CLINICAL SCIENCES. Glaucoma-Related Adverse Events in the Infant Aphakia Treatment Study

Size: px
Start display at page:

Download "CLINICAL SCIENCES. Glaucoma-Related Adverse Events in the Infant Aphakia Treatment Study"

Transcription

1 ONLINE FIRST CLINICAL SCIENCES Glaucoma-Related Adverse Events in the Infant Aphakia Treatment Study 1-Year Results Allen D. Beck, MD; Sharon F. Freedman, MD; Michael J. Lynn, MS; Erick Bothun, MD; Daniel E. Neely, MD; Scott R. Lambert, MD; for the Infant Aphakia Treatment Study Group Objectives: To report the incidence of glaucoma and glaucoma suspects in the IATS, and to evaluate risk factors for the development of a glaucoma-related adverse event in patients in the IATS in the first year of follow-up. Methods: A total of 114 infants between 1 and 6 months of age with a unilateral congenital cataract were assigned to undergo cataract surgery either with or without an intraocular lens implant. Standardized definitions of glaucoma and glaucoma suspect were created and used in the IATS. Results: Of these 114 patients, 10 (9%) developed glaucoma and 4 (4%) had glaucoma suspect, for a total of 14 patients (12%) with a glaucoma-related adverse event in the treated eye through the first year of follow-up. Of the 57patients who underwent lensectomy and anterior vitrectomy, 5 (9%) developed a glaucoma-related adverse event; of the 57 patients who underwent an intraocular lens implant, 9 (16%) developed a glaucoma-related adverse event. The odds of developing a glaucoma-related adverse event were 3.1 times higher for a child with persistent fetal vasculature and 1.6 times higher for each month of age younger at cataract surgery. Conclusions: Modern surgical techniques do not eliminate the early development of glaucoma following congenital cataract surgery with or without an intraocular lens implant. Younger patients with or without persistent fetal vasculature seem more likely to develop a glaucoma-related adverse event in the first year of followup. Vigilance for the early development of glaucoma is needed following congenital cataract surgery, especially when surgery is performed during early infancy or for a child with persistent fetal vasculature. Five-year follow-up data for the IATS will likely reveal more glaucomarelated adverse events. Trial Registration: clinicaltrials.gov Identifier: NCT Arch Ophthalmol. 2012;130(3): Published online November 14, doi: /archophthalmol Author Affiliations: Emory Eye Center (Dr Beck) and Department of Ophthalmology, School of Medicine (Drs Beck and Lambert), and Department of Biostatistics and Bioinformatics, Rollins School of Public Health (Mr Lynn), Emory University, Atlanta, Georgia; Duke Eye Center, Durham, North Carolina (Dr Freedman); Departments of Ophthalmology and Pediatrics, University of Minnesota, Minneapolis (Dr Bothun); and Department of Ophthalmology, Indiana University, Indianapolis (Dr Neely). Group Information: The members of the Infant Aphakia Treatment Study Group (IATS) are listed on page 304. GLAUCOMA IS AN IMPORtant complication of pediatric cataract surgery, with a wide range of reported frequencies of occurrence, depending on the definition used and the length of follow-up. 1-3 Two large, retrospective series 4,5 reported a 15% to 21% frequency of glaucoma being diagnosed 5 years after cataract surgery. Numerous risk factors for the development of glaucoma have been noted, including cataract surgery in the first year of life, See also page 293 postoperative complications such as secondary membrane surgery, small corneal diameters, type of cataract, a family history of aphakic glaucoma, and primary posterior capsulotomy/anterior vitrectomy performed at the time of cataract surgery Cataract surgery in the first year of life and a small corneal diameter have been the most consistent risk factors for glaucoma development in reported studies. 3,5-10 The effect of the placement of an intraocular lens (IOL) at the time of cataract surgery on the risk of developing glaucoma is unknown, although one retrospective review 11 suggested a decreased incidence of glaucoma in patients who received an IOL. However, the eyes that received an IOL in that report 11 were older at the time of surgery (mean age, 5.1 years for pseudophakia vs 2.7 years for aphakia), and children with corneal diameters less than or equal to 10 mm were excluded from analysis. Other studies 9,10 have noted similar rates of glaucoma in aphakic and pseudophakic children who had cataract surgery performed in the first year of life. 300

2 The Infant Aphakia Treatment Study (IATS) is a multicenter, randomized, controlled clinical trial sponsored by the National Eye Institute. The objective of the study is to compare the use of primary IOL implantation to surgery without IOL implantation in infants with a unilateral congenital cataract removed between 1 and 6 months of age. The results of the IATS during the first year after cataract surgery (including visual acuities, number of adverse events, and number of additional surgery) have been previously reported. 12 In our study, we report the development of glaucoma-related adverse events in IATS patients through 1 year of follow-up. METHODS The study design, surgical technique, follow-up schedule, patching and optical correction regimens, evaluation methods, and patient characteristics at baseline have been previously reported in detail 13 and are therefore only briefly summarized in this report. Our study was approved by the institutional review boards of all the participating institutions and was in compliance with the Health Insurance Portability and Accountability Act. The off-label research use of the Acrysof SN60AT and MA60AC IOLs (Alcon Laboratories, Fort Worth, Texas) was covered by US Food and Drug Administration investigational device exemption G STUDY DESIGN The main inclusion criteria were a visually significant congenital cataract ( 3 mm central opacity) in 1 eye and an age range of 28 days to less than 210 days at the time of cataract surgery. Patients with a unilateral cataract due to persistent fetal vasculature (PFV) were allowed in our study as long as the PFV was not associated with visible stretching of the ciliary processes or with involvement of the retina or optic nerve as determined by the treating IATS investigator. The other main exclusion criteria were an acquired cataract, a corneal diameter of less than 9 mm, and prematurity ( 36 gestational weeks). Patients were randomly assigned to have either an IOL placed at the time of the initial surgery (with spectacle correction) or to be left aphakic (with contact lens correction). Patients were examined at 1 day, 1 week, and 1, 3, 6, 9, and 12 months after surgery. Grating visual acuity was measured at 1 year of age (±2 months) by a traveling examiner using Teller Acuity Cards (Stereo Optical, Chicago, Illinois). SURGICAL TECHNIQUE Patients randomly assigned to the contact lens group underwent a lensectomy and anterior vitrectomy. Patients randomly assigned to the IOL group had the lens contents aspirated followed by the implantation of an AcrySof SN60AT IOL into the capsular bag. In the event that both haptics could not be implanted into the capsular bag, an AcrySof MA60AC IOL was implanted into the ciliary sulcus. Following IOL placement, a posterior capsulectomy and an anterior vitrectomy were performed through the pars plana/plicata. DEFINITIONS FOR ADVERSE EVENTS Glaucoma was defined as intraocular pressure (IOP) greater than 21 mm Hg with one or more of the following anatomical changes: (1) corneal enlargement, (2) asymmetrical progressive myopic shift coupled with enlargement of the corneal diameter and/or axial length, (3) increased optic nerve cupping defined as an increase of 0.2 or more in the cup-to-disc ratio, or (4) the use of a surgical procedure for IOP control. A patient was designated as a glaucoma suspect if he or she had 2 consecutive IOP readings above 21 mm Hg on different dates after topical corticosteroids had been discontinued without any of the anatomical changes listed above or if he or she had received glaucoma medication to control IOP without any of the anatomical changes listed above. ASSESSMENT OF IOP, OCULAR DIMENSIONS, AND OPTIC NERVE The investigator could perform tonometry with a Tono-Pen (Reichert, Depew, New York), a handheld Goldmann applanation tonometer, or a pneumatonometer. A protocol assessment of IOP was performed at the initial examination of the patient under anesthesia (ie, immediately after the induction of anesthesia prior to randomization and surgery) and at an examination of the patient under anesthesia at 1 year of age. All other IOP measurements were performed at the discretion of the principal investigator. Corneal diameters (measured using calipers), axial length assessment (A-scan biometry using immersion or applanation techniques), and indirect ophthalmoscopy of the optic nerve were also part of the protocol assessment during examination of the patient under anesthesia prior to randomization and at 1 year of age. STATISTICAL CONSIDERATIONS Statistical comparisons were made between patients with and patients without a glaucoma-related adverse event by using the Fisher exact test for percentages, the independent groups t test for means, and the Wilcoxon rank sum test for medians. The nonparametric test was used for factors that were highly skewed (age at surgery and visual acuity at 1 year of age). The exact binomial method was used to compute the 95% CI for a proportion, and the normal approximation was used to compute the 95% CI for the difference between 2 proportions. Stepwise logistic regression was used to assess the relationship between the development of glaucoma and a selected set of patient characteristics: age at surgery, diagnosis of PFV, and corneal diameter. A significance level of.10 was set for the Wald 2 statistic for including and retaining independent variables in the logistic regression model, and 90% CIs were calculated for the odds ratios. For all other analyses, a P.05 was considered statistically significant, and 95% CIs were computed. No adjustment was made for multiple testing. Given that relatively few of the patients in our study developed glaucoma or were suspected of having glaucoma, the statistical power of our study is limited. RESULTS DEVELOPMENT OF GLAUCOMA There were 114 patients enrolled in our study. During the first year after cataract surgery, 10 patients (9%) developed glaucoma, and 4 patients (4%) had glaucoma suspect, for a total of 14 patients (12%) with a glaucomarelated adverse event in the treated eye (Table 1). There were 57 patients randomly assigned to each treatment group (57 to the contact lens group and 57 to the IOL group). Glaucoma developed in 3 patients (5%) in the contact lens group and in 7 patients (12%) in the IOL group (P=.32, with a 95% CI for the difference between 301

3 Table 1. Development of Glaucoma and Glaucoma Suspect Status During the First Year After Cataract Surgery No. (% [95% CI a ]) of Patients CL Group IOL Group Total Classification (n=57) (n=57) (n=114) Glaucoma 3 (5 [1-15]) 7 (12 [5-24]) 10 (9 [4-16]) Glaucoma 2 (4 [0.4-12]) 2 (4 [0.4-12]) 4 (4 [1-9]) suspect Total 5 (9 [3-19]) 9 (16 [7-28]) 14 (12 [7-20]) Abbreviations: CL, contact lens (in this group, the eyes were left aphakic after primary cataract removal); IOL, intraocular lens (in this group, the eyes underwent a primary intraocular lens implant at the time of cataract removal). a The 95% CIs (for the percentage of patients) were included to show the level of uncertainty in the estimates. the groups of 3% to 17%). Two patients (4%) in the contact lens group and 2 patients (4%) in the IOL group were in the glaucoma suspect category. Combining glaucoma and glaucoma suspect, 5 patients (9%) in the contact lens group and 9 patients (16%) in the IOL group developed a glaucoma-related adverse event (P=.39, with a 95% CI for the difference between the groups of 5% to 19%). INFLUENCE OF PATIENT CHARACTERISTCS We investigated the effect of age at surgery, corneal diameter, a diagnosis of PFV, preoperative IOP, and additional surgery performed after cataract surgery on the development of a glaucoma-related adverse event. The median age at surgery among patients in our study was 1.8 months (interquartile range, months). The mean (SD) corneal diameter of the treated eyes was 10.5 (0.7) mm. A diagnosis of PFV was made by the treating IATS investigator for 25 patients (22%). 12 Patients who developed a glaucoma-related adverse event tended to be younger at surgery than those who did not (median age, 1.2 vs 2.2 months; P=.02; Table 2). There was a trend toward a smaller corneal diameter among patients developing glaucoma or glaucoma suspect compared with the other patients (mean diameter, 10.1 vs 10.5 mm; P=.08; Table 2). There was also a trend toward a higher percentage of patients with PFV among those who developed glaucoma or glaucoma suspect compared with those without this diagnosis (43% vs 19%; P=.08; Table 2). Preoperative IOP, intraoperative complications, and additional surgery after cataract extraction failed to demonstrate any relationship with a glaucoma-related adverse event (analyses not shown). As expected, we found some associations among these 3 patient characteristics. Age and corneal diameter were moderately correlated (r=0.56, P.001). Corneal diameter tended to be slightly smaller for patients diagnosed with PFV than for other patients (mean diameter, 10.5 vs 10.3 mm; P=.17), although this difference was not statistically significant. However, age at surgery did not appear to be associated with PFV because the median age was 2.5 months for patients with PFV compared with 2.3 months for those not having this diagnosis (P=.61). A multivariable analysis using stepwise logistic regression was performed to relate age, corneal diameter, and PFV to the development of glaucoma or glaucoma suspect status. An alpha level of.10 was set for a patient characteristic to be included in the model. Persistent fetal vasculature was the first patient characteristic entered, followed by age. With PFV and age in the model, corneal diameter did not meet the entry criteria for inclusion in the model, which was not unexpected given the correlation between age and corneal diameter. As estimated from the model and after adjusting for age, we found that the odds of developing a glaucoma-related adverse event were 3.1 (90% CI, ) times higher for a patient with PFV than for a patient without this diagnosis (P=.06). Also, after adjusting for PFV, we found that the odds of developing a glaucoma-related adverse event were 1.6 (90% CI, ) times higher for a patient 1 month younger than another patient (P=.08). The Hossmer-Lemmeshow test did not suggest a significant lack of fit for the model (P=.31). The relationship between age, PFV, and the development of a glaucomarelated adverse event is demonstrated in Table 3. INFLUENCE OF IOL PLACEMENT The rate of glaucoma or suspect status was 13% (7 of 52 eyes) in patients who had the IOL placed in the capsular bag and 50% (2 of 4 eyes) in patients who had the IOL placed in the ciliary sulcus. This difference was not statistically significant (P=.12). Both of the eyes with a sulcus IOL and a glaucoma-related adverse event had PFV, and one of these patients was enrolled in our study despite having met the exclusion criteria for PFV (stretching of the ciliary processes). 12 The exclusion of this case with the protocol violation would leave 1 of 3 eyes (33%) with sulcus IOL placement and a glaucoma-related adverse event (P=.38). TYPE OF GLAUCOMA AND TREATMENT Although detailed gonioscopic information was not collected as part of the IATS, 9 of 10 eyes with glaucoma (90%) were assumed to be open angle, whereas only 1 eye (10%) was noted to have iris bombe and angle closure. Glaucoma surgical procedures were required to control the glaucoma in 6 of 10 eyes (60%): 4 of 7 eyes (57%) in the IOL group and 2 of 3 eyes (67%) in the contact lens group. Three of the eyes with open-angle glaucoma underwent a trabeculotomy (1 eye underwent a standard trabeculotomy, and 2 eyes underwent a 360 trabeculotomy), and 2 eyes underwent a Baerveldt glaucoma drainage implant. The eye with angle closure had a pupillary membrane removed and underwent a peripheral iridectomy. In 3 of 6 eyes (50%) with glaucoma that required surgical intervention, the patients were treated with glaucoma medication 1 year after cataract surgery. The remaining 4 of the 10 eyes with glaucoma (40%) were treated with glaucoma medication alone. All 4 patients who received a diagnosis of glaucoma suspect were treated with glaucoma medication. GLAUCOMA AND VISUAL ACUITY The median visual acuity at 1 year of age was 0.3 log- MAR units (3 Snellen lines) worse for patients who de- 302

4 Table 2. Patient Characteristics vs Development of Glaucoma and Glaucoma Suspect Status During the First Year After Cataract Surgery Patient Characteristic a Glaucoma or Glaucoma Suspect? No (n=100) Yes (n=14) P Value Difference Between the Groups, 95% CI Age, median (IQR), mo 2.2 ( ) 1.2 ( ) to 1.5 Corneal diameter, mean (SD), mm 10.5 (0.7) 10.1 (0.8) to 0.9 Persistent fetal vasculature, No. (%) 19 (19) 6 (43).08 33% to 3% Abbreviation: IQR, interquartile range. a Refers to characteristics at initial cataract surgery. veloped glaucoma or suspected glaucoma during the first year after surgery (1.1 logmar) vs those without this adverse event (0.80 logmar). This difference was not statistically significant (P=.15). COMMENT Glaucoma developed in the operated eyes of 10 of 114 infants (9%) with unilateral cataract who were enrolled in the IATS through the first year of follow-up. More eyes developed glaucoma after primary IOL implantation (7 of 57 eyes [12%]) than after cataract removal without IOL (3 of 57 [5%]). This difference was not statistically significant, although the power of this calculation is low. Multivariate regression analysis showed that, after we adjusted for age, the odds of developing a glaucoma-related adverse event were 3.1 times higher for a patient with PFV than for a patient without this diagnosis and that, after we adjusted for PFV, the odds of developing a glaucomarelated adverse event were 1.6 times higher for a patient 1 month younger than another patient. Corneal diameter was not statistically significant in multivariate analysis, possibly owing to the correlation of corneal diameter with age and the small range of corneal diameters in the IATS. Modern lensectomy/vitrectomy surgical techniques for pediatric cataract surgery have reduced the number of early postoperative complications, such as pupillary block, that can cause angle-closure glaucoma. 2 However, a significant percentage of children who have undergone congenital cataract surgery go on to develop glaucoma, usually with predominantly open angles, and the onset of glaucoma frequently occurs years after the cataract surgery. 2,3,5,6 Numerous potential mechanisms for the development of glaucoma have been postulated, including congenital angle anomalies, postoperative inflammation leading to angle dysfunction or progressive synechial closure, corticosteroid-induced mechanisms, and some unknown effect of the aphakic state or the vitreous interaction with the developing angle structures leading to reduced outflow facility. 2-11,14,15 An ultrasound biomicroscopy study 16 of the anterior segment after congenital cataract surgery has demonstrated a more anterior iris insertion with a smaller angle opening distance and a flatter pars plicata, compared with normal controls. Because the IATS was not designed as a study of the development of glaucoma following congenital cataract surgery, limited information on the mechanisms of glaucoma can be ascertained from the 1-year follow-up outcome data. It is clear, however, that Table 3. Development of Glaucoma and Glaucoma Suspect Status According to Persistent Fetal Vasculature and Age PFV Status, Age, d No. of Patients Development of Glaucoma and Glaucoma Suspect, No. (% [95% CI]) No PFV (14 [5-29]) (6 [1-16]) PFV (31 [9-61]) (17 [2-48]) Abbreviation: PFV, persistent fetal vasculature. modern surgical techniques do not eliminate the early development of glaucoma, with 10 of 114 eyes (9%) from the total group developing glaucoma by the 1-year follow-up visit. Most cases were assumed to be open angle, with a single case (1 of 10 eyes [10%]) of angle closure reported. A retrospective study 11 of older children has suggested that the placement of an IOL reduces the incidence of glaucoma following congenital cataract surgery. Two other studies 9,10 of congenital cataract surgery with and without an IOL failed to demonstrate a difference in the incidence of glaucoma. Although the number of eyes developing glaucoma by the 1-year follow-up in the IATS suggested a higher incidence in the pseudophakic eyes than in the aphakic eyes (12% vs 5%), this difference was not statistically significant. Continuing follow-up in the IATS for the development of glaucoma and glaucoma suspect status is critical, given that the mean interval between cataract surgery and diagnosis of glaucoma has been reported to range from 4.0 to 5.2 years. 5-7 Many previous studies 2,5-7 of glaucoma in aphakic and pseudophakic children have lacked a consistent definition of glaucoma and a standard protocol for surveillance of at-risk eyes. Glaucoma has frequently been defined by elevated IOP alone, without structural change to the eye as part of the diagnostic criteria. 2,5-7 The definition for glaucoma in the IATS included criteria for structural change (enlarged ocular dimensions or an increased cup-to-disc ratio). A standardized definition of a glaucoma suspect was also created for the IATS. Persistent fetal vasculature is believed to be a risk factor for the development of glaucoma following congenital cataract surgery because of the associated microph- 303

5 Members, Administrative Units, and Participating Clinical Centers of the IATS Group Clinical Coordinating Center Scott R. Lambert, MD (study chair), and Lindreth DuBois, MEd, MMSc (national coordinator), Emory University, Atlanta Georgia. Data Coordinating Center Michael J. Lynn, MS (director), Betsy Bridgman, BS, Marianne Celano, PhD, Julia Cleveland, MSPH, George Cotsonis, MS, Carey Drews-Botsch, PhD, Nana Freret, MSN, Lu Lu, MS, Azhar Nizam, MS, Seegar Swanson, and Thandeka Tutu-Gxashe, MPH, Emory University. Visual Acuity Testing Center E. Eugenie Hartmann, PhD (director), Clara Edwards, Claudio Busettini, PhD, and Samuel Hayley, BS, University of Alabama, Birmingham. Steering Committee Scott R. Lambert, MD, Edward G. Buckley, MD, David A. Plager, MD, M. Edward Wilson, MD, Michael J. Lynn, MS, Lindreth DuBois, MEd, MMSc, Carolyn Drews-Botsch, PhD, E. Eugenie Hartmann, PhD, and Donald F. Everett, MA. Contact Lens Committee Buddy Russell, COMT, and Michael Ward, MMSc. Participating Clinical Centers Medical University of South Carolina, Charleston (14 patients enrolled): M. Edward Wilson, MD, and Margaret Bozic, CCRC, COA. Harvard University, Boston, Massachusetts (14 patients enrolled): Deborah K. VanderVeen, MD, Theresa A. Mansfield, RN, and Kathryn Bisceglia Miller, OD. University of Minnesota, Minneapolis (13 patients enrolled): Stephen P. Christiansen, MD, Erick Bothun, MD, Ann Holleschau, BA, Jason Jedlicka, OD, Patricia Winters, OD, and Jacob Lang, OD. Cleveland Clinic, Ohio (10 patients enrolled): Elias I. Traboulsi, MD, Susan Crowe, BS, COT, and Heather Hasley Cimino, OD. Baylor College of Medicine, Houston, Texas (10 patients enrolled): Kimberly G. Yen, MD, Maria Castanes, MPH, Alma Sanchez, COA, and Shirley York. Oregon Health and Science University, Portland (9 patients enrolled): David T. Wheeler, MD, Ann U. Stout, MD, Paula Rauch, OT, CRC, Kimberly Beaudet, CO, COMT, and Pam Berg, CO, COMT. Emory University, Atlanta, Georgia (9 patients enrolled): Scott R. Lambert, MD, Amy K. Hutchinson, MD, Lindreth DuBois, MEd, MMSc, Rachel Robb, MMSc, and Marla J. Shainberg, CO. Duke University, Durham, North Carolina (8 patients enrolled): Edward G. Buckley, MD, Sharon F. Freedman, MD, Lois Duncan, BS, B. W. Phillips, FCLSA, and John T. Petrowski, OD. Vanderbilt University, Nashville, Tennessee (8 patients enrolled): David Morrison, MD, Sandy Owings, COA, CCRP, Ron Biernacki, CO, COMT, and Christine Franklin, COT. Indiana University, Indianapolis (7 patients enrolled): David A. Plager, MD, Daniel E. Neely, MD, Michele Whitaker, COT, Donna Bates, COA, and Dana Donaldson, OD. Miami Children s Hospital (6 patients enrolled): Stacey Kruger, MD, Charlotte Tibi, CO, and Susan Vega. University of Texas Southwestern, Dallas (6 patients enrolled): David R. Weakley, MD, David R. Stager Jr, MD, Joost Felius, PhD, Clare Dias, CO, Debra L. Sager, and Todd Brantley, OD. Data and Safety Monitoring Committee Robert Hardy, PhD (chair), Eileen Birch, PhD, Ken Cheng, MD, Richard Hertle, MD, Craig Kollman, PhD, Marshalyn Yeargin- Allsopp, MD (resigned), Cyd McDowell, and Donald F. Everett, MA. Allen D. Beck, MD. Medical Safety Monitor thalmos and the possibility of anterior segment anomalies, but previous studies 4,6 have failed to confirm this opinion. The IATS provides evidence that PFV is likely a risk factor for the development of glaucoma. Younger age at surgery was also noted in the IATS to be a risk factor for the development of a glaucoma-related adverse event, despite the fact that cataract surgery was deferred until at least 4 weeks of age based on previous studies 17,18 suggesting an increased risk of glaucoma if surgery is performed in the first 4 weeks of life. Cataract surgery in the IATS was performed between 1 and 6.9 months of age, providing 2 nearly equal-sized cohorts aged 48 days or younger and 49 days or older (Table 3). Further evaluation of the visual outcomes in the IATS cohort may provide information as to the optimum timing of cataract surgery in the setting of unilateral cataract. Central corneal thickness (CCT) is a recently recognized risk factor for the development of glaucoma in adult patients with ocular hypertension, with thinner central corneal measurements noted to be a powerful predictor for the development of open-angle glaucoma. 19 Various correction factors for applanation IOP measurements based on CCT measurements have been proposed, 20,21 but statistical analyses of these formulas have demonstrated that the effect of CCT on IOP was less than predicted, potentially leading to erroneous conclusions about corrected IOP. 22 Aphakic and pseudophakic children have significantly thicker corneas than age-matched controls, and CCT has been noted to increase following cataract surgery. 23 Furthermore, eyes that developed glaucoma (based on optic nerve changes) had a thicker CCT and higher IOP than those that did not, which argues against the concept that a thicker CCT in children leads to a lower risk of glaucoma, as in adult patients with ocular hypertension. 23 The measurement of CCT was not part of the study protocol in the IATS. Children noted to have 304

6 elevated IOP without structural change were placed in the glaucoma suspect category. Treatment of children who develop glaucoma following congenital cataract surgery frequently requires surgical intervention. Chen et al 7 noted that surgical treatment was performed in 57.1% of 170 eyes with aphakic glaucoma, with medical therapy recommended for 92% of eyes. However, in another study 24 of pediatric aphakic glaucoma, surgical interventions were performed in only 15 of 55 eyes (27%) that were likely representative of less severe glaucoma. The 60% rate of glaucoma surgery (among eyes with glaucoma) in the IATS is comparable to the rates in these studies. 7,24 Of note, 3 of the patients with glaucoma in the IATS who underwent a trabeculotomy were controlled for 1 year after cataract surgery. Angle surgery in children who develop openangle glaucoma following congenital cataract surgery was noted to be successful in 57% of 14 eyes with a mean follow-up of 4.7 years (some patients required more than 1 angle surgery) and may decrease the need for filtering or shunt procedures. 25 Visual acuity in children who develop glaucoma following congenital cataract surgery may be limited by glaucomatous optic nerve damage, amblyopia, pupillary membranes, corneal decompensation, or complications from glaucoma surgical intervention. 7,24,25 In the IATS, eyes that developed a glaucoma-related adverse event had a median visual acuity that was 3 Snellen lines worse than those that did not. Although this difference did not reach statistical significance, likely owing to the small sample size of the glaucoma group, it is reasonable to expect that a statistically significant difference in visual acuity will develop in the glaucoma group with longer follow-up. The limitations of our study are the small sample size of the group of patients with glaucoma-related adverse events, only 1 year of follow-up data, and the inclusion of the glaucoma suspect group with the glaucoma group for statistical evaluation. The strengths of our study are the prospective data collected and the standardized definitions of glaucoma, glaucoma suspect, and glaucomarelated adverse events. Planned 5-year IATS follow-up data should provide long-term incidence data and should identify the risk factors for the development of glaucoma and the effect of glaucoma on visual outcomes in patients with unilateral cataract. Submitted for Publication: March 15, 2011; final revision received August 22, 2011; accepted September 2, Published Online: November 14, doi: /archophthalmol Correspondence: Allen D. Beck, MD, Emory Eye Center, 1365-B Clifton Rd, Atlanta, GA (abeck@emory.edu). Author Contributions: Dr Beck and Mr Lynn had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Financial Disclosure: None reported. Funding/Support: This study was supported by National Institutes of Health grants U10 EY13272 and U10 EY and, in part, by National Institutes of Health Departmental Core grant EY06360 and Research to Prevent Blindness, New York, New York. REFERENCES 1. Parks MM. Visual results in aphakic children. Am J Ophthalmol. 1982;94(4): Simon JW, Mehta N, Simmons ST, Catalano RA, Lininger LL. Glaucoma after pediatric lensectomy/vitrectomy. Ophthalmology. 1991;98(5): Egbert JE, Wright MM, Dahlhauser KF, Keithahn MAZ, Letson RD, Summers CG. A prospective study of ocular hypertension and glaucoma after pediatric cataract surgery. Ophthalmology. 1995;102(7): Johnson CP, Keech RV. Prevalence of glaucoma after surgery for PHPV and infantile cataracts. J Pediatr Ophthalmol Strabismus. 1996;33(1): Rabiah PK. Frequency and predictors of glaucoma after pediatric cataract surgery. Am J Ophthalmol. 2004;137(1): Swamy BN, Billson F, Martin F, et al. Secondary glaucoma after paediatric cataract surgery. Br J Ophthalmol. 2007;91(12): Chen TC, Walton DS, Bhatia LS. Aphakic glaucoma after congenital cataract surgery. Arch Ophthalmol. 2004;122(12): Kuhli-Hattenbach C, Lüchtenberg M, Kohnen T, Hattenbach LO. Risk factors for complications after congenital cataract surgery without intraocular lens implantation in the first 18 months of life. Am J Ophthalmol. 2008;146(1): Trivedi RH, Wilson ME Jr, Golub RL. Incidence and risk factors for glaucoma after pediatric cataract surgery with and without intraocular lens implantation. J AAPOS. 2006;10(2): Wong IB, Sukthankar VD, Cortina-Borja M, Nischal KK. Incidence of early-onset glaucoma after infant cataract extraction with and without intraocular lens implantation. Br J Ophthalmol. 2009;93(9): Asrani S, Freedman SF, Hasselblad V, et al. Does primary intraocular lens implantation prevent aphakic glaucoma in children? J AAPOS. 2000;4(1): The Infant Aphakia Treatment Study Group. A randomized clinical trial comparing contact lens with intraocular lens correction of monocular aphakia during infancy: grating acuity and adverse events at age 1 year. Arch Ophthalmol. 2010; 128: Lambert SR, Buckley EG, Drews-Botsch C, et al; Infant Aphakia Treatment Study Group. The Infant Aphakia Treatment Study: design and clinical measures at enrollment. Arch Ophthalmol. 2010;128(1): Phelps CD, Arafat NI. Open-angle glaucoma following surgery for congenital cataracts. Arch Ophthalmol. 1977;95(11): Pressman SH, Crouch ER Jr. Pediatric aphakic glaucoma. Ann Ophthalmol. 1983; 15(6): Nishijima K, Takahashi K, Yamakawa R. Ultrasound biomicroscopy of the anterior segment after congenital cataract surgery. Am J Ophthalmol. 2000;130 (4): Lambert SR, Lynn M, Drews-Botsch C, et al. A comparison of grating visual acuity, strabismus, and reoperation outcomes among children with aphakia and pseudophakia after unilateral cataract surgery during the first six months of life. J AAPOS. 2001;5(2): Vishwanath M, Cheong-Leen R, Taylor D, Russell-Eggitt I, Rahi J. Is early surgery for congenital cataract a risk factor for glaucoma? Br J Ophthalmol. 2004; 88(7): Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6): , discussion Ehlers N, Bramsen T, Sperling S. Applanation tonometry and central corneal thickness. Acta Ophthalmol (Copenh). 1975;53(1): Orssengo GJ, Pye DC. Determination of the true intraocular pressure and modulus of elasticity of the human cornea in vivo. Bull Math Biol. 1999;61(3): Dueker DK, Singh K, Lin SC, et al. Corneal thickness measurement in the management of primary open-angle glaucoma: a report by the American Academy of Ophthalmology. Ophthalmology. 2007;114(9): Lim Z, Muir KW, Duncan L, Freedman SF. Acquired central corneal thickness increase following removal of childhood cataracts. Am J Ophthalmol. 2011;151 (3): Bhola R, Keech RV, Olson RJ, Petersen DB. Long-term outcome of pediatric aphakic glaucoma. J AAPOS. 2006;10(3): Bothun ED, Guo Y, Christiansen SP, et al. Outcome of angle surgery in children with aphakic glaucoma. J AAPOS. 2010;14(3):

Adherence to Occlusion Therapy in the First Six Months of Follow-Up and Visual Acuity among Participants in the Infant Aphakia Treatment Study (IATS)

Adherence to Occlusion Therapy in the First Six Months of Follow-Up and Visual Acuity among Participants in the Infant Aphakia Treatment Study (IATS) Adherence to Occlusion Therapy in the First Six Months of Follow-Up and Visual Acuity among Participants in the Infant Aphakia Treatment Study (IATS) Carolyn D Drews-Botsch, Emory University Marianne Celano,

More information

One-Year Strabismus Outcomes in the Infant Aphakia Treatment Study

One-Year Strabismus Outcomes in the Infant Aphakia Treatment Study One-Year Strabismus Outcomes in the Infant Aphakia Treatment Study Erick D. Bothun, University of Minnesota Julia Cleveland, Emory University Michael Lynn, Emory University Stephen P. Christiansen, Boston

More information

Lessons learned about cataract surgery in infants from the Infant Aphakia Treatment Study

Lessons learned about cataract surgery in infants from the Infant Aphakia Treatment Study 1 April 4, 2017 Lessons learned about cataract surgery in infants from the Infant Aphakia Treatment Study Summary: The workshop will present the latest findings from the Infant Aphakia Treatment Study

More information

Sensorimotor outcomes by age 5 years after monocular cataract surgery in the Infant Aphakia Treatment Study (IATS)

Sensorimotor outcomes by age 5 years after monocular cataract surgery in the Infant Aphakia Treatment Study (IATS) Sensorimotor outcomes by age 5 years after monocular cataract surgery in the Infant Aphakia Treatment Study (IATS) Erick D. Bothun, University of Minnesota Michael Lynn, Emory University Stephen P. Christiansen,

More information

Factors associated with stereopsis and a good visual acuity outcome among children in the Infant Aphakia Treatment Study

Factors associated with stereopsis and a good visual acuity outcome among children in the Infant Aphakia Treatment Study (2016) 30, 1221 1228 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0950-222X/16 www.nature.com/eye Factors associated with stereopsis and a good visual acuity outcome

More information

Incidence and Risk Factors of Early-onset Glaucoma following Pediatric Cataract Surgery in Egyptian Children: One-year Study

Incidence and Risk Factors of Early-onset Glaucoma following Pediatric Cataract Surgery in Egyptian Children: One-year Study Ghada I Gawdat et al ORIGINAL ARTICLE 10.5005/jp-journals-10028-1229 following Pediatric Cataract Surgery in Egyptian Children: One-year Study 1 Ghada I Gawdat, 2 Maha M Youssef, 3 Nermeen M Bahgat, 4

More information

Structural changes of the anterior chamber following cataract surgery during infancy

Structural changes of the anterior chamber following cataract surgery during infancy Structural changes of the anterior chamber following cataract surgery during infancy Matthew Nguyen, Emory University Marla Shainberg, Emory University Allen Beck, Emory University Scott Lambert, Emory

More information

The incidence of glaucoma following paediatric cataract surgery: a 20-year retrospective study

The incidence of glaucoma following paediatric cataract surgery: a 20-year retrospective study (2010) 24, 1366 1375 & 2010 Macmillan Publishers Limited All rights reserved 0950-222X/10 $32.00 www.nature.com/eye CLINICAL STUDY The incidence of glaucoma following paediatric cataract surgery: a 20-year

More information

Motor skills of children with unilateral visual impairment in the Infant Aphakia Treatment Study

Motor skills of children with unilateral visual impairment in the Infant Aphakia Treatment Study Motor skills of children with unilateral visual impairment in the Infant Aphakia Treatment Study Marianne Celano, Emory University E. Eugenie Hartmann, University of Alabama Lindreth Dubois, Emory University

More information

Complication and Visual Outcome after Peadiatric Cataract Surgery with or Without Intra Ocular Lens Implantation

Complication and Visual Outcome after Peadiatric Cataract Surgery with or Without Intra Ocular Lens Implantation Original Article Complication and Visual Outcome after Peadiatric with or Without Intra Ocular Lens Implantation Mazhar-ul-Hasan, Umair A. Qidwai, Aziz-ur-Rehman, Nasir Bhatti, Rashid H. Alvi Pak J Ophthalmol

More information

GLAUCOMA FOLLOWING CATARACT SURGERY IN CHILDREN: SURGICALLY MODIFIABLE RISK FACTORS

GLAUCOMA FOLLOWING CATARACT SURGERY IN CHILDREN: SURGICALLY MODIFIABLE RISK FACTORS GLAUCOMA FOLLOWING CATARACT SURGERY IN CHILDREN: SURGICALLY MODIFIABLE RISK FACTORS BY Mary Gilbert Lawrence MD MPH,* Natalia Y. Kramarevsky MD, Stephen P. Christiansen MD, Martha M. Wright MD, Terri L.

More information

Anisometropia at Age 5 Years After Unilateral Intraocular Lens Implantation During Infancy in the Infant Aphakia Treatment Study

Anisometropia at Age 5 Years After Unilateral Intraocular Lens Implantation During Infancy in the Infant Aphakia Treatment Study Anisometropia at Age 5 Years After Unilateral Intraocular Lens Implantation During Infancy in the Infant Aphakia Treatment Study David Weakley, University of Texas Southwestern Medical Center George A

More information

Bausch + Lomb Habsburg Foundation Alcon Miraflex March of Dimes

Bausch + Lomb Habsburg Foundation Alcon Miraflex March of Dimes Emory University School of Medicine Department of Ophthalmology Gratefully acknowledges the financial support of the following: Bausch + Lomb Habsburg Foundation Alcon Miraflex March of Dimes An International

More information

Glaucoma after Congenital Cataract Surgery

Glaucoma after Congenital Cataract Surgery Glaucoma after Congenital Cataract Surgery Mahmoodreza Panahi Bazaz, MD 1 Farideh Sharifipour, MD 2 Mitra Zamani, MD 2 Ali Sadeghi, MD 3 Hossein Roostai, MD 3 Seyed Mahmood Latifi, MSc 4 Abstract Purpose:

More information

Incidence of Early Onset Glaucoma after Infant Cataract Extraction With and Without

Incidence of Early Onset Glaucoma after Infant Cataract Extraction With and Without 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Title: Incidence of Early Onset Glaucoma after Infant Cataract Extraction With and Without Intraocular Lens Implantation Authors: Inez B.Y. Wong, FRCSEd(Ophth),

More information

Myopic Shift After Intraocular Lens Implantation in Children Less Than Two Years of Age

Myopic Shift After Intraocular Lens Implantation in Children Less Than Two Years of Age Original Article Myopic Shift After Intraocular Lens Implantation in Children Less Than Two Years of Age Suma Ganesh 1, Reena Gupta 2, Sumita Sethi 3, Chandra Gurung 4, Raman Mehta 5 1,5 Dr. Shroff s Charitable

More information

Myopic Shift 5 Years after Intraocular Lens Implantation in the Infant Aphakia Treatment Study

Myopic Shift 5 Years after Intraocular Lens Implantation in the Infant Aphakia Treatment Study Myopic Shift 5 Years after Intraocular Lens Implantation in the Infant Aphakia Treatment Study David R. Weakley, Southwestern University Michael Lynn, Emory University Lindreth Dubois, Emory University

More information

Learn Connect Succeed. JCAHPO Regional Meetings 2015

Learn Connect Succeed. JCAHPO Regional Meetings 2015 Learn Connect Succeed JCAHPO Regional Meetings 2015 Pediatric Cataracts: Complicated Cases and Controversies M. Edward Wilson, M.D. N. Edgar Miles Professor of Ophthalmology and Pediatrics Storm Eye Institute

More information

Paediatric cataract pathogenesis and management

Paediatric cataract pathogenesis and management Paediatric cataract pathogenesis and management Dr. Kavitha Kalaivani. N Paediatric ophthalmology Sankara Nethralaya February 28-2017 Incidence... 1 to 13 per 10 000 live births 1 200,000 children blind

More information

NIH Public Access Author Manuscript Arch Ophthalmol. Author manuscript; available in PMC 2010 November 17.

NIH Public Access Author Manuscript Arch Ophthalmol. Author manuscript; available in PMC 2010 November 17. NIH Public Access Author Manuscript Published in final edited form as: Arch Ophthalmol. 2010 January ; 128(1): 21 27. doi:10.1001/archophthalmol.2009.350. The Infant Aphakia Treatment Study: Design and

More information

Predicting Factor of Visual Outcome in Unilateral Idiopathic Cataract Surgery in Patients Aged 3 to 10 Years

Predicting Factor of Visual Outcome in Unilateral Idiopathic Cataract Surgery in Patients Aged 3 to 10 Years pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2018;32(4):273-280 https://doi.org/10.3341/kjo.2017.0113 Original Article Predicting Factor of Visual Outcome in Unilateral Idiopathic Cataract Surgery

More information

NIH Public Access Author Manuscript Arch Ophthalmol. Author manuscript; available in PMC 2010 November 17.

NIH Public Access Author Manuscript Arch Ophthalmol. Author manuscript; available in PMC 2010 November 17. NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript NIH Public Access Author Manuscript Arch Ophthalmol. Author manuscript; available in PMC 2010 November 17. Published in final

More information

Title: Fitting Gas Permeable Contact Lenses on Aphakic Infants with Congenital Cataracts: Case Report

Title: Fitting Gas Permeable Contact Lenses on Aphakic Infants with Congenital Cataracts: Case Report Title: Fitting Gas Permeable Contact Lenses on Aphakic Infants with Congenital Cataracts: Case Report I. Case History Patient demographics: 9-month-old Caucasian female Purpose of visit/chief Complaint:

More information

Paediatric cataract: IOL vs aphakia. Νikolas G. Ziakas Aristotle University of Thessaloniki

Paediatric cataract: IOL vs aphakia. Νikolas G. Ziakas Aristotle University of Thessaloniki Paediatric cataract: IOL vs aphakia Νikolas G. Ziakas Aristotle University of Thessaloniki 2017 Cataract surgery in children The aim of pediatric cataract surgery is to provide and maintain a clear visual

More information

GLAUCOMA CONTINUES TO

GLAUCOMA CONTINUES TO CLINICAL SCIENCES Aphakic Glaucoma After Congenital Cataract Surgery Teresa C. Chen, MD; David S. Walton, MD; Lini S. Bhatia, MD Objective: To describe the largest series of patients who developed aphakic

More information

A phakic glaucoma is an established complication following

A phakic glaucoma is an established complication following 905 EXTENDED REPORT Is early surgery for congenital cataract a risk factor for glaucoma? M Vishwanath, R Cheong-Leen, D Taylor, I Russell-Eggitt, J Rahi... See end of article for authors affiliations...

More information

RISK FACTORS FOR THE DEVELOPMENT OF APHAKIC GLAUCOMA AFTER CONGENITAL CATARACT SURGERY

RISK FACTORS FOR THE DEVELOPMENT OF APHAKIC GLAUCOMA AFTER CONGENITAL CATARACT SURGERY RISK FACTORS FOR THE DEVELOPMENT OF APHAKIC GLAUCOMA AFTER CONGENITAL CATARACT SURGERY BY Teresa C. Chen MD,* Lini S. Bhatia MD, Elkan F. Halpern PhD, AND David S. Walton, MD ABSTRACT Purpose: It is well

More information

MEDICAL POLICY SUBJECT: CORNEAL ULTRASOUND PACHYMETRY. POLICY NUMBER: CATEGORY: Technology Assessment

MEDICAL POLICY SUBJECT: CORNEAL ULTRASOUND PACHYMETRY. POLICY NUMBER: CATEGORY: Technology Assessment MEDICAL POLICY SUBJECT: CORNEAL ULTRASOUND,, PAGE: 1 OF: 5 If a product excludes coverage for a service, it is not covered, and medical policy criteria do not apply. If a commercial product, including

More information

The Evolving Story of Aphakic and Pseudophakic Glaucoma after Cataract Surgery in Children: What s New?

The Evolving Story of Aphakic and Pseudophakic Glaucoma after Cataract Surgery in Children: What s New? 358 Kerala Journal of Ophthalmology Vol. XXI, No. 4 MAJOR REVIEW The Evolving Story of Aphakic and Pseudophakic Glaucoma after Cataract Surgery in Children: What s New? Dr. Ghada Abdel Hafez MD, Dr. Rupal

More information

The Management of Infant Aphakia

The Management of Infant Aphakia The Management of Infant Aphakia Christina Twardowski O.D., FAAO Please silence all mobile devices and remove items from chairs so others can sit. Unauthorized recording of this session is prohibited.

More information

Posterior Chamber Intraocular Lens Implantation in Pediatric Cataract with Microcornea and/or Microphthalmos

Posterior Chamber Intraocular Lens Implantation in Pediatric Cataract with Microcornea and/or Microphthalmos Posterior Chamber Intraocular Lens Implantation in Pediatric Cataract with Microcornea and/or Microphthalmos Young Suk Yu, MD 1,2, Seong-Joon Kim, MD 1,2, Ho Kyoung Choung, MD 3 Department of Ophthalmology,

More information

Institution: Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine

Institution: Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine Comparison of Circumferential and Traditional Trabeculotomy in Pediatric Glaucoma Maria E. Lim MD, Daniel E. Neely MD, Jingyun Wang, PhD, Kathryn M. Haider MD, Heather A. Smith MD, David A. Plager MD Glick

More information

Intraocular lens implantation in unilateral congenital cataract with minimal levels of persistent fetal vasculature in the first 18 months of life

Intraocular lens implantation in unilateral congenital cataract with minimal levels of persistent fetal vasculature in the first 18 months of life Matsuo SpringerPlus 2014, 3:361 a SpringerOpen Journal RESEARCH Open Access Intraocular lens implantation in unilateral congenital cataract with minimal levels of persistent fetal vasculature in the first

More information

Pediatric Cataract Surgery: Consensus And Controversies

Pediatric Cataract Surgery: Consensus And Controversies Major Review Satish Thomas, MD (AIIMS) DNB Pediatric Cataract Surgery: Consensus And Controversies Abstract Pediatric cataract surgery has improved significantly in terms of outcome over the last 2 decades

More information

Temporary Piggyback Intraocular Lens Implantation Versus Single Intraocular Lens Implantation in Congenital Cataracts: Long-Term Clinical Outcomes

Temporary Piggyback Intraocular Lens Implantation Versus Single Intraocular Lens Implantation in Congenital Cataracts: Long-Term Clinical Outcomes Lens Temporary Piggyback Intraocular Lens Implantation Versus Single Intraocular Lens Implantation in Congenital Cataracts: Long-Term Clinical Outcomes Sungsoon Hwang, 1 Dong Hui Lim, 1,2 Soomin Lee, 1

More information

Parenting Stress and Adherence to Occlusion Therapy in the Infant Aphakia Treatment Study: A Secondary Analysis of a Randomized Clinical Trial

Parenting Stress and Adherence to Occlusion Therapy in the Infant Aphakia Treatment Study: A Secondary Analysis of a Randomized Clinical Trial Clinical Trials https://doi.org/10.1167/tvst.8.1.3 Parenting Stress and Adherence to Occlusion Therapy in the Infant Aphakia Treatment Study: A Secondary Analysis of a Randomized Clinical Trial Carolyn

More information

Treating Amblyopia in Aphakic and Pseudophakic Children

Treating Amblyopia in Aphakic and Pseudophakic Children Treating Amblyopia in Aphakic and Pseudophakic Children Scott R. Lambert, M.D. ABSTRACT Introduction Amblyopia is the leading cause of reduced vision in children following cataract surgery. It may develop

More information

Scott R. Lambert, M.D. Marla J. Shainberg, C.O. ABSTRACT INTRODUCTION

Scott R. Lambert, M.D. Marla J. Shainberg, C.O. ABSTRACT INTRODUCTION The Efficacy of Botulinum Toxin Treatment for Children with a Persistent Esotropia Following Bilateral Medial Rectus Recessions and Lateral Rectus Resections Scott R. Lambert, M.D. Marla J. Shainberg,

More information

Role of Central Corneal Thickness in Circadian Intraocular Pressure Fluctuations among Patients with Primary Open Angle Glaucoma

Role of Central Corneal Thickness in Circadian Intraocular Pressure Fluctuations among Patients with Primary Open Angle Glaucoma Role of Central Corneal Thickness in Circadian Intraocular Pressure Fluctuations among Patients with Primary Open Angle Glaucoma Mohannad Albdour MD*, Karanjit Kooner MD, PHD** ABSTRACT Objectives: To

More information

Journal of Ophthalmology & Clinical Research

Journal of Ophthalmology & Clinical Research Research Article Primary and Secondary Intraocular Lens Implantation in Congenital Cataract Surgery: A Retrospective Comparative Study of the Visual Outcomes Alhawsawi Abrar 1*, Alhibshi Nizar 2, Maniyar

More information

Pediatric cataract. Nikos Kozeis MD, PhD, FICO, FEBO, MRCOphth. Surgical challenges and postoperative complications

Pediatric cataract. Nikos Kozeis MD, PhD, FICO, FEBO, MRCOphth. Surgical challenges and postoperative complications Pediatric cataract Surgical challenges and postoperative complications Nikos Kozeis MD, PhD, FICO, FEBO, MRCOphth Consultant Paediatric Ophthalmologist Thessaloniki, Greece Pediatric Cataract 2.4 / 10000

More information

Contact Lenses for Infants: Indication, Evaluation, and Technique

Contact Lenses for Infants: Indication, Evaluation, and Technique Contact Lenses for Infants: Indication, Evaluation, and Technique Elaine Chen, OD, FAAO, FSLS Southern California College of Optometry Marshall B. Ketchum University Maureen Plaumann, OD, FAAO The Ohio

More information

Visual Impairment Secondary to Congenital Cataracts: A Case Report

Visual Impairment Secondary to Congenital Cataracts: A Case Report Visual Impairment Secondary to Congenital Cataracts: A Case Report Karen Kehbein, OD Big Rapids, Michigan Abstract Background: Congenital cataracts can lead to severe effects on the development of the

More information

Refractive Changes after Removal of Anterior IOLs in Temporary Piggyback IOL Implantation for Congenital Cataracts

Refractive Changes after Removal of Anterior IOLs in Temporary Piggyback IOL Implantation for Congenital Cataracts pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2013;27(2):93-97 http://dx.doi.org/10.3341/kjo.2013.27.2.93 Original Article Refractive Changes after Removal of Anterior IOLs in Temporary Piggyback

More information

Pediatric Eye Disease Investigator Group. Pediatric Cataract Surgery Outcomes Registry. Version 1.0 December 2, 2011

Pediatric Eye Disease Investigator Group. Pediatric Cataract Surgery Outcomes Registry. Version 1.0 December 2, 2011 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Pediatric Eye Disease Investigator Group Pediatric Cataract Surgery Outcomes Registry Version 1.0 December 2, 2011 Print Date: 03/06/12

More information

IOL Power Calculation for Children

IOL Power Calculation for Children 1 IOL Power Calculation for Children Rupal H. Trivedi, MD MSCR M. Edward Wilson, MD The authors have no financial interest in the subject matter of this presentation. Intraocular lens (IOL) implantation

More information

Saemah Nuzhat Zafar, Sorath Noorani Siddiqui, Ayesha Khan 1

Saemah Nuzhat Zafar, Sorath Noorani Siddiqui, Ayesha Khan 1 Original Article Effects of Artisan aphakic intraocular lens on central corneal thickness and intra ocular pressure in pediatric eyes with crystalline subluxated lenses Saemah Nuzhat Zafar, Sorath Noorani

More information

Contact Lenses for Infants: Indication, Evaluation, and Technique

Contact Lenses for Infants: Indication, Evaluation, and Technique Contact Lenses for Infants: Indication, Evaluation, and Technique Maureen Plaumann, OD, FAAO The Ohio State University Elaine Chen, OD, FAAO, FSLS Southern California College of Optometry Marshall B. Ketchum

More information

Clinical Trials on Cataract and Refractive Surgery

Clinical Trials on Cataract and Refractive Surgery Clinical Trials: Cataract Clinical Trials: and Cataract Refractive and Refractive Surgery Clinical Trials on Cataract and Refractive Surgery Tarun Arora MD Tarun Arora MD, Vijay Kumar Sharma MS, Rajesh

More information

Evaluation of Changing Axial Length in Eyes after Paediatric Cataract Surgery.

Evaluation of Changing Axial Length in Eyes after Paediatric Cataract Surgery. DOI: 10.21276/aimdr.2018.4.5.OT1 Original Article ISSN (O):2395-2822; ISSN (P):2395-2814 Evaluation of Changing Axial Length in Eyes after Paediatric Cataract Surgery. Mamta Singh 1, B P Sinha 2, Deepak

More information

IMPLANTATION OF AN INTRAOCUlar

IMPLANTATION OF AN INTRAOCUlar CLINICAL SCIENCES Keratometry in Pediatric Eyes With Cataract Rupal H. Trivedi, MD, MSCR; M. Edward Wilson, MD Objectives: To report the keratometry data of pediatric cataractous eyes (randomly selected

More information

Cataract is one of the major causes of childhood. Primary Intraocular Lens Implantation for Unilateral Idiopathic Cataract in Children

Cataract is one of the major causes of childhood. Primary Intraocular Lens Implantation for Unilateral Idiopathic Cataract in Children Original Article 52 Primary Intraocular Lens Implantation for Unilateral Idiopathic Cataract in Children Meng-Ling Yang 1,2, MD; Ken-Kuo Lin 2, MD; Chiun-Ho Hou 2, MD; Yu-Sung Liang 3, MD; Jiahn-Shing

More information

NIH Public Access Author Manuscript J AAPOS. Author manuscript; available in PMC 2010 June 1.

NIH Public Access Author Manuscript J AAPOS. Author manuscript; available in PMC 2010 June 1. NIH Public Access Author Manuscript Published in final edited form as: J AAPOS. 2009 June ; 13(3): 258 263. doi:10.1016/j.jaapos.2009.03.002. Treatment of severe amblyopia with weekend atropine: Results

More information

Pediatric traumatic cataract Presentation and Management. Dr. Kavitha Kalaivani Pediatric ophthalmology Sankara Nethralaya Nov 7, 2017

Pediatric traumatic cataract Presentation and Management. Dr. Kavitha Kalaivani Pediatric ophthalmology Sankara Nethralaya Nov 7, 2017 Pediatric traumatic cataract Presentation and Management Dr. Kavitha Kalaivani Pediatric ophthalmology Sankara Nethralaya Nov 7, 2017 Management of Traumatic Cataract Ocular trauma presents many problems

More information

The outcome of congenital cataract surgery in Kuwait

The outcome of congenital cataract surgery in Kuwait Saudi Journal of Ophthalmology (2011) 25, 295 299 King Saud University Saudi Journal of Ophthalmology www.saudiophthaljournal.com www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE The outcome of congenital

More information

Shedding Light on Pediatric Cataracts. Kimberly G. Yen, MD Associate Professor of Ophthalmology Texas Children s Hospital

Shedding Light on Pediatric Cataracts. Kimberly G. Yen, MD Associate Professor of Ophthalmology Texas Children s Hospital Shedding Light on Pediatric Cataracts Kimberly G. Yen, MD Associate Professor of Ophthalmology Texas Children s Hospital A newborn infant presents with bilateral white cataracts. What is the best age to

More information

Anterior segment imaging

Anterior segment imaging Article Date: 11/1/2016 Anterior segment imaging AS OCT vs. UBM vs. endoscope; case based approaches BY BENJAMIN BERT, MD, FACS AND BRIAN FRANCIS, MD, MS Currently, numerous imaging modalities are available

More information

Early Treatment of Congenital Unilateral Cataract Minimizes Unequal Competition

Early Treatment of Congenital Unilateral Cataract Minimizes Unequal Competition Early Treatment of Congenital Unilateral Cataract Minimizes Unequal Competition 12 Eileen E. Birch, 12 David Stager? Joel Leffler? and David Weakley 23 PURPOSE. Dense congenital unilateral cataracts may

More information

Retinal detachment following surgery for congenital cataract: presentation and outcomes

Retinal detachment following surgery for congenital cataract: presentation and outcomes (2005) 19, 317 321 & 2005 Nature Publishing Group All rights reserved 0950-222X/05 $30.00 www.nature.com/eye Retinal detachment following surgery for congenital cataract: presentation and outcomes D Yorston,

More information

Management of monocular congenital cataracts

Management of monocular congenital cataracts Management of monocular congenital cataracts SCOTT R. LAMBERT Scott R. Lambert, MD Emory Eye Center Emory University School of Medicine 1365-B Clifton Road, NE Suite 4610 Atlanta GA 30322, USA Tel: +1

More information

CLINICAL SCIENCES. Effect of Central Corneal Thickness, Corneal Curvature, and Axial Length on Applanation Tonometry

CLINICAL SCIENCES. Effect of Central Corneal Thickness, Corneal Curvature, and Axial Length on Applanation Tonometry CLINICAL SCIENCES Effect of Central Corneal Thickness, Corneal Curvature, and Axial Length on Applanation Tonometry Markus Kohlhaas, MD; Andreas G. Boehm, MD; Eberhard Spoerl, PhD; Antje Pürsten, Dipl-Ing

More information

Management of Congenital Cataract Surgery. Dr. Vaishali Vasavada, MS. Dr. Abhay R. Vasavada, MS, FRCS (England) Raghudeep Eye Hospital, India

Management of Congenital Cataract Surgery. Dr. Vaishali Vasavada, MS. Dr. Abhay R. Vasavada, MS, FRCS (England) Raghudeep Eye Hospital, India Management of Congenital Cataract Surgery Dr. Vaishali Vasavada, MS Dr. Abhay R. Vasavada, MS, FRCS (England) Raghudeep Eye Hospital, India Congenital cataract surgery is a complex issue best left to surgeons

More information

Trabeculectomy is an effective method for lowering

Trabeculectomy is an effective method for lowering ORIGINAL STUDY Refractive Outcome of Cataract Surgery in Eyes With Prior Trabeculectomy: Risk Factors for Postoperative Myopia Oliver L. Yeh, MD, Karine D. Bojikian, MD, Mark A. Slabaugh, MD, and Philip

More information

STUDY OF EFFECTIVENESS OF LENS EXTRACTION AND PCIOL IMPLANTATION IN PRIMARY ANGLE CLOSURE GLAUCOMA Sudhakar Rao P 1, K. Revathy 2, T.

STUDY OF EFFECTIVENESS OF LENS EXTRACTION AND PCIOL IMPLANTATION IN PRIMARY ANGLE CLOSURE GLAUCOMA Sudhakar Rao P 1, K. Revathy 2, T. STUDY OF EFFECTIVENESS OF LENS EXTRACTION AND PCIOL IMPLANTATION IN PRIMARY ANGLE CLOSURE GLAUCOMA Sudhakar Rao P 1, K. Revathy 2, T. Sreevathsala 3 HOW TO CITE THIS ARTICLE: Sudhakar Rao P, K. Revathy,

More information

Prediction Error After Lens Implantation in Children With Axial Length Less than 22 mm Below 2 Yrs

Prediction Error After Lens Implantation in Children With Axial Length Less than 22 mm Below 2 Yrs E-ISSN 2454-2784 Original Article Prediction Error After Lens Implantation in Children With Axial Length Less than 22 mm Below 2 Yrs Reena Gupta 1, Suma Ganesh 2, Chekitaan Singh 3, A.K Khurana 1 1 Regional

More information

A Retrospective Analysis of Refractive Changes in Pediatric Pseudophakia

A Retrospective Analysis of Refractive Changes in Pediatric Pseudophakia 43 Abstract A Retrospective Analysis of Refractive Changes in Pediatric Pseudophakia Manmitha Reddy Muppidi, Sairani Karanam, Akhil Bevara Sankara Eye Hospital, Pedakakani, Guntur, Andhra Pradesh, India

More information

Medical Policy An independent licensee of the Blue Cross Blue Shield Association

Medical Policy An independent licensee of the Blue Cross Blue Shield Association Pachymetry Page 1 of 8 Medical Policy An independent licensee of the Blue Cross Blue Shield Association Title: Pachymetry Professional Institutional Original Effective Date: March 11, 2004 Original Effective

More information

2/26/2017. Sameh Galal. M.D, FRCS Glasgow. Lecturer of Ophthalmology Research Institute of Ophthalmology

2/26/2017. Sameh Galal. M.D, FRCS Glasgow. Lecturer of Ophthalmology Research Institute of Ophthalmology Sameh Galal M.D, FRCS Glasgow Lecturer of Ophthalmology Research Institute of Ophthalmology No financial interest in the subject presented 1 Managing cataracts in children remains a challenge. Treatment

More information

Role of central corneal thickness measurement in management of open angle glaucoma and glaucoma suspects in Calabar, Nigeria

Role of central corneal thickness measurement in management of open angle glaucoma and glaucoma suspects in Calabar, Nigeria Original Research Article Role of central corneal thickness measurement in management of open angle glaucoma and glaucoma suspects in Calabar, Nigeria Nkanga DG 1,2, Ibanga AA 1,2, Nkanga ED 2, Etim BA

More information

Predictability and accuracy of IOL formulas in high myopia

Predictability and accuracy of IOL formulas in high myopia ARTICLE Predictability and accuracy of IOL formulas in high myopia Mohamed Yasser Sayed Saif, MD 1 ; Mohamed Othman Abdel Khalek, MD 1 ; Ahmed Tamer Sayed Saif, MD 2 ; Passant Sayed Saif, MD 3 ; Sherif

More information

Inaccuracy of Intraocular Lens Power Prediction for Cataract Surgery in Angle-Closure Glaucoma

Inaccuracy of Intraocular Lens Power Prediction for Cataract Surgery in Angle-Closure Glaucoma Original Article DOI 10.3349/ymj.2009.50.2.206 pissn: 0513-5796, eissn: 1976-2437 Yonsei Med J 50(2):206-210, 2009 Inaccuracy of Intraocular Lens Power Prediction for Cataract Surgery in Angle-Closure

More information

NIH Public Access Author Manuscript J AAPOS. Author manuscript; available in PMC 2006 April 25.

NIH Public Access Author Manuscript J AAPOS. Author manuscript; available in PMC 2006 April 25. NIH Public Access Author Manuscript Published in final edited form as: J AAPOS. 2005 December ; 9(6): 542 545. The Effect of Amblyopia Therapy on Ocular Alignment Michael X. Repka, MD a, Jonathan M. Holmes,

More information

Vanderbilt Eye Institute Clinical Trials

Vanderbilt Eye Institute Clinical Trials April, 2010 Vanderbilt Eye Institute Clinical Trials Ophthalmology Actively Recruiting Studies For information on our clinical trials and other studies, please contact: Sandy Owings, COA, CCRP Clinic Director

More information

Glaucoma: Diagnostic Modalities

Glaucoma: Diagnostic Modalities Glaucoma: Diagnostic Modalities - Dr. Barun Kumar Nayak, Dr. Sarika Ramugade Glaucoma is a leading cause of blindness in the world, especially in older people. Early detection and treatment by ophthalmologist

More information

PRESENTED By DR. FAISAL ALMOBARAK, MD

PRESENTED By DR. FAISAL ALMOBARAK, MD PRESENTED By DR. FAISAL ALMOBARAK, MD Early FAC associated with hypotony is an important complication after glaucoma filtering procedures, especially trabeculectomy. The reported incidence after trabeculectomy

More information

Landmark Tube Trials

Landmark Tube Trials SECTION EDITOR: BARBARA SMIT, MD, PhD Landmark Tube Trials A review of key findings from recent multicenter randomized clinical trials involving tube shunts. BY AMBIKA HOGUET, MD, AND STEVEN J. GEDDE,

More information

Correlating central corneal thickness and intraocular pressure in ocular hypertension and glaucoma

Correlating central corneal thickness and intraocular pressure in ocular hypertension and glaucoma VOL. 3 NO. 1 PHILIPPINE JOURNAL OF Ophthalmology JANUARY ORIGINAL ARTICLE JUNE 07 Jonathan G. Soriano, MD 1 Ma. Margarita L. Lat-Luna, MD 1, 3 Patricia M. Khu, MD 1, 1 Department of Ophthalmology and Visual

More information

Among adults, it is well-known that the risk of retinal

Among adults, it is well-known that the risk of retinal Lens Risk of Retinal Detachment After Pediatric Cataract Surgery Birgitte Haargaard, 1,2 Elisabeth W. Andersen, 1 Anna Oudin, 1 Gry Poulsen, 1 Jan Wohlfahrt, 1 Morten la Cour, 2 and Mads Melbye 1 1 Department

More information

Cataract Extraction and Primary Hydrophobic Acrylic Intraocular Lens Implantation in Infants

Cataract Extraction and Primary Hydrophobic Acrylic Intraocular Lens Implantation in Infants Cataract Extraction and Primary Hydrophobic Acrylic Intraocular Lens Implantation in Infants Samuray Tuncer, MD, Ahmet Gucukoglu, MD and Nilufer Gozum, MD Purpose: We sought to report the incidence of

More information

Pseudophakic angle-closure from a Soemmering ring

Pseudophakic angle-closure from a Soemmering ring Suwan et al. BMC Ophthalmology (2016) 16:91 DOI 10.1186/s12886-016-0257-6 CASE REPORT Open Access Pseudophakic angle-closure from a Soemmering ring Yanin Suwan *, Bayasgalan Purevdorj, Chaiwat Teekhasaenee,

More information

International Journal of Health Sciences and Research ISSN:

International Journal of Health Sciences and Research  ISSN: International Journal of Health Sciences and Research www.ijhsr.org ISSN: 2249-9571 Original Research Article Conversion of Ocular Hypertensives into Glaucoma: A Retrospective Study Aditi Singh 1, Shibi

More information

Objectives. Tubes, Ties and Videotape: Financial Disclosure. Five Year TVT Results IOP Similar

Objectives. Tubes, Ties and Videotape: Financial Disclosure. Five Year TVT Results IOP Similar Tubes, Ties and Videotape: Surgical Video of Glaucoma Implants and Financial Disclosure I have no financial interests or relationships to disclose. Herbert P. Fechter MD, PE Eye Physicians and Surgeons

More information

Postcataract surgery outcome in a series of infants and children with Down syndrome

Postcataract surgery outcome in a series of infants and children with Down syndrome The Children s University Hospital, Temple Street, Dublin 1, Ireland Correspondence to: Professor M O Keefe, Eye Department, The Children s University Hospital, Temple Street, Dublin 1, Ireland; mokeefe@materprivate.ie

More information

Visual Function Following Congenital Cataract Surgery

Visual Function Following Congenital Cataract Surgery Visual Function Following Congenital Cataract Surgery Misao Yamamoto, Murat Dogru, Makoto Nakamura, Hiroko Shirabe, Yasutomo Tsukahara, Yoshibumi Sekiya Department of Ophthalmology, Kobe University School

More information

Choroidal detachment following retinal detachment surgery: An analysis and a new hypothesis to minimize its occurrence in high-risk cases

Choroidal detachment following retinal detachment surgery: An analysis and a new hypothesis to minimize its occurrence in high-risk cases European Journal of Ophthalmology / Vol. 14 no. 4, 2004 / pp. 325-329 Choroidal detachment following retinal detachment surgery: An analysis and a new hypothesis to minimize its occurrence in high-risk

More information

CLINICAL SCIENCES. Clinical Significance of Central Corneal Thickness in the Management of Glaucoma

CLINICAL SCIENCES. Clinical Significance of Central Corneal Thickness in the Management of Glaucoma CLINICAL SCIENCES Clinical Significance of Central Corneal Thickness in the Management of Glaucoma Carolyn Y. Shih, MD; Joshua S. Graff Zivin, PhD; Stephen L. Trokel, MD; James C. Tsai, MD Objective: To

More information

Management of Angle Closure Glaucoma Hospital Authority Convention 18 May 2015

Management of Angle Closure Glaucoma Hospital Authority Convention 18 May 2015 Management of Angle Closure Glaucoma Hospital Authority Convention 18 May 2015 Jimmy Lai Clinical Professor Department of Ophthalmology The University of Hong Kong 1 Primary Angle Closure Glaucoma PACG

More information

Intro to Glaucoma/2006

Intro to Glaucoma/2006 Intro to Glaucoma/2006 Managing Patients with Glaucoma is Exciting Interesting Challenging But can often be frustrating! Clinical Challenges To identify patients with risk factors for possible glaucoma.

More information

Role of Initial Preoperative Medical Management in Controlling Post-Operative Anterior Uveitis in Patients of Phacomorphic Glaucoma

Role of Initial Preoperative Medical Management in Controlling Post-Operative Anterior Uveitis in Patients of Phacomorphic Glaucoma Original Article Role of Initial Preoperative Medical Management in Controlling Post-Operative Anterior Uveitis in Patients of Phacomorphic Glaucoma Irfan Qayyum Malik, M. Moin, A. Rehman, Mumtaz Hussain

More information

PedsCases Podcast Scripts

PedsCases Podcast Scripts PedsCases Podcast Scripts This is a text version of a podcast from Pedscases.com on Approach to Childhood Glaucoma. These podcasts are designed to give medical students an overview of key topics in pediatrics.

More information

INFANTILE ESOTROPIA (ET) THAT PERSISTS BEYOND 24

INFANTILE ESOTROPIA (ET) THAT PERSISTS BEYOND 24 Pre-Operative Stability of Infantile Esotropia and Post-Operative Outcome EILEEN E. BIRCH, PHD, JOOST FELIUS, PHD, DAVID R. STAGER, SR, MD, DAVID R. WEAKLEY, JR, MD, AND RAIN G. BOSWORTH, PHD PURPOSE:

More information

Provocative testing for primary open-angle glaucoma in "senior citizens" Norman Ballin* and Bernard Becker

Provocative testing for primary open-angle glaucoma in senior citizens Norman Ballin* and Bernard Becker Provocative testing for primary open-angle glaucoma in "senior citizens" Norman Ballin* and Bernard Becker A group of "senior citizens" was studied with respect to applanation pressures, water-provocative

More information

Results of cataract surgery in young children in east Africa

Results of cataract surgery in young children in east Africa Br J Ophthalmol 2001;85:267 271 267 Kikuyu Hospital, Kenya D Yorston M Wood London School of Hygiene and Tropical Medicine, London, UK A Foster Correspondence to: Dr Allen Foster, London School of Hygiene

More information

THE CURRENT TREATMENT OF GLAUCOMA IS DIrected

THE CURRENT TREATMENT OF GLAUCOMA IS DIrected Three-Year Follow-up of the Tube Versus Trabeculectomy Study STEVEN J. GEDDE, JOYCE C. SCHIFFMAN, WILLIAM J. FEUER, LEON W. HERNDON, JAMES D. BRANDT, AND DONALD L. BUDENZ, ON BEHALF OF THE TUBE VERSUS

More information

Clinical Study Analysis of Factors Associated with the Ocular Features of Congenital Cataract Children in the Shanghai Pediatric Cataract Study

Clinical Study Analysis of Factors Associated with the Ocular Features of Congenital Cataract Children in the Shanghai Pediatric Cataract Study Hindawi Ophthalmology Volume 2017, Article ID 8647435, 7 pages https://doi.org/10.1155/2017/8647435 Clinical Study Analysis of Factors Associated with the Ocular Features of Congenital Cataract Children

More information

ABSTRACT. Sorath Noorani Siddiqui, FCPS; Ayesha Khan, FCPS, FRCS

ABSTRACT. Sorath Noorani Siddiqui, FCPS; Ayesha Khan, FCPS, FRCS Visual Outcome and Changes in Corneal Endothelial Cell Density Following Aphakic Iris-Fixated Intraocular Lens Implantation in Pediatric Eyes With Subluxated Lenses Sorath Noorani Siddiqui, FCPS; Ayesha

More information

Visual Impairment & Eye Health in Children. Susan Cotter, OD, MS So CA College of Optometry Marshall B Ketchum University Fullerton, CA

Visual Impairment & Eye Health in Children. Susan Cotter, OD, MS So CA College of Optometry Marshall B Ketchum University Fullerton, CA Visual Impairment & Eye Health in Children Susan Cotter, OD, MS So CA College of Optometry Marshall B Ketchum University Fullerton, CA Consequences of Childhood VI Social Emotional Physical Educational

More information

Efficacy of latanoprost in management of chronic angle closure glaucoma. Kumar S 1, Malik A 2 Singh M 3, Sood S 4. Abstract

Efficacy of latanoprost in management of chronic angle closure glaucoma. Kumar S 1, Malik A 2 Singh M 3, Sood S 4. Abstract Original article Efficacy of latanoprost in management of chronic angle closure glaucoma Kumar S 1, Malik A 2 Singh M 3, Sood S 4 1 Associate Professor, 2 Assistant Professor, 4 Professor, Department of

More information

Megalocornea is a non-progressive, uniformly

Megalocornea is a non-progressive, uniformly Case Report 191 Anterior Megalophthalmos Chien-Kuang Tsai, MD; Ing-Chou Lai, MD; Hsi-Kung Kuo, MD; Mei-Chung Teng, MD; Po-Chiung Fang, MD We describe a 36-year-old female who suffered from presenile cataract

More information

Characteristics of Children With Primary Congenital Glaucoma Receiving Trabeculotomy and Goniotomy

Characteristics of Children With Primary Congenital Glaucoma Receiving Trabeculotomy and Goniotomy Characteristics of Children With Primary Congenital Glaucoma Receiving Trabeculotomy and Goniotomy Lekha Mukkamala, MD; Robert Fechtner, MD; Bart Holland, MPH, PhD; Albert S. Khouri, MD ABSTRACT Purpose:

More information