Describe the structure of a muscle fibre and explain the structural and physiological differences of fast and slow twitch muscle fibres

Size: px
Start display at page:

Download "Describe the structure of a muscle fibre and explain the structural and physiological differences of fast and slow twitch muscle fibres"

Transcription

1 Describe the structure of a muscle fibre and explain the structural and physiological differences of fast and slow twitch muscle fibres Muscles are made of myofibrils lying parallel to each other Each myofibril is made up of sarcomeres Cytoplasm of the myofibrils is called sarcoplasm Actin and myosin make up a large part of the sarcomere SLOW TWITCH MUSCLE FIBRES Known as oxidative/red muscles fibres due to rich blood supply and high levels of myoglobin The contract relatively slowly and can stay in tetanus (when the muscles contract and remain as short as possible) for a very long time. Required for steady action over a period of time used to maintain body posture Lots of mitochondria Rich blood supply So, they can continue to respire aerobically without needing to respire anaerobically Rely on glucose as a fuel supplied by the blood vessels so they can continue to produce ATP for as long as the oxygen is available FAST TWITCH MUSCLE FIBRES Known as glycolytic/ white muscles fibres due to lack of blood vessels and rich gltcogen stores Contract rapidly making them suitable for rapid bursts of activity Thy often function anaerobically causing them to fatigue quickly Relatively few blood vessels low numbers of myoglobin Low mitochondria Contain rich glycogen stores which can be converted to glucose for aerobic respiration Also has creatine phosphate which can be used to form ATP from ADP Genes and training affect the development of the twitch muscle fibres. Explain the contraction of skeletal muscle in terms of the sliding filament theory, including the role of actin and myosin, troponin, tropomyosin, calcium ions, ATP and ATPase The sliding filament theory explains the pattern seen when the muscle contracts Z-Line end of sarcomeres I bands- actin only

2 A band - myosin filament and overlapping regions H Zone- Myosin filaments only M line- Middle of the myosin filaments Dark A bands stay the same length but the light ones get shorter ACTIN: One of the contractile proteins. Two chains of Actin monomers, Actin's shape provides myosin binding sites at regular intervals, also has a tropomyosin chain wrapped around it which covers the myosin binding sites and troponin MYOSIN: Contractile protein to bring about contraction, two long polypeptide chains twisted together ending in two large globular heads, has ADP and phosphate bound to it and the head also has enzyme ATPase TROPONIN: protein associated with tropomyosin attached regularly along the chain CALCIUM IONS: released from the sarcoplasmic reticulum in response to a stimulus THE PROCESS 1) Calcium ions bind to troponin molecules changing their shape 2) They pull on the tropomyosin chain pulling them away from the myosin binding sites exposing them ready for action 3) Myosin globular heads bind forming acto-myosin bridge 4) ADP and phosphate are released changing the shape of the myosin causing the head to move forward and the actin filaments move along it causing the sarcomere to shorten 5) Free ATP binds the myosin changing its shape again and breaking the bridge 6) ATPase is activated which needs calcium ions to work 7) ATP is hydrolysed to provide energy for the myosin to return to its original position 8) Calcium ions remain in the sarcoplasm with continued stimulation, if not, they are pumped back into the sarcoplasmic reticulum using ATP. Recall the way in which muscles, tendons, the skeleton and ligaments interact to enable movement, including antagonistic pairs, extensors and flexors MUSCLES: largely made up of protein, work in antagonistic pairs to do work TENDONS: muscle to bone. They are strong and hard. White fibrous tissue and collagen fibres. Secure attachment and shock absorber.

3 LIGAMENT: hold bones together in the correct alignment. Elastic to allow joint movement SKELETON: made up of bone. bones embedded in a collagen matrix and calcium salts. dense but strong under compression- reduce weight moved around CARTILAGE: Hard but flexible. Made up of chrondocytes in a collagen matrix. HYALINE: end of bones Keeping the bones lined up I essential for the working of a joint. Ends of the bone are shaped to move smoothly over each other If a joint consisted of bone and bone, they would wear each other away To prevent this, the bones are lined with rubbery cartilage to allow joints to be articulated smoothly Most mobile joints also produce synovial fluid which fills the joint cavity ensuring friction free movement MUSCLE MOVEMENT Bones of the lower arm are attached to biceps and triceps of the upper arm by tendons When biceps contract the triceps relax This pulls the bones so the arm bends BICEPS: FLEXORS When triceps contract and biceps relax the arm straightens TRICEPS: EXTENSORS Muscles work in pairs because they can only pull when they contract- they are antagonistic pairs Describe how to investigate respiration practically The volume of oxygen taken up or the volume of carbon dioxide given out gives the rate of respiration A repirometer measures the amount of oxygen taken in Each tube contains potassium hydroxide solution which absorbs the carbon dioxide given off Control tube is set up to ensure that the results are only due to the woodlice respiring- mass can also affect rate of respiration The syringe is used to set the manometer fluid at a known level The apparatus is left for about 20 minutes During this time, there will be a decrease in the amount of air in the test tube This will decrease the pressure causing the red liquid in the manometer to move towards the test tube The distance moved by the liquid is measured

4 Value can be used to calculate oxygen uptake per minute Variables are controlled e.g. temperature Experiment is repeated to increase reliability Understand that cardiac muscle is myogenic and describe the normal electrical activity of the heart and how the use of ECG can aid the diagnosis of CVD and other heart conditions Myogenic: The heart can set up its own wave of depolarisation without external stimulation Sinoatrial node sets up a wave of depolarisation. This passes through the walls of the atria causing atrial systole. The depolarisation is held at the atriventricular node as the atria empty blood into the ventricles. The depolarisation passes to the Bundle of His which penetrates through the Purkyne tissue to the apex of the heart. The atriventicular valves close to prevent back flow of blood. This causes ventricular systole from the base- up. The semi lunar valves are forced open and blood flows out of the arteries. The pressure change during diastole causes the semi lunar valves to close. ECG ECG is used to investigate the rhythms of the heart by producing a record of the electrical activity of the heart Depolarisation causes tiny electrical changes on the surface of the skin Electrodes attached to the skin measure these changes Some heat conditions only show up when the person is exercising arrhythmias, atrial fibrillation, tachycardia Explain how genes can be switched on and off by DNA transcription factors including hormones Anabolic steroids steroid hormones closely related to the male sex hormone testosterone Natural testosterone can pass through the cell surface membrane The hormone binds to receptor molecules in the cell Carried into the nucleus where they modify gene expression Hormone receptor complex acts as a transcription factor It binds to the DNA switching particular genes linked to protein synthesis on This changes the mrna produced which affects the numbers and types of proteins/enzymes produced Bigger, stronger muscles result synthetic testosterone gives hormones with a longer life in the body Can have severe side effects: infertility, impotence, high blood pressure and heart attacks

5 Erythropoietin Peptide hormone binds to receptor molecule in cell surface membrane They activate a second messenger in the cell cytoplasm Triggers protein kinase cascade Final product enters nucleus and acts as a transcription factor Modifies mrna made affects numbers and types of enzymes made to make more red blood cells Erythropoietin is a naturally occurring hormone so it is very hard to isolate Excess of red blood cells thickens the blood and can lead to strokes and heart attacks More red blood cells means that oxygen is carried to respiring muscles more efficiently Erythropoietin can be used to treat anaemia Explain how variations in ventilation and cardiac output enable rapid delivery of oxygen to tissues and the removal of carbon dioxide from them, including how heart rate and ventilation are controlled and the roles of cardiovascular control centre and the ventilation centre During exercise, more oxygen is needed in the rapidly respiring tissue CO2 and lactic acid also need to be removed When exercise stops, the body needs to return to normal The heart uses a negative feedback system To increase the amount of oxygen, the heart increases the heart rate (number of beats per minute) The heart also increases the cardiac volume (The volume of blood pumped at each heart beat) Heart rate x cardiac volume = cardiac output How is the heart rate controlled? The cardiovascular centre in the medulla oblongata controls the heart rate Chemical and stretch receptors in the lining of the blood vessels and chambers of the heart send impulses to the cardiovascular centre Nervous control of the heart is autonomic and is divided in to sympathetic and parasympathetic nervous system Impulses travelling down the sympathetic nerves are excitatory by increasing the frequency of impulses from the sinoatrial node and impulses travelling down the parasympathetic nerves are inhibitory RESPONDING TO EXERCISE: When exercise starts, the blood vessels dilate in response to the hormone adrenaline which is released with exercise and this reduces the impulses sent from the baroreceptors and they almost stop

6 responding. When they do not stimulate the cardiovascular centre, it automatically sends impulses down the sympathetic nervous system to increase the heart rate and increase the blood pressure again. 1) As the atria fill with blood at the beginning of the cardiac cycle, chemical and stretch receptors in the blood vessels and the chambers of the heart send impulses to the cardiovascular control centre 2) During exercise, the walls of the heart are stretched more than usual by the big blood muscle blocks squeezing the blood so the cardiovascular centre gets sent more impulses than usual as the receptors are stretched more than usual 3) Impulses sent down the sympathetic nerves to the SAN increasing the heart rate 4) Increased stretching of the heart also means that the heart muscle contracts harder so more blood is expelled at each stroke RETURNING TO NORMAL 1) Baroreceptors in the sinuses of carotid arteries in the neck are important as exercise ends 2) As blood pressure in the arteries increases, the baroreceptors sends impulses to the cardiovascular centre 3) This sends impulses down the parasympathetic nerve to slow down the heart rate and cause vasodilation to lower the blood pressure LUNGS Tidal volume: the volume of air that enters and leaves the lungs at each natural resting breath Breathing rate: how many breaths are taken in a minute VENTILATION RATE: TIDAL VOLUME X BREATHING RATE Ventilation needs to supply oxygen to tissue and remove CO2 Controlled by the respiratory/ inspiration centre in the medulla oblongata The expiratory centre controls FORCED exhalation 1) During inhalation: The respiratory centre sends impulses down the sympathetic nerves causing the diaphragm and intercostal muscles to contract. 2) As the lungs inflate, this increases their volume. This means that the pressure is lowered in the lungs 3) Air enters the lungs due to the pressure difference between the lungs and the air outside 4) As the lungs inflate, the stretch receptors in the wall of the bronchi send impulses to the inspiratory centre

7 5) This inhibits their action so they stop stimulating the breathing muscles causing exhalation During exercise, the volume of carbon dioxide in the blood increases- this decreases the ph in the blood. The chemoreceptors in the medulla, carotid arteries and the aorta detect ph changes and send impulses to the intercostal muscles and the diaphragm. This increases TIDAL VOLUME and BREATHING RATE. This also speeds up gaseous exchange SPIROMETERS Spirometer has an oxygen filled chamber with a movable lid Person breathes through a tube connected to the lid When the person breathes in, the lid moves down and when they breathe out, the lid moves up Movements are recorded by a pen attached to the chamber The pen writes on a rotating drum creating a spirometer trace The soda lime in the tube the person breathes in from absorbs the carbon dioxide so it does not affect the tidal volume or breathing rate (ventilation rate) The volume of air in the chamber decreases over time as oxygen is breathed in for respiration carbon dioxide absorbed by soda lime. Spirometers can be used to investigate the effect of exercise on breathing rate: The person is connected to spirometer at rest and the reading is taken for a minute; the person then exercise; reading continued for a minute after this Discuss the role of the hypothalamus and the mechanisms of thermoregulation Homeostasis: maintenance of a steady internal state in the body regardless of external conditions Feedback systems help to maintain a constant internal temperature LOW CRITICAL TEMPERATURE: temperature at which thermoregulatory measures work to conserve heat and metabolic reaction rates increase to produce extra heat LOW LETHAL TEMPERATURE: temperature at which the chemical reactions of the body can no longer work to meet the demands If the temperature gets too high, the enzymes denature and this stops metabolic reactions HIGH CRITICAL TEMPERATRURE: temperature at which thermoregulatory measures work to get rid of excess heat The metabolic rate of reaction continues to go up with temperature Receptors in the brain detect changes to the blood temperature Receptors in the skin detect changes in the external environment A rise in blood temperature results in the heat loss centre being activated

8 This results in vasodilation- the increase in blood flow close to the skin Sweating increases Erector pilli muscles lie flat Shivering stops A decrease in blood temperature results in the activation of the heat gain centre Impulses sent to effectors to decrease blood flow close to the skin (vasoconstriction) Erector pili muscles contract so hairs stand straight to trap a layer of insulating air Involuntary muscle contractions to bring about shivering VASODILATION: Sphincter muscles relax and the atriovenous shunt closes so more bloo d flows through the superficial capillaries and less blood flows through the deeper shunt vessels. This means that moe blood is flowing closer to the skin's surface increasing the gradient between the skin and environment temperature. So more blood is lost by radiation and conduction VASOCONSTRICTION: Sphincter muscles contract so less blood flows through the superficial capillaries and more blood flows in the deeper shunt vessels. This means more blood flows away from the skin's surface decreasing the temperature gradient between the environment and the skin. This means less blood is lost by radiation and conduction

Microanatomy of Muscles. Anatomy & Physiology Class

Microanatomy of Muscles. Anatomy & Physiology Class Microanatomy of Muscles Anatomy & Physiology Class Three Main Muscle Types Objectives: By the end of this presentation you will have the information to: 1. 2. 3. 4. 5. 6. Describe the 3 main types of muscles.

More information

Smooth Cardiac Skeletal Location Around tubes Heart tissue attached to skeleton Moves stuff thru Heart beat pumps Moves body parts

Smooth Cardiac Skeletal Location Around tubes Heart tissue attached to skeleton Moves stuff thru Heart beat pumps Moves body parts Biology 067 - Muscular system A. Type of muscles: Smooth Cardiac Skeletal Location Around tubes Heart tissue attached to skeleton Function Moves stuff thru Heart beat pumps Moves body parts tubes blood

More information

1. Locomotion. 2. Repositioning. 3. Internal movement

1. Locomotion. 2. Repositioning. 3. Internal movement MUSCLE and MOVEMENT Chapters 20, 8, 21 1. Locomotion A. Movement B. 2. Repositioning A. 3. Internal movement A. 1 Muscle Cells 1. Contractile 2. Myocytes 3. Striated A. Skeletal B. Cardiac 4. Smooth 5.

More information

1. Locomotion. 2. Repositioning. 3. Internal movement

1. Locomotion. 2. Repositioning. 3. Internal movement MUSCLE and MOVEMENT Chapters 20, 8, 21 1. Locomotion A. Movement B. 2. Repositioning A. 3. Internal movement A. Muscle Cells 1. Contractile 2. Myocytes 3. Striated A. Skeletal B. Cardiac 4. Smooth 5. Striated

More information

Skeletal Muscle. Connective tissue: Binding, support and insulation. Blood vessels

Skeletal Muscle. Connective tissue: Binding, support and insulation. Blood vessels Chapter 12 Muscle Physiology Outline o Skeletal Muscle Structure o The mechanism of Force Generation in Muscle o The mechanics of Skeletal Muscle Contraction o Skeletal Muscle Metabolism o Control of Skeletal

More information

BIOLOGY - CLUTCH CH.49 - MUSCLE SYSTEMS.

BIOLOGY - CLUTCH CH.49 - MUSCLE SYSTEMS. !! www.clutchprep.com BIOLOGY - CLUTCH Muscle system organ system that includes skeletal, cardiac, and smooth muscle Muscle tissue capable of contracting through the interaction of actin and myosin proteins

More information

CHAPTER 6 2/9/2016. Learning Objectives List the four traits that all muscle types have in common.

CHAPTER 6 2/9/2016. Learning Objectives List the four traits that all muscle types have in common. Learning Objectives List the four traits that all muscle types have in common. CHAPTER 6 The Muscular System Demonstrate and explain the use of antagonistic muscle pairs. Describe the attachment of muscle

More information

Muscles & Motor Locomotion Why Do We Need All That ATP?

Muscles & Motor Locomotion Why Do We Need All That ATP? Muscles & Motor Locomotion Why Do We Need All That ATP? 2006-2007 Animal Locomotion What are the advantages of locomotion? sessile motile Lots of ways to get around Lots of ways to get around mollusk mammal

More information

AP Biology

AP Biology Chapter 49. Animal Locomotion What are the advantages of locomotion? sessile motile Muscles & Motor Locomotion Muscle voluntary, striated involuntary, striated auto-rhythmic involuntary, non-striated 1

More information

Chapter 49. Muscles & Motor Locomotion. AP Biology

Chapter 49. Muscles & Motor Locomotion. AP Biology Chapter 49. Muscles & Motor Locomotion Animal Locomotion What are the advantages of locomotion? sessile motile Muscle voluntary, striated involuntary, striated auto-rhythmic involuntary, non-striated

More information

Concept 50.5: The physical interaction of protein filaments is required for muscle function

Concept 50.5: The physical interaction of protein filaments is required for muscle function Concept 50.5: The physical interaction of protein filaments is required for muscle function Muscle activity is a response to input from the nervous system The action of a muscle is always to contract Vertebrate

More information

Outline. Bio 105: Muscular System. Muscular System. Types of Muscles. Smooth Muscle. Cardiac Muscle 4/6/2016

Outline. Bio 105: Muscular System. Muscular System. Types of Muscles. Smooth Muscle. Cardiac Muscle 4/6/2016 Outline Bio 105: Muscular System Lecture 11 Chapter 6 Characteristics of muscles 3 types of muscles Functions of muscles Structure of skeletal muscles Mechanics of muscle contraction Energy sources for

More information

About This Chapter. Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Pearson Education, Inc.

About This Chapter. Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Pearson Education, Inc. About This Chapter Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Skeletal Muscle Usually attached to bones by tendons Origin: closest to the trunk or to more stationary bone Insertion:

More information

11.2 Muscles and Movement

11.2 Muscles and Movement 11.2 Muscles and Movement 11.2.1 - State the roles of bones, ligaments, muscles, tendons and nerves in human movement Bones Act as anchors for the muscles, and levers to control the movement of muscles,

More information

The Musculoskeletal System. Chapter 46

The Musculoskeletal System. Chapter 46 The Musculoskeletal System Chapter 46 Types of Skeletal Systems Changes in movement occur because muscles pull against a support structure Zoologists recognize three types: 1. Hydrostatic skeletons a fluid

More information

MUSCLE TISSUE (MUSCLE PHYSIOLOGY) PART I: MUSCLE STRUCTURE

MUSCLE TISSUE (MUSCLE PHYSIOLOGY) PART I: MUSCLE STRUCTURE PART I: MUSCLE STRUCTURE Muscle Tissue A primary tissue type, divided into: skeletal muscle cardiac muscle smooth muscle Functions of Skeletal Muscles Produce skeletal movement Maintain body position Support

More information

Muscles Muscles are effectors which enable movement to be carried out

Muscles Muscles are effectors which enable movement to be carried out Muscles 13.8 Muscles are effectors which enable movement to be carried out Muscle Is responsible for almost all the movements in animals 3 types Cardiac muscle Smo oth muscle Skeletal mus cle (aka striped

More information

Biology Animal Physiology Fall Midterm 2

Biology Animal Physiology Fall Midterm 2 Name: Biology 449 - Animal Physiology Fall 2011 Fill in your scantron form as follows: Midterm 2 Write and bubble in your name in the upper left (last name first). Sign your form on the upper right. By

More information

Bio 449 Fall Exam points total

Bio 449 Fall Exam points total Name: Exam 2 100 points total Multiple choice. As with any test, choose the best answer in each case. Each question is 3 points. Comments are provided in italic for questions that too many people missed!

More information

AP Biology. Animal Locomotion. Muscles & Motor Locomotion. Why Do We Need All That ATP? Lots of ways to get around. Muscle

AP Biology. Animal Locomotion. Muscles & Motor Locomotion. Why Do We Need All That ATP? Lots of ways to get around. Muscle Muscles & Motor Locomotion Animal Locomotion What are the advantages of locomotion? sessile motile Why Do We Need All That? 2006-2007 Lots of ways to get around Lots of ways to get around mollusk mammal

More information

Applied anatomy and physiology: definitions of key terms

Applied anatomy and physiology: definitions of key terms Applied anatomy and physiology: definitions of key terms See pages 5 46 These are the key terms from Chapter 1. Try cutting them out and then matching the key terms with their definitions, or asking friends

More information

(c) sarcolemma with acethylcholine (protein) receptors

(c) sarcolemma with acethylcholine (protein) receptors (slide 1) Lecture Notes: Muscular System I. (slide 2) Introduction to Muscular System A) Tissues of the Muscular System: 1) Connective Tissues (a) dense fibrous (tendons and ligaments) 2) Nervous Tissue

More information

Biology Animal Physiology Fall Midterm 2 Key

Biology Animal Physiology Fall Midterm 2 Key Name: Biology 449 - Animal Physiology Fall 2011 Fill in your scantron form as follows: Midterm 2 Key Write and bubble in your name in the upper left (last name first). Sign your form on the upper right.

More information

CLASS SET Unit 4: The Muscular System STUDY GUIDE

CLASS SET Unit 4: The Muscular System STUDY GUIDE NPHS Anatomy & Physiology Questions to answer: 1) List three functions of the muscular system. 1) movement 2) thermogenesis (generates heat) 3) posture & body/joint support CLASS SET Unit 4: The Muscular

More information

Chapter 10 Muscle Tissue Lecture Outline

Chapter 10 Muscle Tissue Lecture Outline Chapter 10 Muscle Tissue Lecture Outline Muscle tissue types 1. Skeletal muscle = voluntary striated 2. Cardiac muscle = involuntary striated 3. Smooth muscle = involuntary nonstriated Characteristics

More information

NZQA Expiring unit standard version 2 Page 1 of 5. Demonstrate knowledge of exercise physiology and human anatomy

NZQA Expiring unit standard version 2 Page 1 of 5. Demonstrate knowledge of exercise physiology and human anatomy Page 1 of 5 Title Demonstrate knowledge of exercise physiology and human anatomy Level 3 Credits 10 Purpose People credited with this unit standard are able to: explain the nervous system and its functions;

More information

Skeletal Muscle. Skeletal Muscle

Skeletal Muscle. Skeletal Muscle Skeletal Muscle Skeletal Muscle Types of muscle Skeletal muscle-moves the skeleton by pulling on the tendons that are connected to the bones Cardiac muscle-pumps blood through the heart and blood vessels

More information

MODULE 6 MUSCLE PHYSIOLOGY

MODULE 6 MUSCLE PHYSIOLOGY MODULE 6 MUSCLE PHYSIOLOGY III SEMESTER BOTANY Syllabi: Striated, Non striated and Cardiac muscle, Ultra structure of striated muscle fibre, Mechanism of muscle contraction, Threshold and spike potential,

More information

MUSCULAR TISSUE. Dr. Gary Mumaugh

MUSCULAR TISSUE. Dr. Gary Mumaugh MUSCULAR TISSUE Dr. Gary Mumaugh MUSCLE OVERVIEW The three types of muscle tissue are skeletal, cardiac, and smooth These types differ in structure, location, function, and means of activation FUNCTIONAL

More information

REVISION BOOKLET. The Body Systems

REVISION BOOKLET. The Body Systems REVISION BOOKLET The Body Systems GCSE PE 2016 Skeletal System Functions of the skeleton Joints for movement Muscle attachment Protection of vital organs Red and white blood cell production platelets Storage

More information

The Muscular System and Homeostasis

The Muscular System and Homeostasis Chapter 10 Chapter 10 The Muscular System and Homeostasis The Muscular System and Homeostasis 10.1 Movement and Muscle Tissue 10.2 Muscles, Health, and Homeostasis 10.1 Movement and Muscle Tissue Muscles

More information

Muscle Physiology. Dr. Ebneshahidi Ebneshahidi

Muscle Physiology. Dr. Ebneshahidi Ebneshahidi Muscle Physiology Dr. Ebneshahidi Skeletal Muscle Figure 9.2 (a) Functions of the muscular system 1. Locomotion body movements are due to skeletal muscle contraction. 2. Vasoconstriction and vasodilatation

More information

Muscle and Muscle Tissue

Muscle and Muscle Tissue Muscle and Muscle Tissue Make up about half of total body mass Exerts force by converting chemical energy, ATP, to mechanical energy Muscle tissue is classified based on Shape Number and position of nuclei

More information

Chapter 10 -Muscle Tissue

Chapter 10 -Muscle Tissue Chapter 10 -Muscle Tissue Muscles: 1. Overview of Muscle Tissue A. Review 5 functions of muscle tissue. B. Review the 5 properties of muscle tissue. WHICH do they share with nervous tissue? (2, plus the

More information

Muscle Cells & Muscle Fiber Contractions. Packet #8

Muscle Cells & Muscle Fiber Contractions. Packet #8 Muscle Cells & Muscle Fiber Contractions Packet #8 Skeletal muscle is attached to bones and is responsible for movement. Introduction Introduction II Skeletal muscle is composed of bundles of muscle fibers

More information

(C) Muscles provide structural support, are involved in thermoregulation, but have no effect on organ function.

(C) Muscles provide structural support, are involved in thermoregulation, but have no effect on organ function. OAT Biology - Problem Drill 13: The Muscular System Question No. 1 of 10 1. Which statement about muscles is correct? Question #01 (A) Muscles have an origin that is usually attached to a movable bone,

More information

Human Anatomy and Physiology - Problem Drill 09: The Muscular System

Human Anatomy and Physiology - Problem Drill 09: The Muscular System Human Anatomy and Physiology - Problem Drill 09: The Muscular System Question No. 1 of 10 The muscular system of the human body fulfills many different roles. Which of the following statements about the

More information

Muscles and Muscle Tissue

Muscles and Muscle Tissue 1 Muscles and Muscle Tissue Chapter 9 2 Overview of Muscle Tissues Compare and Contrast the three basic types of muscle tissue List four important functions of muscle tissue 3 Muscle Terminology Muscle

More information

Muscular System. 3 types of muscle tissue. How skeletal muscles arrange CARDIAC SMOOTH SKELETAL

Muscular System. 3 types of muscle tissue. How skeletal muscles arrange CARDIAC SMOOTH SKELETAL Muscular System Functions Support the body by allowing us to stay upright Allow for movement by attaching to the skeleton Help maintain a constant body temperature Assist in movement in the cardiovascular

More information

d) Cardiovascular System Higher Human Biology

d) Cardiovascular System Higher Human Biology d) Cardiovascular System Higher Human Biology What can your remember about the heart and blood vessels? What is the Cardiovascular System? The cardiovascular system, also known as the circulatory system,

More information

Nerve Cell (aka neuron)

Nerve Cell (aka neuron) Nerve Cell (aka neuron) Neuromuscular Junction Nerve cell Muscle fiber (cell) The Nerve Stimulus and Action Potential The Nerve Stimulus and Action Potential Skeletal muscles must be stimulated by a motor

More information

Chapter 9 Muscle. Types of muscle Skeletal muscle Cardiac muscle Smooth muscle. Striated muscle

Chapter 9 Muscle. Types of muscle Skeletal muscle Cardiac muscle Smooth muscle. Striated muscle Chapter 9 Muscle Types of muscle Skeletal muscle Cardiac muscle Smooth muscle Striated muscle Chapter 9 Muscle (cont.) The sliding filament mechanism, in which myosin filaments bind to and move actin

More information

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system BIOH111 o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system Endeavour College of Natural Health endeavour.edu.au 1 Textbook and required/recommended

More information

Skeletal Muscle Qiang XIA (

Skeletal Muscle Qiang XIA ( Skeletal Muscle Qiang XIA ( 夏强 ), PhD Department of Physiology Rm C518, Block C, Research Building, School of Medicine Tel: 88208252 Email: xiaqiang@zju.edu.cn Course website: http://10.71.121.151/physiology

More information

MCAT Biology Problem Drill 18: The Muscular System

MCAT Biology Problem Drill 18: The Muscular System MCAT Biology Problem Drill 18: The Muscular System Question No. 1 of 10 Question 1. Which statement about muscles is correct? Question #01 A. Muscles have an origin that is usually attached to a movable

More information

Control of Heart Rate

Control of Heart Rate Control of Heart Rate Control of Heart Rate The beating of your heart is an involuntary movement one that is beyond your direct control. The nerve impulse that causes the heart to beat originates within

More information

Hole s Human Anatomy and Physiology Eleventh Edition. Mrs. Hummer. Chapter 9 Muscular System

Hole s Human Anatomy and Physiology Eleventh Edition. Mrs. Hummer. Chapter 9 Muscular System Hole s Human Anatomy and Physiology Eleventh Edition Mrs. Hummer Chapter 9 Muscular System 1 Chapter 9 Muscular System Skeletal Muscle usually attached to bones under conscious control striated Three Types

More information

Essentials of Human Anatomy & Physiology. The Muscular System

Essentials of Human Anatomy & Physiology. The Muscular System Essentials of Human Anatomy & Physiology The Muscular System The Muscular System Muscles are responsible for all types of body movement they contract or shorten and are the machine of the body Three basic

More information

Section 5.1 The heart and heart disease

Section 5.1 The heart and heart disease Section 5.1 The heart and heart disease Mammals are too large to rely on diffusion. They need a circulatory system to move substances around the body. Blood moves down pressure gradients, from high to

More information

Muscle Cell Anatomy & Function (mainly striated muscle tissue)

Muscle Cell Anatomy & Function (mainly striated muscle tissue) Muscle Cell Anatomy & Function (mainly striated muscle tissue) General Structure of Muscle Cells (skeletal) several nuclei (skeletal muscle) skeletal muscles are formed when embryonic cells fuse together

More information

Question No: 2 What is released from the sarcoplasmic reticulum into the myofibril, causing tension development in a muscle?

Question No: 2 What is released from the sarcoplasmic reticulum into the myofibril, causing tension development in a muscle? Volume: 600 Questions Question No: 1 Each muscle fiber is surrounded by a connective tissue called? A. Fasiciculi B. Perimysium C. Endomysium D. Epimysium Question No: 2 What is released from the sarcoplasmic

More information

Muscle Tissue- 3 Types

Muscle Tissue- 3 Types AN INTRODUCTION TO MUSCLE TISSUE Muscle Tissue- 3 Types Skeletal muscle (focus on these) Cardiac muscle Smooth muscle FUNCTIONS OF SKELETAL MUSCLES Produce movement of the skeleton Maintain posture and

More information

Chapter 10! Chapter 10, Part 2 Muscle. Muscle Tissue - Part 2! Pages !

Chapter 10! Chapter 10, Part 2 Muscle. Muscle Tissue - Part 2! Pages ! ! Chapter 10, Part 2 Muscle Chapter 10! Muscle Tissue - Part 2! Pages 308-324! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension! 2! Tension Production - Muscle FIBER! All-or-none

More information

Chapter 1: Exercise Physiology. ACE Personal Trainer Manual Third Edition

Chapter 1: Exercise Physiology. ACE Personal Trainer Manual Third Edition Chapter 1: Exercise Physiology ACE Personal Trainer Manual Third Edition Introduction Physiology is the study of the myriad functions in a living organism. Exercise physiology is the study of the ways

More information

Chapter 9 - Muscle and Muscle Tissue

Chapter 9 - Muscle and Muscle Tissue Chapter 9 - Muscle and Muscle Tissue I. Overview of muscle tissue A. Three muscle types in the body: B. Special characteristics 1. Excitability: able to receive and respond to a stimulus 2. Contractility:

More information

Structure and organization of blood vessels

Structure and organization of blood vessels The cardiovascular system Structure of the heart The cardiac cycle Structure and organization of blood vessels What is the cardiovascular system? The heart is a double pump heart arteries arterioles veins

More information

Ch 12: Muscles sarcolemma, t-tubules, sarcoplasmic reticulum, myofibrils, myofilaments, sarcomere...

Ch 12: Muscles sarcolemma, t-tubules, sarcoplasmic reticulum, myofibrils, myofilaments, sarcomere... Ch 12: Muscles Review micro-anatomy of muscle tissue Terminology examples: sarcolemma, t-tubules, sarcoplasmic reticulum, myofibrils, myofilaments, sarcomere... SLOs Differentiate levels of muscle structure:

More information

Chapter 8 Notes. Muscles

Chapter 8 Notes. Muscles Chapter 8 Notes Muscles 8.1 Intro Three muscle types Skeletal Smooth cardiac 8.2 Structure of Skeletal Muscle Composition Skeletal muscle tissue Nervous tissue Blood Connective tissue Connective tissue

More information

10 - Muscular Contraction. Taft College Human Physiology

10 - Muscular Contraction. Taft College Human Physiology 10 - Muscular Contraction Taft College Human Physiology Muscular Contraction Sliding filament theory (Hanson and Huxley, 1954) These 2 investigators proposed that skeletal muscle shortens during contraction

More information

Collin County Community College BIOL Muscle Physiology. Muscle Length-Tension Relationship

Collin County Community College BIOL Muscle Physiology. Muscle Length-Tension Relationship Collin County Community College BIOL 2401 Muscle Physiology 1 Muscle Length-Tension Relationship The Length-Tension Relationship Another way that muscle cells can alter their force capability, is determined

More information

EB Education Revision Guide. How to work with Homeostasis: Part 1 Thermoregulation

EB Education Revision Guide. How to work with Homeostasis: Part 1 Thermoregulation EB Education Revision Guide How to work with Homeostasis: Part 1 Thermoregulation Basics of homeostasis Thermoregulation a) Why your body regulates temperature What you need to know about Homeostasis:

More information

Physiology sheet #2. The heart composed of 3 layers that line its lumen and cover it from out side, these layers are :

Physiology sheet #2. The heart composed of 3 layers that line its lumen and cover it from out side, these layers are : Physiology sheet #2 * We will talk in this lecture about cardiac muscle physiology, the mechanism and the energy sources of their contraction and intracellular calcium homeostasis. # Slide 4 : The heart

More information

Circulation. Sinoatrial (SA) Node. Atrioventricular (AV) Node. Cardiac Conduction System. Cardiac Conduction System. Linked to the nervous system

Circulation. Sinoatrial (SA) Node. Atrioventricular (AV) Node. Cardiac Conduction System. Cardiac Conduction System. Linked to the nervous system Circulation Cardiac Conduction System AHS A H S Your body resembles a large roadmap. There are routes or arteries that take you downtown to the heart of the city and veins that take you to the outskirts

More information

Blood flows away from the heart in arteries, to the capillaries and back to the heart in the veins

Blood flows away from the heart in arteries, to the capillaries and back to the heart in the veins Cardiovascular System Summary Notes The cardiovascular system includes: The heart, a muscular pump The blood, a fluid connective tissue The blood vessels, arteries, veins and capillaries Blood flows away

More information

UNIVERSITY OF BOLTON SPORT AND BIOLOGICAL SCIENCES SPORT AND EXERCISE SCIENCE PATHWAY SEMESTER TWO EXAMINATIONS 2016/2017

UNIVERSITY OF BOLTON SPORT AND BIOLOGICAL SCIENCES SPORT AND EXERCISE SCIENCE PATHWAY SEMESTER TWO EXAMINATIONS 2016/2017 LH14 UNIVERSITY OF BOLTON SPORT AND BIOLOGICAL SCIENCES SPORT AND EXERCISE SCIENCE PATHWAY SEMESTER TWO EXAMINATIONS 2016/2017 INTRODUCTION TO SPORT AND EXERCISE PHYSIOLOGY MODULE NO: SPS4002 Date: Thursday

More information

Cardiovascular system progress chart

Cardiovascular system progress chart Neural muscular system Topic 3A: Characteristics and functions of different muscle fibre types for a variety of sporting activities Term Muscle fibre Slow twitch (type I) Fast oxidative glycolytic (type

More information

Chapter 50. You re on your own for: Sensory Reception Mechanoreceptors Gravity, Hearing and Equilibrium. Chemoreception taste and smell

Chapter 50. You re on your own for: Sensory Reception Mechanoreceptors Gravity, Hearing and Equilibrium. Chemoreception taste and smell 1 Sensory and Motor Mechanisms 2 Chapter 50 You re on your own for: Sensory Reception Mechanoreceptors Gravity, Hearing and Equilibrium Chemoreception taste and smell Photoreceptors vision It s interesting.

More information

Ch. 6: Contraction of Skeletal Muscle Physiological Anatomy of Skeletal Muscle

Ch. 6: Contraction of Skeletal Muscle Physiological Anatomy of Skeletal Muscle Ch. 6: Contraction of Skeletal Muscle 40% skeletal muscle + 10% smooth and cardiac muscle Ch. 7: Excitation of Skeletal Muscle Ch. 9: Contraction and Excitation of Smooth Muscle Physiological Anatomy of

More information

Anatomy and Physiology 1 Chapter 10 self quiz Pro, Dima Darwish,MD.

Anatomy and Physiology 1 Chapter 10 self quiz Pro, Dima Darwish,MD. Anatomy and Physiology 1 Chapter 10 self quiz Pro, Dima Darwish,MD. 1) Which of the following is a recognized function of skeletal muscle? A) produce movement B) maintain posture C) maintain body temperature

More information

Skeletal Muscle. Smooth Muscle. Cardiac Muscle. I. 3 Types of Muscle Tissue. 1. Smooth 2. Cardiac 3. Skeletal

Skeletal Muscle. Smooth Muscle. Cardiac Muscle. I. 3 Types of Muscle Tissue. 1. Smooth 2. Cardiac 3. Skeletal I. 3 Types of Muscle Tissue 1. Smooth 2. Cardiac 3. Skeletal Smooth Muscle Found in body organs,vessels, respiratory passages Not striated, tapered, single cell nucleus involuntary, peristaltic contractions

More information

2) Put these in order: I repolarization II- depolarization of action potential III- rest IV- depolarization to threshold

2) Put these in order: I repolarization II- depolarization of action potential III- rest IV- depolarization to threshold 1) During an action potential, a membrane cannot depolarize above: a) The equilibrium potential of sodium b) The equilibrium potential of potassium c) Zero d) The threshold value e) There is no limit.

More information

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Gross Anatomy of Muscle:

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Gross Anatomy of Muscle: 1 Chapter 9: Muscle Tissue Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle Characteristics: Attaches to skeleton Voluntary control Striated / multi-nucleated Characteristics: Composes

More information

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Characteristics of Muscle:

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Characteristics of Muscle: 1 Chapter 9: Muscle Tissue Muscle little mouse Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle Characteristics: Attaches to skeleton Voluntary control Striated / multi-nucleated Characteristics:

More information

Chapter 10! Muscle Tissue - Part 2! Pages ! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension!

Chapter 10! Muscle Tissue - Part 2! Pages ! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension! ! Chapter 10, Part 2 Muscle Chapter 10! Muscle Tissue - Part 2! Pages 308-324! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension! 2! 1 Tension Production - MUSCLE FIBER! All-or-none

More information

SKELETAL MUSCLE CHARACTERISTICS

SKELETAL MUSCLE CHARACTERISTICS THE MUSCULAR SYSTEM SKELETAL MUSCLE CHARACTERISTICS Most are attached by tendons to bones Cells are multinucleate Striated have visible banding Voluntary subject to conscious control Cells are surrounded

More information

Protection, Support, and Movement-Skin, Skeleton, and Muscle Notes

Protection, Support, and Movement-Skin, Skeleton, and Muscle Notes I. Movement in animals A. Basics: 1. different modes of transportation (running, flying, swimming) have evolved with adaptations for animals to overcome difficulties associated with each type of locomotion

More information

Muscular System. This chapter will focus on muscle cells and tissues. Muscle tissue has several functions:

Muscular System. This chapter will focus on muscle cells and tissues. Muscle tissue has several functions: Muscular System Slide 2 This chapter will focus on muscle cells and tissues. Muscle tissue has several functions: Movement: Muscles work as pulleys on bones to help create changes in body position. Muscles

More information

HAYESFIELD SCHOOL YEAR 1 A LEVEL PE REVISION BOOKLET APPLIED ANATOMY

HAYESFIELD SCHOOL YEAR 1 A LEVEL PE REVISION BOOKLET APPLIED ANATOMY HAYESFIELD SCHOOL YEAR 1 A LEVEL PE REVISION BOOKLET APPLIED ANATOMY TOP TIPS FOR EXAMS: Read the question carefully! Check you have included enough marks for the questions. Don t leave any gaps attempt

More information

Skeletal Muscle. Cardiac Muscle. Smooth Muscle. II. Muscular System. The Muscular System

Skeletal Muscle. Cardiac Muscle. Smooth Muscle. II. Muscular System. The Muscular System Chapter CHAPTER 8 8 The Muscular System College Prep NOTES Smooth Muscle Found in body organs,vessels, respiratory passages Not striated, tapered, single cell nucleus involuntary, peristaltic contractions

More information

Anatomy & Physiology Muscular System Worksheet

Anatomy & Physiology Muscular System Worksheet Anatomy & Physiology Muscular System Worksheet 1. What are the three categories of muscle tissue? a) b) c) 2. The smallest functional unit of a muscle fiber is called a. 3. What are the four characteristics

More information

1/4/2017. Introduction. Connective Tissue Coverings. 9.1: Structure of a Skeletal Muscle. Skeletal Muscle Fibers. Connective Tissue Coverings

1/4/2017. Introduction. Connective Tissue Coverings. 9.1: Structure of a Skeletal Muscle. Skeletal Muscle Fibers. Connective Tissue Coverings Introduction Chapter 09 Lecture Outline See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright McGraw-Hill Education. Permission required for reproduction

More information

MUSCLE & MOVEMENT C H A P T E R 3 3

MUSCLE & MOVEMENT C H A P T E R 3 3 MUSCLE & MOVEMENT C H A P T E R 3 3 KEY CONCEPTS 33.1 Muscle Cells Develop Forces by Means of Cycles of Protein Protein Interaction 33.2 Skeletal Muscles Pull on Skeletal Elements to Produce Useful Movements

More information

Muscle Physiology. Introduction. Four Characteristics of Muscle tissue. Skeletal Muscle

Muscle Physiology. Introduction. Four Characteristics of Muscle tissue. Skeletal Muscle Muscle Physiology Introduction Muscle = tissue capable of forceful shortening or contraction Converts chemical energy (ATP) into mechanical energy Important in: Respiration Urine collection & flow Gastrointestinal

More information

PART A: MULTIPLE CHOICE (100 questions 65% of exam mark)

PART A: MULTIPLE CHOICE (100 questions 65% of exam mark) 1 PART A: MULTIPLE CHOICE (100 questions 65% of exam mark) I: Wellness and Homeostasis 1. Determine the false statement about homeostasis. A) Homeostasis refers to the body s attempt to adjust to a fluctuating

More information

Cardiovascular System

Cardiovascular System Cardiovascular System Purpose Transport oxygen and nutrients Take waste products away from tissues & organs Things we learned Blood pressure: the force of blood pushing against the walls of blood vessels

More information

Ch.10 Muscle Tissue. Copyright 2009, John Wiley & Sons, Inc.

Ch.10 Muscle Tissue. Copyright 2009, John Wiley & Sons, Inc. Ch.10 Muscle Tissue Preview Chapter 10 In groups we will define the following terms 1. Skeletal muscle 2. Smooth muscle 3. Cardiac muscle 4. Sarcomere 5. Myofibril 6. Myofilament 7. Sarcoplasmic reticulum

More information

Class XI Chapter 20 Locomotion and Movement Biology

Class XI Chapter 20 Locomotion and Movement Biology Question 1: Draw the diagram of a sarcomere of skeletal muscle showing different regions. The diagrammatic representation of a sarcomere is as follows: Question 2: Define sliding filament theory of muscle

More information

Types of Muscle: Skeletal- muscle involved in movement of the skeleton. Striated, has alternating bands of light and dark due to overlapping

Types of Muscle: Skeletal- muscle involved in movement of the skeleton. Striated, has alternating bands of light and dark due to overlapping Types of Muscle: Skeletal- muscle involved in movement of the skeleton. Striated, has alternating bands of light and dark due to overlapping filaments within the muscle cell. Skeletal muscle can be consciously

More information

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system BIOH111 o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system Endeavour College of Natural Health endeavour.edu.au 1 TEXTBOOK AND REQUIRED/RECOMMENDED

More information

Skeletal Muscle and the Molecular Basis of Contraction. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry

Skeletal Muscle and the Molecular Basis of Contraction. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry Skeletal Muscle and the Molecular Basis of Contraction Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry Like neurons, all muscle cells can be excited chemically, electrically, and

More information

Chapter 13 The Cardiovascular System: Cardiac Function

Chapter 13 The Cardiovascular System: Cardiac Function Chapter 13 The Cardiovascular System: Cardiac Function Overview of the Cardiovascular System The Path of Blood Flow through the Heart and Vasculature Anatomy of the Heart Electrical Activity of the Heart

More information

Cardiovascular System

Cardiovascular System Cardiovascular System The Heart Cardiovascular System The Heart Overview What does the heart do? By timed muscular contractions creates pressure gradients blood moves then from high pressure to low pressure

More information

Unit 7: Skeletal and muscular systems

Unit 7: Skeletal and muscular systems Unit 7: Skeletal and muscular systems 1. The locomotor system 2. The skeletal system 2.1. The human skeleton 2.2. Bones 2.3. Joints 2.4. Tendons and ligaments 3. The muscular system 3.1. Muscles of the

More information

Principles of Biomedical Systems & Devices. Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont

Principles of Biomedical Systems & Devices. Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont Principles of Biomedical Systems & Devices Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont Review of Cardiac Anatomy Four chambers Two atria-receive blood from the vena cave and pulmonary veins Two

More information

Muscle Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc.

Muscle Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc. 10 Muscle Tissue PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris An Introduction to Muscle Tissue Muscle Tissue A primary tissue type, divided into: Skeletal muscle

More information

GCE PHYSICAL EDUCATION PE2 UNIT GUIDE

GCE PHYSICAL EDUCATION PE2 UNIT GUIDE GCE PHYSICAL EDUCATION PE2 UNIT GUIDE Content Title: The Long Term Effects of Exercise on the Body Key points Adaptations to the cardiovascular, respiratory and muscular systems. Practical Application/Explanation

More information

The All-or-None Principle Motor units also comply to a rule known as the all-ornone principle (or law).

The All-or-None Principle Motor units also comply to a rule known as the all-ornone principle (or law). The All-or-None Principle Motor units also comply to a rule known as the all-ornone principle (or law). This principle stipulates that, when a motor unit is stimulated to contract, it will do so to its

More information

Topic 7: Run for your Life

Topic 7: Run for your Life alevelbiology.co.uk SPECIFICATION Know the way in which muscles, tendons, the skeleton and ligaments interact to enable movement, including antagonistic muscle pairs, extensors and flexors. Understand

More information

The Nervous and Muscular Systems and the role of ATP

The Nervous and Muscular Systems and the role of ATP The Nervous and Muscular Systems and the role of ATP Overview of the Nervous System General parts: The brain The spinal cord The nerves and sense organs General functions: controls and coordinates body

More information

Systems Overview. Muscular System. Muscle System. PDF created with FinePrint pdffactory trial version

Systems Overview. Muscular System. Muscle System. PDF created with FinePrint pdffactory trial version Systems Overview Muscular System Functions: movement of body stabilizing in posture or joint generate heat support some tissues & organs guard exit & entrance of sphincters Muscle System 3 Types of muscle

More information