System for Detection and Monitoring of Hemoglobin in Blood

Development of an Optical Sensor Based System for Detection and Monitoring of Hemoglobin in Blood International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 4 (2017) pp. 483-489 Research India Publications http://www.ripublication.com Development of an Optical Sensor

More information

Dual channel photoplethysmography studies of cardio-vascular response to the body position changes

Dual channel photoplethysmography studies of cardio-vascular response to the body position changes Dual channel photoplethysmography studies of cardio-vascular response to the body position changes R. Erts, I. Kukulis, J. Spigulis, L. Kere University of Latvia, Raina Blvd. 9, Riga, LV-, Latvia Renars.erts@lu.lv

More information

Blood Pressure Estimation Using Photoplethysmography (PPG)

Blood Pressure Estimation Using Photoplethysmography (PPG) Blood Pressure Estimation Using Photoplethysmography (PPG) 1 Siddhi Sham Karande, BE E&TC, VIIT Pune. 2 Kiran Rajendrasingh Thakur, BE E&TC, VIIT Pune. 3 Sneha Dattatraya Waghmare, BE E&TC, VIIT Pune 4

More information

Oximeters. Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan

Oximeters. Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan Oximeters Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.tw Pulse oximeter Masimo pulse CO-oximeter http://www.masimo.com/produc ts/continuous/radical-7/

More information

Muscle OxyGen monitor. The Science Behind Moxy

Muscle OxyGen monitor. The Science Behind Moxy Muscle OxyGen monitor The Science Behind Moxy How Does Moxy Monitor Work? Moxy Monitor works by shining near-infrared light onto the skin and detecting some of the light after it has travelled into the

More information

Correlation of Ratio of Ratio of Near Infrared Vs Infrared Photoplethysmograph Spectroscopy for the Non-Invasive Measurement of Haemoglobin

Correlation of Ratio of Ratio of Near Infrared Vs Infrared Photoplethysmograph Spectroscopy for the Non-Invasive Measurement of Haemoglobin Correlation of Ratio of Ratio of Near Infrared Vs Infrared Photoplethysmograph Spectroscopy for the Non-Invasive Measurement of Haemoglobin Ashita Diwate 1, Yogesh Kumar 2, Dr. Sanjeev Kumar 3, Prof. T.

More information

Estimation of Haemoglobin Using Non-Invasive Technique

Estimation of Haemoglobin Using Non-Invasive Technique Estimation of Haemoglobin Using Non-Invasive Technique Tatiparti Padma #1, Pinjala Jahnavi *2 #Department of ECE, GRIET, Hyderabad, Telangana *Department of ECE, GRIET, Hyderabad, Telangana 1tatipartipadma@gmail.com,

More information

A MODULAR APPROACH TO DIABETIC EXAMINATION WITH ALERT SYSTEM BASED ON

A MODULAR APPROACH TO DIABETIC EXAMINATION WITH ALERT SYSTEM BASED ON PROJECT SYNOPSIS 1. Title of the project with Project proposal reference number: A MODULAR APPROACH TO DIABETIC EXAMINATION WITH ALERT SYSTEM BASED ON IoT (40S_BE_2022). 2. Name of the College & Department:

More information

Smart Probe for Uric Acid Detection

Smart Probe for Uric Acid Detection Smart Probe for Uric Acid Detection Rahul Pimpare 1, Samyak Ramteke 2, Pauroosh Kaushal 3 1 Student,Department of instrumentation & Control Engineering, D Y Patil College of Engineering Akurdi, Pune,India.

More information

Qingbo Li, Qishuo Gao, and Guangjun Zhang. 1. Introduction

Qingbo Li, Qishuo Gao, and Guangjun Zhang. 1. Introduction Spectroscopy Volume 213, Article ID 916351, 5 pages http://dx.doi.org/1155/213/916351 Research Article Improved Extended Multiplicative Scatter Correction Algorithm Applied in Blood Glucose Noninvasive

More information

In vivo Infrared Spectroscopy

In vivo Infrared Spectroscopy In vivo Infrared Spectroscopy Zhe Xia March 29, 2017 Outline Introduction Theory Instrument Case study Conclusion Introduction In vivo: Latin for within the living, In vivo studies focus on the effects

More information

Evaluation of Measurement Sites for Noninvasive Blood Glucose Sensing with Near-Infrared Transmission Spectroscopy

Evaluation of Measurement Sites for Noninvasive Blood Glucose Sensing with Near-Infrared Transmission Spectroscopy Clinical Chemistry 45:9 1621 1627 (1999) Oak Ridge Conference Evaluation of Measurement Sites for Noninvasive Blood Glucose Sensing with Near-Infrared Transmission Spectroscopy Jason J. Burmeister * and

More information

An Artificial Intelligence Centred Multivariate Analysis for Blood Glucose Diagnosis

An Artificial Intelligence Centred Multivariate Analysis for Blood Glucose Diagnosis ISSN (Online): 2394-3858 ISSN (Print) : 2394-3866 International Journal of Research and Innovations in Science and Technology International Journal of Research and Innovations in Science & Technology,

More information

Continuous Monitoring of Blood Pressure Based on Heart Pulse Analysis

Continuous Monitoring of Blood Pressure Based on Heart Pulse Analysis Journal of Physics: Conference Series PAPER OPEN ACCESS Continuous Monitoring of Blood Pressure Based on Heart Pulse Analysis To cite this article: Valerie Tan et al 2018 J. Phys.: Conf. Ser. 1049 012062

More information

Permanent City Research Online URL:

Permanent City Research Online URL: Kyriacou, P. A., Pal, S. K., Langford, R. & Jones, DP (2006). Electro-optical techniques for the investigation of oesophageal photoplethysmographic signals and blood oxygen saturation in burns. Measurement

More information

Artificial Neural Networks and Near Infrared Spectroscopy - A case study on protein content in whole wheat grain

Artificial Neural Networks and Near Infrared Spectroscopy - A case study on protein content in whole wheat grain A White Paper from FOSS Artificial Neural Networks and Near Infrared Spectroscopy - A case study on protein content in whole wheat grain By Lars Nørgaard*, Martin Lagerholm and Mark Westerhaus, FOSS *corresponding

More information

Development of near-infrared absorption spectrometry system by using NIR wideband glass phosphor LED

Development of near-infrared absorption spectrometry system by using NIR wideband glass phosphor LED Journal of Physics: Conference Series PAPER OPEN ACCESS Development of near-infrared absorption spectrometry system by using NIR wideband glass phosphor LED Recent citations - Luminescence properties of

More information

ScienceDirect. Comparative Study of Different Measurement Sites using NIR Based Non-invasive Glucose Measurement system

ScienceDirect. Comparative Study of Different Measurement Sites using NIR Based Non-invasive Glucose Measurement system Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 70 (2015 ) 469 475 4 th International Conference on Eco-friendly Computing and Communication Systems (ICECCS) Comparative

More information

Optical sensor for Indian Siddha Diagnosis System

Optical sensor for Indian Siddha Diagnosis System Available online at www.sciencedirect.com Procedia Engineering 38 (2012 ) 1126 1131 International conference on modeling, optimization and computing Optical sensor for Indian Siddha Diagnosis System N.Deepa*,

More information

Monitoring Tumor Therapy

Monitoring Tumor Therapy Monitoring Tumor Therapy Zenalux Biomedical, Inc. The Zenascope was used to monitor the physiological response to a vascular disrupting agent in mouse tumors. Changes in hemoglobin concentration, hemoglobin

More information

Design a system of measurement of heart rate, oxygen saturation in blood and body temperature with non-invasive method

Design a system of measurement of heart rate, oxygen saturation in blood and body temperature with non-invasive method IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Design a system of measurement of heart rate, oxygen saturation in blood and body temperature with non-invasive method To cite

More information

Temperature Effect on Near Infrared Spectrum of Glucose Monitoring

Temperature Effect on Near Infrared Spectrum of Glucose Monitoring 206 International Conference on Electronic Information Technology and Intellectualization (ICEITI 206) ISBN: 978--60595-364-9 Temperature Effect on Near Infrared Spectrum of Glucose Monitoring Renjie Xu,

More information

DESIGN OF AUTOMATIC INSULIN DOSAGE INDICATOR FOR DIABETIC PATIENTS USING BMI

DESIGN OF AUTOMATIC INSULIN DOSAGE INDICATOR FOR DIABETIC PATIENTS USING BMI DESIGN OF AUTOMATIC INSULIN DOSAGE INDICATOR FOR DIABETIC PATIENTS USING BMI Ms. R. Kanimozhi PG Scholar Dr. S. Saravanakumar Assistant Professor Department of Electronics and Communication Engineering,

More information

Address: Department of Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven KU Leuven, Kasteelpark Arenberg 30, B-3001

Address: Department of Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven KU Leuven, Kasteelpark Arenberg 30, B-3001 * Corresponding author: Mohammad Goodarzi Address: Department of Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven KU Leuven, Kasteelpark Arenberg 30, B-3001 Heverlee, Belgium

More information

Measuring Heart Rate and Blood Oxygen Levels for Portable and Wearable Devices

Measuring Heart Rate and Blood Oxygen Levels for Portable and Wearable Devices Measuring Heart Rate and Blood Oxygen Levels for Portable and Wearable Devices By Zhang Feng, Senior Medical Applications Engineer Marten Smith, Medical Marketing Manager Medical Products Group Microchip

More information

Manipulating Diabetes by Mooting Blood Clott Time Parameter

Manipulating Diabetes by Mooting Blood Clott Time Parameter Manipulating Diabetes by Mooting Blood Clott Time Parameter N.D.Meshram 1 and P. B. Dahikar 2 Professor, Shri. Mathuradas Mohota College Of Sciences, Sakkardara Square, Nagpur-440009 India 1 Professor,

More information

Consumer Near Infrared Spectroscopy as a Training and Recovery Tool. Jon Tarkington

Consumer Near Infrared Spectroscopy as a Training and Recovery Tool. Jon Tarkington Consumer Near Infrared Spectroscopy as a Training and Recovery Tool Jon Tarkington Outline - What is NIRS? - Devices - Data interpretation - Practical Application - Future Impacts - Suffix light Disclaimers

More information

Clinically Available Optical Topography System

Clinically Available Optical Topography System Clinically Available Optical Topography System Clinically Available Optical Topography System 18 Fumio Kawaguchi Noriyoshi Ichikawa Noriyuki Fujiwara Yûichi Yamashita Shingo Kawasaki OVERVIEW: Progress

More information

Competitive Intelligence Report Technology & Patents

Competitive Intelligence Report Technology & Patents Competitive Intelligence Report Technology & Patents N o n i n v a s i v e d i a b e t e s m o n i t o r i n g 01 November - 15 November, 2018 7 Published Granted Inactive 5 8 0 25 2 1 Start ups Companies

More information

Research Article Derivative Spectrophotometric Method for Estimation of Metformin Hydrochloride in Bulk Drug and Dosage Form

Research Article Derivative Spectrophotometric Method for Estimation of Metformin Hydrochloride in Bulk Drug and Dosage Form Research Article Derivative Spectrophotometric Method for Estimation of Metformin Hydrochloride in Bulk Drug and Dosage Form Gowekar NM, Lawande YS*, Jadhav DP, Hase RS and Savita N. Gowekar Department

More information

Dr. D.McG.Clarkson Determining the Accuracy of SpO2 Values

Dr. D.McG.Clarkson Determining the Accuracy of SpO2 Values Dr. D.McG.Clarkson Determining the Accuracy of SpO2 Values 1 Life saving technology The availability of the LED provided a convenient light which provides advantages of :- Compact size Modest power requirements

More information

Research of the Measurement on Palmitic Acid in Edible Oils by Near-Infrared Spectroscopy

Research of the Measurement on Palmitic Acid in Edible Oils by Near-Infrared Spectroscopy Research of the Measurement on Palmitic Acid in Edible Oils by Near-Infrared Spectroscopy Hui Li 1, Jingzhu Wu 1*, Cuiling Liu 1, 1 College of Computer & Information Engineering, Beijing Technology and

More information

Implementation of Spectral Maxima Sound processing for cochlear. implants by using Bark scale Frequency band partition

Implementation of Spectral Maxima Sound processing for cochlear. implants by using Bark scale Frequency band partition Implementation of Spectral Maxima Sound processing for cochlear implants by using Bark scale Frequency band partition Han xianhua 1 Nie Kaibao 1 1 Department of Information Science and Engineering, Shandong

More information

Trans Fat Determination in the Industrially Processed Edible Oils By Transmission FT-IR Spectroscopy By

Trans Fat Determination in the Industrially Processed Edible Oils By Transmission FT-IR Spectroscopy By Trans Fat Determination in the Industrially Processed Edible Oils By Transmission FT-IR Spectroscopy By Dr. Syed Tufail Hussain Sherazi E-mail: tufail_sherazi@yahoo.com National Center of Excellence in

More information

Noise Cancellation using Adaptive Filters Algorithms

Noise Cancellation using Adaptive Filters Algorithms Noise Cancellation using Adaptive Filters Algorithms Suman, Poonam Beniwal Department of ECE, OITM, Hisar, bhariasuman13@gmail.com Abstract Active Noise Control (ANC) involves an electro acoustic or electromechanical

More information

ANALYSIS OF PHOTOPLETHYSMOGRAPHIC SIGNALS OF CARDIOVASCULAR PATIENTS

ANALYSIS OF PHOTOPLETHYSMOGRAPHIC SIGNALS OF CARDIOVASCULAR PATIENTS ANALYSIS OF PHOTOPLETHYSMOGRAPHIC SIGNALS OF CARDIOVASCULAR PATIENTS V.S. Murthy 1, Sripad Ramamoorthy 1, Narayanan Srinivasan 2, Sriram Rajagopal 2, M. Mukunda Rao 3 1 Department of Physics, Indian Institute

More information

Estimation of Systolic and Diastolic Pressure using the Pulse Transit Time

Estimation of Systolic and Diastolic Pressure using the Pulse Transit Time Estimation of Systolic and Diastolic Pressure using the Pulse Transit Time Soo-young Ye, Gi-Ryon Kim, Dong-Keun Jung, Seong-wan Baik, and Gye-rok Jeon Abstract In this paper, algorithm estimating the blood

More information

The optical properties and spectral features of malignant skin melanocytes in the terahertz frequency range

The optical properties and spectral features of malignant skin melanocytes in the terahertz frequency range Journal of Physics: Conference Series PAPER OPEN ACCESS The optical properties and spectral features of malignant skin melanocytes in the terahertz frequency range Related content - Development of the

More information

Oximeters. Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan

Oximeters. Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan Oximeters Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.tw Oxygen transport in blood Hemoglobin Oxygen O Deoxygen +O O Oximeters Arterial saturation

More information

Journal of Faculty of Engineering & Technology DESIGN AND IMPLEMENTATION OF A WEARABLE HEALTH DEVICE

Journal of Faculty of Engineering & Technology DESIGN AND IMPLEMENTATION OF A WEARABLE HEALTH DEVICE PAK BULLET TRAIN (PBT) JFET 22(2) (2015) 39-44 Journal of Faculty of Engineering & Technology journal homepage: www.pu.edu.pk/journals/index.php/jfet/index DESIGN AND IMPLEMENTATION OF A WEARABLE HEALTH

More information

FT-IR ANALYSIS OF DERIDE HUMAN SERUM FOR DETERMINING ALBUMIN CONCENTRATION IN IRAQI PATIENTS WITH RENAL FAILURE

FT-IR ANALYSIS OF DERIDE HUMAN SERUM FOR DETERMINING ALBUMIN CONCENTRATION IN IRAQI PATIENTS WITH RENAL FAILURE FT-IR ANALYSIS OF DERIDE HUMAN SERUM FOR DETERMINING ALBUMIN CONCENTRATION IN IRAQI PATIENTS WITH RENAL FAILURE *Israa G. Zainal & **Ameer S. Radi *AL-Mustansiriya University,College Of Science,Chemistry

More information

NEAR INFRARED TRANSMISSION SPECTROSCOPY AS APPLIED TO FATS AND OIL

NEAR INFRARED TRANSMISSION SPECTROSCOPY AS APPLIED TO FATS AND OIL NEAR INFRARED TRANSMISSION SPECTROSCOPY AS APPLIED TO FATS AND OIL Phillip J. Clancy, NIR Technology Systems, 56 Kitchener Pde, Bankstown, NSW, Australia. Near Infrared Transmission (NIT) Spectroscopy

More information

Non-invasive Hemoglobin Measurement for Anemia Diagnosis

Non-invasive Hemoglobin Measurement for Anemia Diagnosis Non-invasive Hemoglobin Measurement for Anemia Diagnosis Raditya Artha Rochmanto 1, Hasballah Zakaria 2 Ratih Devi Alviana 3, Nurhalim Shahib 4 Department of Biomedical Engineering Medical Faculty Institut

More information

Non-Invasive Method of Blood Pressure Measurement Validated in a Mathematical Model

Non-Invasive Method of Blood Pressure Measurement Validated in a Mathematical Model Non-Invasive Method of Blood Pressure Measurement Validated in a Mathematical Model Instrumentation and Control Department, JSS Academy of Technical Education, Noida (U.P.), India Abstract- The non-invasive

More information

Noninvasive monitoring of glucose concentration using differential absorption low-coherence interferometry based on rapid scanning optical delay line

Noninvasive monitoring of glucose concentration using differential absorption low-coherence interferometry based on rapid scanning optical delay line Journal of Physics: Conference Series Noninvasive monitoring of glucose concentration using differential absorption low-coherence interferometry based on rapid scanning optical delay line To cite this

More information

MEDAK DIST. ANDHRA PRADESH STATE, INDIA. Research Article RECEIVED ON ACCEPTED ON

MEDAK DIST. ANDHRA PRADESH STATE, INDIA. Research Article RECEIVED ON ACCEPTED ON Page67 Available Online through IJPBS Volume 1 Issue 2 APRIL- JUNE 2011 SIMPLE QUANTITATIVE METHOD DEVELOPMENT AND VALIDATION OF VALSARTAN IN PUREFORM AND PHARMACEUTICAL DOSAGE FORMS BYUV SPECTROSCOPY

More information

Available Online through Research Article

Available Online through Research Article ISSN: 0975-766X Available Online through Research Article www.ijptonline.com SPECTROPHOTOMETRIC METHODS FOR THE DETERMINATION OF FROVATRIPTAN SUCCINATE MONOHYDRATE IN BULK AND PHARMACEUTICAL DOSAGE FORMS

More information

Optical non-invasive methods for characterization of the human health status

Optical non-invasive methods for characterization of the human health status Optical non-invasive methods for characterization of the human health status Abstract Jens Kraitl and Hartmut Ewald Institute of General Electrical Engineering, University of Rostock, Rostock, Germany

More information

Linear Ultrasonic Wave Propagation in Biological Tissues

Linear Ultrasonic Wave Propagation in Biological Tissues Indian Journal of Biomechanics: Special Issue (NCBM 7-8 March 29) Linear Ultrasonic Wave Propagation in Biological Tissues Narendra D Londhe R. S. Anand 2, 2 Electrical Engineering Department, IIT Roorkee,

More information

ECG Beat Recognition using Principal Components Analysis and Artificial Neural Network

ECG Beat Recognition using Principal Components Analysis and Artificial Neural Network International Journal of Electronics Engineering, 3 (1), 2011, pp. 55 58 ECG Beat Recognition using Principal Components Analysis and Artificial Neural Network Amitabh Sharma 1, and Tanushree Sharma 2

More information

Application of Phased Array Radar Theory to Ultrasonic Linear Array Medical Imaging System

Application of Phased Array Radar Theory to Ultrasonic Linear Array Medical Imaging System Application of Phased Array Radar Theory to Ultrasonic Linear Array Medical Imaging System R. K. Saha, S. Karmakar, S. Saha, M. Roy, S. Sarkar and S.K. Sen Microelectronics Division, Saha Institute of

More information

Milled Rice Surface Lipid Measurement by Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS)

Milled Rice Surface Lipid Measurement by Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) Milled Rice Surface Lipid Measurement by Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) Rahul Reddy Gangidi, Andrew Proctor*, and Jean-François Meullenet Department of Food Science,

More information

Noninvasive Detection of Bilirubin in Discrete Vessels

Noninvasive Detection of Bilirubin in Discrete Vessels , July 2-4, 2014, London, U.K. Noninvasive Detection of Bilirubin in Discrete Vessels Mark McEwen, Karen J. Reynolds Abstract Bilirubin, at the levels encountered in hyperbilirubinaemia, makes a similar

More information

Diabetic Ketoacidosis detection and Implementation with Internet Of Things

Diabetic Ketoacidosis detection and Implementation with Internet Of Things Volume 118 No. 20 2018, 125-130 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Diabetic Ketoacidosis detection and Implementation with Internet Of Things 1 S.Shashank, 2 L.Naveenram,

More information

Heart Rate Monitoring System Using Lab View

Heart Rate Monitoring System Using Lab View Volume-5, Issue-2, April-2015 International Journal of Engineering and Management Research Page Number: 590-594 Heart Rate Monitoring System Using Lab View S. Tony Manasa 1, Y. Sneha 2, Sajeeda Sultana

More information

Heart Abnormality Detection Technique using PPG Signal

Heart Abnormality Detection Technique using PPG Signal Heart Abnormality Detection Technique using PPG Signal L.F. Umadi, S.N.A.M. Azam and K.A. Sidek Department of Electrical and Computer Engineering, Faculty of Engineering, International Islamic University

More information

Use of Near Infrared Analysis for the Evaluation of Rice Quality. Glenn Merberg, Ph.D. B. Raymond Oberg

Use of Near Infrared Analysis for the Evaluation of Rice Quality. Glenn Merberg, Ph.D. B. Raymond Oberg Use of Near Infrared Analysis for the Evaluation of Rice Quality Glenn Merberg, Ph.D. B. Raymond Oberg Presented at the 26th Rice Technical Working Group San Antonio, Texas February 1996 Use of Near Infrared

More information

ULTRASOUND IMAGING EE 472 F2018. Prof. Yasser Mostafa Kadah

ULTRASOUND IMAGING EE 472 F2018. Prof. Yasser Mostafa Kadah ULTRASOUND IMAGING EE 472 F2018 Prof. Yasser Mostafa Kadah www.k-space.org Recommended Textbook Diagnostic Ultrasound: Physics and Equipment, 2nd ed., by Peter R. Hoskins (Editor), Kevin Martin (Editor),

More information

Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique

Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique www.jbpe.org Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique Original 1 Department of Biomedical Engineering, Amirkabir University of technology, Tehran, Iran Abbaspour

More information

Chromatography Vacuum Ultraviolet Spectroscopy

Chromatography Vacuum Ultraviolet Spectroscopy Application Note Differentiation and Determination Differentiation and Determination of Fatty Acid Methyl of Fatty Esters Acid by Gas Methyl Chromatography Esters by Vacuum Gas Ultraviolet Spectroscopy

More information

DETECTION OF HEART ABNORMALITIES USING LABVIEW

DETECTION OF HEART ABNORMALITIES USING LABVIEW IASET: International Journal of Electronics and Communication Engineering (IJECE) ISSN (P): 2278-9901; ISSN (E): 2278-991X Vol. 5, Issue 4, Jun Jul 2016; 15-22 IASET DETECTION OF HEART ABNORMALITIES USING

More information

Intrinsic Signal Optical Imaging

Intrinsic Signal Optical Imaging Intrinsic Signal Optical Imaging Introduction Intrinsic signal optical imaging (ISOI) is a technique used to map dynamics in single cells, brain slices and even and most importantly entire mammalian brains.

More information

Noninvasive near infrared spectroscopy on living tissue with multivariate calibration approaches

Noninvasive near infrared spectroscopy on living tissue with multivariate calibration approaches University of Iowa Iowa Research Online Theses and Dissertations Fall 2010 Noninvasive near infrared spectroscopy on living tissue with multivariate calibration approaches Chuannan Bai University of Iowa

More information

An Artificial Intelligence based Non Invasive Blood Glucose Measurement using Urine Analysis

An Artificial Intelligence based Non Invasive Blood Glucose Measurement using Urine Analysis Emerging Trends in Engineering Research 153 An Artificial Intelligence based Non Invasive Blood Glucose Measurement using Urine Analysis S. Geetha and V. Lashminarayanan Abstract--- There are nearly about

More information

GLUCOSE CONCENTRATION MEASUREMENT USING FIBRE OPTIC SENSOR

GLUCOSE CONCENTRATION MEASUREMENT USING FIBRE OPTIC SENSOR Chapter 4 GLUCOSE CONCENTRATION MEASUREMENT USING FIBRE OPTIC SENSOR Abstract Design and development ofan evanescent wave fibre optic sensor for the determination ofglucose concentration is described in

More information

Smart Wearable Body Sensors for Glucose Monitoring

Smart Wearable Body Sensors for Glucose Monitoring International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.14, pp 230-235, 2017 Smart Wearable Body Sensors for Glucose Monitoring Pavya, Nathiya*,

More information

Estimation of protein using standard curve & Biochemistry analyzer. Experiment 1 & 2 BBT 314 ACh

Estimation of protein using standard curve & Biochemistry analyzer. Experiment 1 & 2 BBT 314 ACh Estimation of protein using standard curve & Biochemistry analyzer Experiment 1 & 2 BBT 314 ACh Introduction Proteins are an abundant component in all cells, and almost all except storage proteins are

More information

Assessment of Photoplethysmography Method in Extraction of Hemoglobin Concentration

Assessment of Photoplethysmography Method in Extraction of Hemoglobin Concentration www.jbpe.org Assessment of Photoplethysmography Method in Extraction of Hemoglobin Concentration Original 1 Department of Biomedical Engineering, Islamic Azad University, Mashhad Branch, Mashhad, Iran

More information

Artificial Neural Networks in Cardiology - ECG Wave Analysis and Diagnosis Using Backpropagation Neural Networks

Artificial Neural Networks in Cardiology - ECG Wave Analysis and Diagnosis Using Backpropagation Neural Networks Artificial Neural Networks in Cardiology - ECG Wave Analysis and Diagnosis Using Backpropagation Neural Networks 1.Syed Khursheed ul Hasnain C Eng MIEE National University of Sciences & Technology, Pakistan

More information

WIRELESS PATIENT HEALTH MONITORING SYSTEM

WIRELESS PATIENT HEALTH MONITORING SYSTEM WIRELESS PATIENT HEALTH MONITORING SYSTEM PADMAVATHI KAVURU 1, B.CHINNA RAO 2 & P.M FRANCIS 3 1 (VLSI&ES) 2 Electronics & Communication Engg, Gokul Institute of Technology & Sciences (JNTUK): Bobbili,

More information

Vidi A. Saptari. Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of.

Vidi A. Saptari. Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of. A Spectroscopic System for Near Infrared Glucose Measurement by Vidi A. Saptari B.S., Carnegie Mellon University (1997) S.M., Massachusetts Institute of Technology (1999) Submitted to the Department of

More information

Light is wearable Health Monitoring and Fitness Tracking Light is OSRAM

Light is wearable Health Monitoring and Fitness Tracking Light is OSRAM www.osram-os.com Light is wearable Health Monitoring and Fitness Tracking Light is OSRAM Sensor products Exactly what you need: high efficiency and great diversity OSRAM Opto Semiconductors offers a great

More information

TEPZZ _ 849 A_T EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art.

TEPZZ _ 849 A_T EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art. (19) TEPZZ _ 849 A_T (11) EP 3 138 493 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 3(4) EPC (43) Date of publication: 08.03.17 Bulletin 17/ (21) Application number: 786271. (22)

More information

QUANTIFICATION OF EMOTIONAL FEATURES OF PHOTOPLETHYSOMOGRAPHIC WAVEFORMS USING BOX-COUNTING METHOD OF FRACTAL DIMENSION

QUANTIFICATION OF EMOTIONAL FEATURES OF PHOTOPLETHYSOMOGRAPHIC WAVEFORMS USING BOX-COUNTING METHOD OF FRACTAL DIMENSION QUANTIFICATION OF EMOTIONAL FEATURES OF PHOTOPLETHYSOMOGRAPHIC WAVEFORMS USING BOX-COUNTING METHOD OF FRACTAL DIMENSION Andrews Samraj*, Nasir G. Noma*, Shohel Sayeed* and Nikos E. Mastorakis** *Faculty

More information

Introduction. Device Description. Dual-Band Spectral Output

Introduction. Device Description. Dual-Band Spectral Output Optimum Spectrum and Pulse Shape for Vascular Lesion Treatment: The Science Behind MaxG James Childs, Ph.D.; Andrei Erofeev, Ph.D.; Mikhail Smirnov, Ph.D.; and Gregory Altshuler, Ph.D., Sc.D. Introduction

More information

ORIGINAL RESEARCH. Effect of road traffic accident contaminants on pulse oximetry among normoxaemic volunteers

ORIGINAL RESEARCH. Effect of road traffic accident contaminants on pulse oximetry among normoxaemic volunteers ISSN 1447-4999 ORIGINAL RESEARCH Effect of road traffic accident contaminants on pulse oximetry among normoxaemic volunteers Dr Gyorgyi Kamaras MD, FCEM 1,2, Dr Tamas Geller MD 1, Dr Csaba Dioszeghy MD

More information

Optimal Differentiation of Tissue Types Using Combined Mid and Near Infrared Spectroscopy

Optimal Differentiation of Tissue Types Using Combined Mid and Near Infrared Spectroscopy Optimal Differentiation of Tissue Types Using Combined Mid and Near Infrared Spectroscopy Mugdha V. Padalkar, M.S. 1, Cushla M. McGoverin, Ph.D. 1, Uday P. Palukuru, M.S. 1, Nicholas J. Caccese 1, Padraig

More information

Analysis of Fetal Stress Developed from Mother Stress and Classification of ECG Signals

Analysis of Fetal Stress Developed from Mother Stress and Classification of ECG Signals 22 International Conference on Computer Technology and Science (ICCTS 22) IPCSIT vol. 47 (22) (22) IACSIT Press, Singapore DOI:.7763/IPCSIT.22.V47.4 Analysis of Fetal Stress Developed from Mother Stress

More information

Outline. Model Development GLUCOSIM. Conventional Feedback and Model-Based Control of Blood Glucose Level in Type-I Diabetes Mellitus

Outline. Model Development GLUCOSIM. Conventional Feedback and Model-Based Control of Blood Glucose Level in Type-I Diabetes Mellitus Conventional Feedback and Model-Based Control of Blood Glucose Level in Type-I Diabetes Mellitus Barış Ağar, Gülnur Birol*, Ali Çınar Department of Chemical and Environmental Engineering Illinois Institute

More information

Biocard. 1. Troponin I

Biocard.  1. Troponin I Biocard http://www.anibiotech.fi Biocard Quant Reader is a quantitative desktop reader for all Biocard rapid cardiac tests: Troponin I, Myoglobin, CRP, hscrp, MPO and CK-MB. It has a embedded printer and

More information

Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion

Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion Journal of Physics: Conference Series Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion To cite this article: P A Kyriacou et al 27 J. Phys.: Conf. Ser. 85 1226 Related

More information

Design of the HRV Analysis System Based on AD8232

Design of the HRV Analysis System Based on AD8232 207 3rd International Symposium on Mechatronics and Industrial Informatics (ISMII 207) ISB: 978--60595-50-8 Design of the HRV Analysis System Based on AD8232 Xiaoqiang Ji,a, Chunyu ing,b, Chunhua Zhao

More information

FTIR and UV Visible Spectrophotometric Approach to Discriminate Leukemic Sera

FTIR and UV Visible Spectrophotometric Approach to Discriminate Leukemic Sera Asian Journal of Chemistry Vol. 20, No. 4 (2008), 2521-2530 FTIR and UV Visible Spectrophotometric Approach to Discriminate Sera S. GUNASEKARAN, R.K. NATARAJAN, V. RENGANAYAKI* and R. RATHIKHA PG & Research

More information

Influence of Texture Depth and Layer Thickness of Crater-like Textured ZnO on the Efficiency of Thin Film Solar Cell

Influence of Texture Depth and Layer Thickness of Crater-like Textured ZnO on the Efficiency of Thin Film Solar Cell Influence of Texture Depth and Layer Thickness of Crater-like Textured ZnO on the Efficiency of Thin Film Solar Cell Rummana Rahman, Tamanna Motahar, and Tahsin Rahman Department of Electrical and Computer

More information

Fast, Simple QA/QC of Milk Powder Formulations using FTIR Spectroscopy. Rob Wills Product Specialist Molecular Spectroscopy

Fast, Simple QA/QC of Milk Powder Formulations using FTIR Spectroscopy. Rob Wills Product Specialist Molecular Spectroscopy Fast, Simple QA/QC of Milk Powder Formulations using FTIR Spectroscopy Rob Wills Product Specialist Molecular Spectroscopy Agilent Molecular Spectroscopy Portfolio 2010 2009 Agilent Molecular Spectroscopy

More information

A quantitative study of chemical kinetics for the synthesis of. doped oxide nanocrystals using FTIR spectroscopy

A quantitative study of chemical kinetics for the synthesis of. doped oxide nanocrystals using FTIR spectroscopy Supporting information A quantitative study of chemical kinetics for the synthesis of doped oxide nanocrystals using FTIR spectroscopy Na Zhang, 1,2 Xin Wang, 1 Zhizhen Ye 1 and Yizheng Jin, 1,3* 1 State

More information

Blood Pressure Determination Using Analysis of Biosignals

Blood Pressure Determination Using Analysis of Biosignals Blood Pressure Determination Using Analysis of Biosignals RADIM ČÍŽ 1, MILAN CHMELAŘ 2 1 Department of Telecommunications Brno University of Technology Purkyňova 118, 612 00 Brno CZECH REPUBLIC cizr@feec.vutbr.cz,

More information

Polyoxometalate Macroion Induced Phase and Morphology

Polyoxometalate Macroion Induced Phase and Morphology Polyoxometalate Macroion Induced Phase and Morphology Instability of Lipid Membrane Benxin Jing a, Marie Hutin c, Erin Connor a, Leroy Cronin c,* and Yingxi Zhu a,b,* a Department of Chemical and Biomolecular

More information

Pulse oximetry revisited. Dr Liesel Bösenberg Specialist Physician and Fellow in Critical Care Kalafong Hospital University of Pretoria

Pulse oximetry revisited. Dr Liesel Bösenberg Specialist Physician and Fellow in Critical Care Kalafong Hospital University of Pretoria Pulse oximetry revisited Dr Liesel Bösenberg Specialist Physician and Fellow in Critical Care Kalafong Hospital University of Pretoria Topics that will be discussed and dissected: Revisiting physiology

More information

A Brain Computer Interface System For Auto Piloting Wheelchair

A Brain Computer Interface System For Auto Piloting Wheelchair A Brain Computer Interface System For Auto Piloting Wheelchair Reshmi G, N. Kumaravel & M. Sasikala Centre for Medical Electronics, Dept. of Electronics and Communication Engineering, College of Engineering,

More information

Diabetic diagnose test based on PPG signal and identification system

Diabetic diagnose test based on PPG signal and identification system Vol.2, o.6, 465-469 (2009) doi:10.4236/jbise.2009.26067 JBiSE Diabetic diagnose test based on PPG signal and identification system Hadis Karimipour 1, Heydar Toossian Shandiz 1, Edmond Zahedi 2 1 School

More information

Concurrent near-infrared spectroscopy (NIRS) and functional magnetic resonance imaging (fmri) of the brain

Concurrent near-infrared spectroscopy (NIRS) and functional magnetic resonance imaging (fmri) of the brain Motor cortex activation fmri Near-infrared imaging Concurrent near-infrared spectroscopy (NIRS) and functional magnetic resonance imaging (fmri) of the brain Sergio Fantini s group, Department of Biomedical

More information