Atrial fibrillation (AF) is the most common sustained

Size: px
Start display at page:

Download "Atrial fibrillation (AF) is the most common sustained"

Transcription

1 New Oral Anticoagulants for Stroke Prevention in Atrial Fibrillation At a Glance Practical Implications p 270 Author Information p 281 Full text and PDF Review Article Daniel E. Hilleman, PharmD Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, and its prevalence is expected to increase significantly over the next few decades. 1 Currently, it is estimated that between 2.1 and 5.1 million people are affected by AF in the United States. 2,3 As the population ages, this number is expected to increase to approximately 16 million people by Thromboembolic stroke is the most serious potential consequence of AF, and patients with AF face 5-fold higher risk of stroke than those without AF. 3 Identification of discrete risk factors for stroke has enabled the development of risk stratification scoring systems to estimate the composite risk of stroke in patients with AF. The most widely used risk stratification system is the CHADS 2 score. This systems assigns points based on various risk factors (ie, Congestive heart failure, Hypertension, Age >75 years, Diabetes mellitus, and prior history of Stroke or transient ischemic attack [TIA]), and uses the composite score to stratify patients into groups at low, moderate, or high risk of stroke. 4 The most recent evidence-based guidelines established by the American College of Cardiology Foundation/American Heart Association/ European Society of Cardiology (ACCF/AHA/ESC) as well as the guidelines of the American College of Chest Physicians (ACCP) suggest oral anticoagulation therapy rather than no therapy (level of evidence: grade 1B) for patients with AF at moderate risk of stroke (CHADS 2 = 1). 5,6 Because stroke is the leading cause of serious long-term disability and the third-leading cause of death in the United States, effective strategies for stroke prophylaxis in patients with AF have a significant clinical and economic impact. 7 ABSTRACT Objectives: To assess the pharmacologic and clinical benefi ts of 3 new oral anticoagulants the direct thrombin inhibitor dabigatran and 2 Factor Xa inhibitors, rivaroxaban and apixaban in patients with atrial fi brillation (AF). Study Design: A PubMed literature search was performed using the criteria atrial fi brillation and stroke with each of the following: dabigatran, apixaban, and rivaroxaban. Methods: Articles published from January 2009 to October 2011 were analyzed for randomized clinical studies suffi ciently powered to identify rates of stroke and non central nervous system systemic embolism. Subgroup analyses were excluded. Articles were analyzed for randomized, controlled studies enrolling more than 500 patients. A search on was performed to identify additional studies. All searches were performed in January 2011 and updated in October Results: All 3 new oral anticoagulants are at least as effective and safe as warfarin for the prevention of stroke and systemic embolism in patients with AF. Given the differences in the patient populations studied, conclusions about the relative effi cacy and safety of these agents cannot be made. Conclusions: The new oral anticoagulants offer potential advantages over warfarin, particularly in terms of key safety end points and ease of use, while achieving a comparable level of protection against stroke in patients with AF. These advantages may increase adherence to therapy, improve clinical outcomes, and decrease overall healthcare costs, providing an increased benefi t for individuals at greatest risk for AF-induced stroke. (Am J Pharm Benefi ts. 2012;4(6): ) BENEFITS AND LIMITATIONS OF TRADITIONAL ANTICOAGULANTS The current standard of care recommended by ACCF/ AHA/ESC is anticoagulant therapy with warfarin, a vitamin K antagonist (VKA), or antiplatelet therapy when anticoagulation is contraindicated or inappropriate. 5 However, many Vol. 4, No. 6 The American Journal of Pharmacy Benefi ts 269

2 Hilleman PRACTICAL IMPLICATIONS Dabigatran, rivaroxaban, and apixaban are 3 new oral anticoagulants that can be used as alternatives to warfarin in patients with atrial fi brillation. The new oral anticoagulants have several clinical advantages over warfarin including lack of necessity for coagulation assay testing and fewer drug and food interactions. If the new oral anticoagulants are not used following FDA guidance, they could produce signifi cant adverse clinical outcomes. A longer duration of clinical experience with these new oral anticoagulants will be required to further defi ne their role in the prevention of stroke in patients with atrial fi brillation. patients with AF are never prescribed warfarin, and those who are may use it suboptimally, placing them at high risk of thromboembolic stroke. 8 In addition, warfarin has several limitations, which makes its use difficult outside the clinical trial setting. 9,10 The pharmacodynamic effects of warfarin are influenced by diet, concomitant medications, comorbid conditions, and genetics, making treatment individualization and long-term monitoring mandatory. Dosing to maintain a therapeutic range is adjusted according to a patient s international normalized ratio (INR), which is measured at regular intervals. The potential consequences of excessive anticoagulation (bleeding) or insufficient anticoagulation (stroke) can be catastrophic, so frequent monitoring is recommended during lifelong warfarin treatment. 8 The recently revised ACCP guidelines recommend quarterly visitations for those with very stable INRs. 6 The percentage of time within a therapeutic INR range (TTR) is directly related to the risk of mortality in patients with AF, with the lowest risk seen in patients who have more than 70% of their INR levels within the therapeutic range. 11 Unfortunately, the real-world INR levels seen in typical outpatient and community care settings are generally lower than those in patients enrolled in specialized anticoagulation clinics. 12,13 However, results of numerous studies comparing patient TTRs before and after switching from a usual care setting to specialized anticoagulation clinics have reported nominal improvements in TTR levels Moreover, the improved TTR levels observed after switching to an anticoagulation clinic were all below 70% and were associated with improved patient outcomes, suggesting that the benefits associated with a TTR of more than 70% might be more apparent than real. Even in an ideal anticoagulation setting, factors such as patient compliance, patient knowledge of and familiarity with correct warfarin use, and drug discontinuation inevitably play a role in variable and suboptimal INR control. 12,18,19 The limitations of warfarin have prompted extensive research to develop alternative anticoagulants that are at least as effective, but are safer and easier to use. Recently approved oral anticoagulants may provide simpler, more effective, and safer stroke prevention compared with VKAs in patients with AF. Consequently, the use of these agents as an alternative to VKAs may improve patient adherence, improve outcomes, and decrease overall healthcare costs. In 2010 and 2011, 2 new oral anticoagulants were approved by the US Food and Drug Administration (FDA) for prevention of stroke and systemic embolism in patients with nonvalvular AF. These new drugs include the direct thrombin inhibitor (DTI) dabigatran etexilate (approved October 2010) and the Factor Xa (FXa) inhibitor rivaroxaban (approved October 2011). 20,21 In addition, the FXa inhibitor apixaban is currently being considered for an AF-indication approval and has already been approved in the European Union for prophylaxis of deep vein thrombosis in patients undergoing knee or hip replacement surgery. 22 Although dabigatran is currently recommended as an alternative, the majority of patients with AF continue to be treated with warfarin. 23 This review examines the pharmacologic and clinical benefits of the new anticoagulants in the prevention of stroke and systemic embolism in patients with AF, focusing on major phase III study results. STUDY IDENTIFICATION A literature search was conducted of all PubMed indexed articles from January 2009 to October 2011 to identify randomized clinical studies sufficiently powered to identify rates of stroke and non central nervous system systemic embolism. Subgroup analyses were excluded. A total of 12 publications were identified using the aforementioned search terms and limitations. All studies were screened for inclusion. Of these, 4 large randomized studies were identified. A search on was performed to identify additional studies. Data inclusion was based on study quality, not publication date. All searches were performed in January 2011 and updated in October NOVEL ANTICOAGULANTS: COMPARATIVE PHARMACOLOGY The new oral anticoagulants function by inhibiting the coagulation pathway via direct inhibition of thrombin (dabigatran) or selective site-specific inhibition of Factor 270 The American Journal of Pharmacy Benefi ts November/December

3 Stroke Prevention in Atrial Fibrillation Table 1. Pharmacologic Profiles of Dabigatran, Rivaroxaban, and Apixaban Characteristic Dabigatran 21,26-28 Rivaroxaban 20,26 Apixaban 22,26 Mechanism of action Direct thrombin inhibitor Factor Xa inhibitor Factor Xa inhibitor Prodrug Yes (dabigatran etexilate) No No Frequency of administration Twice daily Once daily Twice daily Oral bioavailability 6.5% (absolute) 80% to 100% 66% (absolute) C max in volunteers h 2-4 h 1-3 h t ½ in volunteers h 5-9 h 8-15 h t ½ in elderly patients h h ~12 h Renal clearance of unchanged drug 80% 36% 25% Plasma protein binding 35% >90% 87% CYP450 metabolism No Yes (3A4, 2J2) Yes (3A4) CYP450 indicates cytochrome P450; C max, time to achieve maximal serum concentration; t 1/2, half-life. Xa (rivaroxaban and apixaban). 10 In contrast, warfarin modulates the formation of thrombin at multiple points in the coagulation cascade by inhibiting the recycling of vitamin K from its oxidized, inactive state to its reduced, active form. This process is necessary for the biologic activity of Factors II (prothrombin), VII, IX, and X, as well as proteins C and S. 24 Unlike warfarin, by specifically targeting a single coagulation factor, DTIs and FXa inhibitors do not have broad effects on multiple coagulation factors that may predispose to adverse events. 25 Table 1 summarizes the pharmacologic profiles of these agents Dabigatran Dabigatran etexilate was the first oral anticoagulant to be approved in the United States for stroke prevention in AF. 21 Dabigatran has an oral bioavailability of approximately 3% to 7%. It is administered as a prodrug, dabigatran etexilate, which does not exhibit any pharmacologic activity. Dabigatran etexilate is a substrate of the efflux transporter P-glycoprotein (P-gp). After oral administration, dabigatran etexilate is rapidly absorbed and converted to dabigatran by esterase-catalyzed hydrolysis in plasma and in the liver. This process occurs independently of cytochrome P (CYP) 450 isozymes, but concomitant use of potent P-gp inducers (eg, rifampin) should be avoided. 21 Originally, dose adjustments were not required when dabigatran was combined with P-gp inhibitors; however, because of postmarketing experience reports, dose adjustments (75 mg twice daily) are recommended when dabigatran is combined with potent P-gp inhibitors (ketoconazole, dronedarone) in patients with reduced renal function (creatinine clearance [CrCl] ml/min). Dabigatran is also subject to conjugation, forming pharmacologically active acyl glucuronides. Four isomers of dabigatran glucuronide exist, each accounting for less than 10% of total plasma dabigatran. Dabigatran is not a substrate, inhibitor, or inducer of CYP450 enzymes. In its active form, dabigatran has a half-life of approximately 12 to 17 hours. Approximately 80% of dabigatran is excreted via the kidneys as unchanged drug. The safety of dabigatran in patients with severe hepatic impairment has not been established, but after administration to patients with a Child-Pugh score of B, no consistent changes in exposure or pharmacodynamic were observed. 21 Approval of dabigatran in the United States was based on the results of the phase III RE-LY (Randomized Evaluation of Long-Term Anticoagulation Therapy) study. 29 The ACCP guidelines recommend 150 mg twice daily of dabigatran rather than dose-adjusted VKA therapy for patients with AF and paroxysmal AF when anticoagulation therapy is advised (grade 2B). 6 The ACCF/AHA Task Force update on practice guidelines also recommends dabigatran as an alternative to warfarin in patients with AF (class I, level B), but indicates that switching patients already on warfarin with excellent INR control is of little value. 23 In the RE-LY study, 2 dosages of dabigatran 110 mg twice daily and 150 mg twice daily were compared with dose-adjusted warfarin (INR ) in more than 18,000 patients with AF over a median of 2 years. 29 The comparison between dabigatran doses was double blind, whereas warfarin was administered in an open-label fashion. The primary end point was stroke or systemic embolism. The primary safety outcome was major bleeding events. The primary analysis was designed to test whether either dose of dabigatran was noninferior to warfarin in reducing the primary end point of stroke or systemic embolism. If noninferiority was established, the agents were compared for statistical superiority Vol. 4, No. 6 The American Journal of Pharmacy Benefi ts 271

4 Hilleman Figure 1. Annual Rates of the Primary Efficacy and Safety End Points in the RE-LY Study a RR (95% Cl ) P = Rates, % RR 0.65 (95% Cl ) P = Stroke or Systemic Embolism Major Bleeding Dabigatran 110 mg twice daily Dabigatran 150 mg twice daily Warfarin CI indicates confi dence interval; RR, relative risk. a This fi gure was reproduced from Connolly SJ, Ezekowitz MD, Yusuf S, et al; RE-LY Steering Committee and Investigators. Dabigatran versus warfarin in patients with atrial fi brillation. N Engl J Med. 2009;361: by express permission of the owner of the copyright, the Massachusetts Medical Society. Patient eligibility for RE-LY included electrocardiographically documented AF with at least 1 additional risk factor for stroke (eg, previous stroke, TIA, left ventricular ejection fraction less than 40%, heart failure symptoms of New York Heart Association class II or higher in the preceding 6 months, and age >75 years or age 65 to 74 years with diabetes, hypertension, or coronary artery disease). 29 The mean age of all patients was 71 years; 63.6% were male, and 20% had experienced a previous stroke or TIA. When stroke risk was stratified by CHADS 2 score, 32% of patients had a score of 0 to 1 (low risk), 36% had a score of 2 (moderate risk), and 32% had a score of 3 to 6 (high risk). Half of enrolled patients (50%) had not previously been treated with warfarin. 29 Compared with warfarin, both dabigatran doses were noninferior (P <.001 for noninferiority) for the primary end point of stroke or systemic embolism, and dabigatran 150 mg was superior (P <.001) (Figure 1). 29 These findings represented a 35% reduction in risk of stroke or systemic embolism with dabigatran 150 mg twice daily versus warfarin (relative risk [RR] 0.65; 95% confidence interval [CI] ). In addition, both doses of dabigatran significantly reduced the risk of hemorrhagic stroke compared with warfarin (P <.001), and dabigatran 150 mg twice daily reduced the risk of any stroke (P <.001), ischemic or unspecified stroke (P =.03), nondisabling stroke (P =.01), and disabling or fatal stroke (P =.005). The higher dose was also associated with a 15% reduction in the risk of vascular death compared with warfarin (RR 0.85, 95% CI ; P =.04), although a 12% reduction in risk of all-cause mortality did not reach statistical significance (RR 0.88, 95% CI ; P =.51). Both doses of dabigatran were associated with a numerically higher risk of myocardial infarction (MI). This risk was originally reported as significantly greater with the 150- mg dose compared with warfarin (RR 1.38; 95% CI ; P = 0.048). After publication of the original study, additional clinical events were discovered by the principal investigators. 30 Among these events were 28 instances of silent MI that were not reported by investigators during the course of the study. This finding altered the RR value in the dabigatran 150-mg dose compared with warfarin, making the RR of MI in the dabigatran 150-mg arm no longer statistically significant (RR 1.27, 95% CI ; P =.12) and rendering the results somewhat less reliable. Although the authors concluded that the primary efficacy and safety conclusions of the RE-LY trial were not altered by the inclusion of these newly discovered events, these findings nonetheless reduce confidence in the reliability of the study s findings. 30 The risk of major bleeding (primary safety end point), which was defined according to the International Society on Thrombosis and Hemostasis criteria, 31 was reduced in the dabigatran 110-mg twice-daily group versus the 272 The American Journal of Pharmacy Benefi ts November/December

5 Stroke Prevention in Atrial Fibrillation warfarin group (RR 0.80; 95% CI ), but was similar in frequency when the higher dabigatran dose was compared with warfarin (RR 0.93; 95% CI ). Major bleeding rates per year are shown in Figure Dyspepsia was the only adverse effect that was significantly more common in the dabigatran arm, occurring in 348 patients (5.8%) in the warfarin group and in 707 patients (11.8%) and 688 patients (11.3%) in the dabigatran 110- mg and 150-mg groups, respectively (P <.001 for both comparisons). The rate of drug discontinuation for gastrointestinal (GI) symptoms was slightly higher than 2% with either dose of dabigatran and 0.6% with warfarin. 29 In a subsequent analysis, the rate of the primary end point was higher in a subgroup of patients who had experienced a previous stroke or TIA than in patients without prior stroke/tia (2.4% per year vs 1.2% per year; P <.0001). 32 In the subgroup with a prior stroke or TIA, the reduction in the risk of stroke with dabigatran was mainly due to a reduction in hemorrhagic stroke, because both doses of dabigatran were associated with a significantly lower rate of intracranial bleeding versus warfarin in this subgroup. However, there was no significant interaction between previous stroke or TIA and the effects on the primary outcome with either 110-mg (P =.62) or 150-mg (P =.34) dabigatran. In patients with previous stroke/tia, major bleeding occurred in fewer patients on 110-mg twice-daily dabigatran versus warfarin (2.7% vs 4.2% per year) and GI bleeding was more common with 150-mg twice-daily dabigatran versus warfarin (2.3% vs 1.4% per year). Because of the relatively small proportion of patients with prior stroke/tia (20% of the total study population), the observed differences in outcomes between dabigatran and warfarin did not reach statistical significance, but the direction of effects was consistent with those seen in the overall study population. 32 There was a wide variation in INR values among participating centers in the RE-LY trial. 33 This variation may have influenced differences observed between warfarin and dabigatran. The mean warfarin recipient TTR in the RE-LY study was 64% overall, but ranged from 44% in Taiwan to 77% in Sweden. 29,33 Among warfarin recipients, there was a significant association between TTR and the primary end point of stroke or pulmonary embolism (P =.001), major bleeding (P <.0001), total mortality (P <.0001), and net clinical benefit (a composite of stroke, systemic embolism, pulmonary embolism, death, and major bleeding; P <.0001). 33 Moreover, the difference between dabigatran 150 mg and warfarin for the secondary end points of nonhemorrhagic stroke and mortality was attenuated at higher quartiles of TTR (ie, better INR control), such that dabigatran 150 mg twice daily was not superior to warfarin. Dabigatran was associated with a lower rate of major bleeding versus warfarin at lower quartiles of TTR, but with a similar rate of major bleeding and a higher rate of GI bleeding at higher TTR. 33 Patients in the dabigatran arms of RE-LY were given the option to continue in an ongoing long-term extension study called RELY-ABLE. The primary end point is major bleeding, with secondary end points of stroke, non central nervous system systemic embolism, pulmonary embolism, MI, deep vein thrombosis, all-cause mortality, and a composite of all of these. This study also includes a cluster-randomized trial of a knowledge translation intervention, which will assess its impact on patient outcomes. Caution should be used in administration of dabigatran to the elderly because conditions such as renal impairment, reduced body weight, and drug interactions may result in increased risk of major bleeding and fatality. 34,35 In most countries outside of the United States, both doses of dabigatran used in the RE-LY trial were approved by the countries regulatory agencies. In the United States, the FDA approved the 150-mg twice-daily dose for patients with a CrCl greater than 30 ml/min. For patients with a CrCl of 15 to 30 ml/min, the FDA approved the 75-mg twice-daily dose based on pharmacokinetic and pharmacodynamic modeling. The FDA published its rationale for its decision to approve the 150-mg twicedaily dose and not the 110-mg twice-daily dose. 36 A basic assumption in the FDA s rationale was that stroke was a considerably more clinically important outcome than nonfatal and extracranial bleeding episodes. The FDA looked at 3 subgroups of patients in whom the benefits of a lower risk of bleeding might be expected to outweigh the higher risk of stroke associated with the 110-mg dose. These included patients older than age 75 years, patients with renal dysfunction, and patients with a higher risk of bleeding. In the 7238 patients in RE-LY 75 years or older, the rate of stroke and systemic embolism was 1.4 per 100 patient-years for the 150-mg dose and 1.9 per 100 patientyears for the 110-mg dose. The rate of major bleeding was higher with the 150-mg dose compared with the 110- mg dose (5.1 vs 4.4 per 100 patient-years). These rates indicate similar risk-benefit assessments of the 2 doses. In the 3343 patients in RE-LY with a CrCl of 30 to 50 ml/min, the rate of the primary composite efficacy outcome was 1.3 per 100 patient-years for the 150-mg dose compared with 2.4 per 100 patient-years for the 110-mg dose. The rate of major bleeding for the 150-mg dose was no different from the rate for the 110-mg dose (5.3 vs 5.7 per 100 patient-years). Hence, the 150-mg dose Vol. 4, No. 6 The American Journal of Pharmacy Benefi ts 273

6 Hilleman Figure 2. Cumulative Rates of the Primary End Point (Stroke or Systemic Embolism) in the Per Protocol Population (Panel A) and Intention-to-Treat Population (Panel B) in the ROCKET AF Study a A. Events in Per Protocol Population Cumulative Event Rate, % B. Events in Intention-to-Treat Population Cumulative Event Rate, % Days Since Randomization Days Since Randomization a This fi gure was reproduced from Patel MR, Mahaffey KW, Garg J, et al; ROCKET AF Investigators. Rivaroxaban versus warfarin in nonvalvular atrial fi brillation. N Engl J Med. 2011;365(10): by express permission of the owner of the copyright, the Massachusetts Medical Society. had a superior benefit-risk profile in patients with renal dysfunction. In RE-LY, 57% of patients who suffered a major bleeding event either resumed taking their study medication or had no interruption in therapy, continuing to take the same dose. The percentages of these patients who had an additional major hemorrhage were similar: 16%, 14%, and 12% in the 110-mg dabigatran, 150-mg dabigatran, and warfarin groups, respectively. These data do not support the strategy of dose reduction if patients have a bleeding event while taking a higher dose. Hence, the FDA s decision to approve only the 150- mg strength was based on its inability to identify any subgroup in which use of the lower dose would not represent a substantial disadvantage. Dabigatran has also been assessed for efficacy and safety in patients with acute coronary syndrome in the phase II dosefinding study Randomised Dabigatran Etexilate Dose Finding Study In Patients With Acute Coronary Syndromes Post Index Event With Additional Risk Factors For Cardiovascular Complications Also Receiving Aspirin And Clopidogrel (RE-DEEM). A total of 1861 patients presenting with ST-segment elevation MI (STEMI) or non-st-segment elevation MI (NSTEMI) and at least 1 cardiovascular risk factor were randomized to receive dabigatran (50, 75, 110, or 150 mg twice daily) or placebo in addition to standard dual antiplatelet therapy. 37 Following 6 months of treatment, adjuvant dabigatran treatment increased the incidence of the primary end point (composite of major or clinically relevant minor bleeding 274 The American Journal of Pharmacy Benefi ts November/December

7 Stroke Prevention in Atrial Fibrillation events) in a dose-dependent manner (3.5%, 4.3%, 7.9%, and 7.8% for increasing dabigatran doses and 2.2% for placebo; P <.001). There was no clear difference between the placebo and dabigatran groups for the composite of cardiovascular death, nonfatal MI, or stroke. It is currently unknown whether a phase III trial of dabigatran in acute coronary syndrome will be conducted. 37 Rivaroxaban Rivaroxaban is approved for once-daily administration in patients with AF. 20 The efficacy of rivaroxaban for stroke prevention in patients with AF was investigated in the phase III trial ROCKET AF (Rivaroxaban Once Daily, Oral, Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation) (Figure 2). 38,39 Unlike RE-LY, ROCKET AF was conducted in a double-blind fashion through use of a double-dummy double-blind technique as described by the ROCKET AF Study Investigators. 38 In addition, ROCKET AF enrolled a much higher risk patient population. 38,39 Qualifying criteria included prior stroke, TIA, or systemic embolism or >2 of the following risk factors: clinical heart failure or left ventricular ejection fraction <35%, hypertension, age >75 years, or diabetes mellitus (ie, a CHADS 2 score of >2). The proportion of patients who had not had a previous ischemic stroke, TIA, or systemic embolism who had <2 risk factors was capped at 10% of the cohort for each region; the remainder were required to have had either previous thromboembolism or >3 risk factors (CHADS 2 >3). As a result, 90% of patients in ROCKET-AF had a CHADS 2 score of >3 versus ~30% of patients who met the same criteria in RE- LY. 36,39 The primary efficacy end point was the composite of stroke (ischemic or hemorrhagic) and systemic embolism. The principal safety end point was a composite of major and nonmajor clinically relevant bleeding events. 31 Briefly, 14,264 patients with nonvalvular AF and increased risk for stroke were randomly assigned rivaroxaban 20 mg once daily or dose-adjusted warfarin. 39 The results of ROCKET AF demonstrated that in the intentionto-treat analysis, rivaroxaban was noninferior to warfarin for the prevention of subsequent stroke or systemic embolism (2.1% vs 2.4% per 100 patient-years; hazard ratio [HR] 0.88, 95% CI ; P <.001 for noninferiority; P =.12 for superiority). In the per protocol population the primary end point occurred in 188 patients in the rivaroxaban group (1.7% per 100 patient-years) and 241 in the warfarin group (2.2% per 100 patient-years; HR 0.79, 95% CI ; P <.001 for noninferiority). Principal safety end point rates (major and nonmajor clinically relevant bleeding) were similar between the rivaroxaban and warfarin treatment arms (14.9% vs 14.5% per 100 patient-years; HR 1.03, 95% CI ; P =.44) with significantly reduced incidents of intracranial and fatal bleeding rates (0.5% vs 0.7% and 0.2% vs 0.5%, respectively, per 100 patient-years) in the rivaroxaban group. Major bleeding was defined according to the International Society on Thrombosis and Hemostasis criteria. 31 There was a significant increase in the number of rivaroxaban patients with a >2 g/dl reduction in hemoglobin and transfusions, which was predominantly due to a higher risk of GI bleeding (3.2% vs 2.2%, P <.001). 39 One notable caveat was the lower TTR with warfarin (55%) in the ROCKET AF study compared with that observed with warfarin in the other studies of the new anticoagulants in AF patients (range 64%-68%). 27,38-40 However, the TTR in ROCKET AF was closer to the rates observed outside of clinical trials or specialty clinics. 13 This may have been a primary reason that the differences observed between warfarin and rivaroxaban were not statistically significant in the ROCKET AF study. The trials with higher warfarin TTR rates included fewer higher-risk patients than the ROCKET AF study. Patients with higher CHADS 2 scores receiving warfarin are typically more difficult to maintain in the TTR than patients with lower CHADS 2 scores. Adverse events that occurred more frequently in patients receiving rivaroxaban during the ROCKET AF study included epistaxis and hematuria. Rivaroxaban is a substrate for both the P-gp transport protein and the CYP isozymes 3A4, 3A5, and 2J2; concomitant administration of rivaroxaban with combined P-gp and strong CYP3A4 inhibitors may cause a significant increase in drug exposure and bleeding risk. 20 In addition, pharmacokinetic studies have demonstrated that patients with renal impairment may have a heightened drug response, and caution is advised when coadministering combined P-gp and weak or moderate CYP3A4 inhibitors such as diltiazem and amiodarone. 20,41,42 Patients in ROCKET AF were allowed use of combined P-gp and weak or moderate CYP3A4 inhibitors; however, no increase in bleeding was observed in patients who had a CrCl of 30 to 50 ml/min. A similar large, randomized, phase III trial evaluating the safety of rivaroxaban for prevention of stroke and systemic embolism was conducted in 1280 Japanese patients with AF and either prior stroke, TIA, or non central nervous system systemic embolism, or >2 risk factors for stroke (J-ROCKET AF). 43 Patients were randomized to rivaroxaban 15 mg once daily (10 mg once daily in patients with CrCl of ml/min) or dose-adjusted warfarin. The Vol. 4, No. 6 The American Journal of Pharmacy Benefi ts 275

8 Hilleman Table 2. Dose Adjustment Requirements of Oral Anticoagulants According to Degree of Renal Impairment a Degree of Renal Impairment (GFR CrCl) b Warfarin Dabigatran Rivaroxaban Apixaban c Mild (50-89 ml/min/1.73 m 2 ) Not required Not required Not required Not required Moderate (30-49 ml/min/1.73 m 2 ) Not required Not required Dose reduction to 15 mg/d Severe (15-29 ml/min/1.73 m 2 ) Not required Dose reduction to 75 mg/d Dose reduction to 15 mg/d Renal failure (<15 ml/min/1.73 m 2 ) Not required Contraindicated Contraindicated 2.5 mg twice daily d if 2 or more of the following: Age >80 y Weight <60 kg SCr >1.5 mg/dl CrCl indicates creatinine clearance; GFR, glomerular fi ltration rate; SCr, serum creatinine. a Adapted from Harder S. Renal profi les of anticoagulants. J Clin Pharmacol. 2012;52(7): Copyright 2012 SAGE Publications. Reprinted by permission of SAGE Publications. b CrCl based on Cockroft-Gault equation. c Apixaban is not approved, so labeled dose recommendations are not available. d Based on dosing used in the ARISTOTLE trial. 15-mg once-daily dose was chosen to address characteristics of Japanese patients and the lower anticoagulation targets of Japanese clinical practice. The primary analysis tested for noninferiority of the principal safety outcome of adjudicated major and nonmajor clinically relevant bleeding events. Although the study was powered only for the primary safety outcome, the primary efficacy end point was the composite of adjudicated stroke (ischemic and hemorrhagic) and non central nervous system systemic embolism. 43 Consistent with the results of ROCKET AF, rivaroxaban was noninferior to warfarin for the primary safety outcome (18.0 vs 16.4 per 100 patient-years; HR 1.11; P <.001 for noninferiority) with fewer fatal bleeding events and intracranial hemorrhages. For the primary efficacy end point, there was a strong trend toward a reduction in stroke/systemic embolism with rivaroxaban (1.3 vs 2.6 per 100 patient-years; HR 0.49, P =.050). 43 Rivaroxaban has also been evaluated for safety and efficacy in patients with acute coronary syndrome in the recently completed randomized, placebo-controlled, phase III trial ATLAS ACS2-Thrombolysis in Myocardial Infarction 51 (Anti-Xa Therapy to Lower Cardiovascular Events in Addition to Standard in Subjects with Acute Coronary Syndrome-Thrombolysis in Myocardial Infarction 51). 44 The trial enrolled 15,570 patients who had presented with symptoms suggestive of acute coronary syndrome and in whom STEMI, NSTEMI, or unstable angina had been diagnosed. In addition to standard medical therapy (low-dose aspirin and a thienopyridine), patients were randomly assigned to twice-daily administration of either 2.5 mg or 5.0 mg of rivaroxaban or placebo. The primary efficacy end point was the composite of cardiovascular death, MI, or stroke. 44 Results of the study showed that both doses of rivaroxaban significantly reduced the primary efficacy end point compared with placebo (8.9% vs 10.7%; HR 0.84, P =.008 [combined efficacy for 2.5- and 5-mg doses]). However, compared with placebo, rivaroxab an increased the risk of major bleeding and intracranial hemorrhage, but not the risk of fatal bleeding. 44 Rivaroxaban is a potent and selective Factor Xa inhibitor with a relatively high bioavailability (~80%) and predictable pharmacokinetic/pharmacodynamic profile. 20 The mean half-life of rivaroxaban is 5 to 9 hours in healthy individuals, and 11 to 13 hours in the elderly. Rivaroxaban is metabolized primarily in the liver via CYP450 and CY- P3A4 enzymes, and more than 30% of the drug is excreted in the feces unchanged a process mediated, at least in part, by P-gp. Concomitant administration of rivaroxaban with strong CYP3A4 or P-gp inhibitors (eg, ritonavir, ketoconazole) significantly interferes with the metabolism of rivaroxaban and should be avoided to prevent increased drug exposure and risk of bleeding events. 20,45 Because rivaroxaban is cleared primarily by the liver and kidneys, caution should be exercised when prescribing rivaroxaban to patients with moderate to severe renal impairment (CrCl ml/min) or hepatic impairment (Child-Pugh Class B and C). Rivaroxaban is currently approved for stroke prevention in AF at a dose of 20 mg once daily with the evening meal, and in patients with CrCl of 15 to 50 ml/min at a dose of 15 mg once daily with the evening meal; rivaroxaban is not recommended for use in patients with a CrCl of <15 ml/min or severe hepatic impairment (Child- Pugh C) (Table 2). 20 Results of clinical studies have shown that discontinuation of rivaroxaban places patients with AF at increased risk for thrombotic events. If anticoagulation with rivaroxaban must be discontinued for a reason other than pathologic bleeding, alternative anticoagulation measures should be considered. 20 Apixaban Although apixaban is not yet approved in the United States, its use for stroke prevention in patients with AF 276 The American Journal of Pharmacy Benefi ts November/December

9 Stroke Prevention in Atrial Fibrillation Table 3. Comparison of the Phase III Studies With Dabigatran, Rivaroxaban, and Apixaban in Patients With Atrial Fibrillation Study Design Drug/Dose Comparator No. RE-LY 29 Randomized, Dabigatran Warfarin double blind (dabigatran) etexilate 110 adjusted to INR and open mg or 150 mg label (warfarin) twice daily ARISTOTLE 40 AVERROES 47 ROCKET AF 39 Randomized, double blind (sham INR) Randomized, double blind Randomized, double blind (sham INR) Apixaban 5 mg twice daily Apixaban 5 mg twice daily (or 2.5 mg twice daily in selected patients) Rivaroxaban 20 mg once daily Warfarin adjusted to INR Aspirin mg once daily Warfarin adjusted to INR 2.5 ( ) AF Patient Characteristics 18,113 >1 stroke risk factor; mean age 71 y; 50% VKA-naïve; 20% previous stroke/tia 18,206 >1 stroke risk factor; 40% VKAnaïve 5559 >1 stroke risk factor; mean age 70 y; failed (40%) or are unsuitable for VKA 14,246 Prior stroke, TIA, or systemic embolism OR >2 stroke risk factors; mean age 73 y; VKA-naïve/ experienced Primary End Point Composite of stroke and systemic embolism Composite of stroke and systemic embolism Composite of stroke and systemic embolism Composite of stroke and systemic embolism INR indicates international normalized ratio; MI, myocardial infarction; PE, pulmonary embolism; TIA, transient ischemic attack; VKA, vitamin K antagonist. Secondary End Points Stroke; systemic embolism; total mortality; MI; PE; TIA; hospitalization Primary effi cacy outcomes plus all-cause death; major bleeding MI; vascular mortality; total mortality; composite of major vascular events; net clinical benefi t Composite of TIA, total mortality, vascular mortality, and MI Follow-up Event driven (median follow-up 2 y) Event driven (448 events) Event driven (mean follow-up 1.1 y) Event driven (405 events) has been evaluated in 2 large-scale phase III clinical trials: ARISTOTLE (Apixaban for Reduction In Stroke and Other Thromboembolic Events) and AVERROES (Apixaban Versus Acetylsalicylic Acid to Reduce the Risk Of Stroke) (Table 3). Apixaban is currently approved in the European Union for thromboprophylaxis following total hip and knee replacement surgeries in adults. 21 In the ARISTOTLE study, 18,201 patients with AF and >1 additional risk factor for stroke were randomized to receive either apixaban 5 mg twice daily or dose-adjusted warfarin (Figure 3). 40,48 Patient inclusion criteria were similar to those in RE-LY; eligible stroke risk factors in ARIS- TOTLE included age >75 years, prior stroke/tia/systemic embolism, symptomatic congestive heart failure or left ventricular ejection fraction <40%, diabetes, and hypertension requiring treatment. 40,48 The key objective of ARIS- TOTLE was to demonstrate noninferiority to warfarin for the primary outcome of ischemic or hemorrhagic stroke or systemic embolism. Secondary objectives included testing for superiority with respect to the primary outcome, rates of major bleeding events, and death from any cause. Apixaban met the primary efficacy objective of noninferiority to warfarin in the ARISTOTLE trial on the combined outcome of stroke (ischemic, hemorrhagic, or unspecified type) and systemic embolism. The rate of the primary outcome was 1.27% per year in the apixaban group versus 1.60% per year in the warfarin group (HR with apixaban of 0.79; 95% CI ; P <.001 for noninferiority, P =.01 for superiority). 40 In addition, apixaban met the key secondary end points of superiority to warfarin with respect to the primary outcome and to the rates of major bleeding (defined according to the International Society on Thrombosis and Hemostasis criteria 31 ) and death from any cause (2.13% per year in the apixaban group vs 3.09% per year in the warfarin group; HR 0.69, 95% CI ; P <.001). 40 In the apixaban group, the rate of hemorrhagic stroke was 0.24% per year versus 0.47% per year in the warfarin group (HR 0.51, 95% CI ; P <.001). Moreover, the rate of ischemic or uncertain-type stroke was 0.97% per year in the apixaban group versus 1.05% per year in the warfarin group (HR 0.92, 95% CI ; P =.42). 40 Patients in the warfarin group were within the therapeutic range for a mean of 62.2% of the time after the exclusion of INR values during the first 7 days after randomization. The investigators concluded that apixaban was superior to warfarin in patients with AF for prevention of stroke or systemic embolism, decreased bleeding risk, and reduced mortality. 40 In the AVERROES trial, 5599 patients with AF (mean age 70 years) who were deemed clinically unsuitable for VKA treatment were randomized to receive apixaban (5 Vol. 4, No. 6 The American Journal of Pharmacy Benefi ts 277

10 Hilleman Figure 3. Kaplan-Meier Curves for the Per Protocol (Panel A) and Intention-to-Treat (Panel B) Outcomes in the ARISTOTLE Study a,b A. Events in Per Protocol Population Patients With Event, % B. Events in Intention-to-Treat Population Patients With Event, % Hazard ratio 0.79 (95% Cl ) P =.01 Months Hazard ratio 0.69 (95% Cl ) P <.001 Months a The primary effi cacy outcome was stroke or systemic embolism. The primary safety outcome was major bleeding, as defi ned according to the criteria of the International Society on Thrombosis and Haemostasis. 31 The inset in each panel shows the same data on an enlarged segment of the y axis. b This fi gure was reproduced from Granger CB, Alexander JH, McMurray JV, et al; ARISTOTLE Committees and Investigators. Apixaban versus warfarin in patients with atrial. N Engl J Med. 2011;365(11): by express permission of the owner of the copyright, the Massachusetts Medical Society. mg twice daily) or aspirin ( mg/day) to determine whether apixaban was superior to aspirin (Figure 4). 47,49 The primary outcome was the occurrence of stroke or systemic embolism. The primary safety outcome was the occurrence of major bleeding. AVERROES was terminated early after an interim analysis showed a clear efficacy advantage of apixaban over the comparator (aspirin). 47,50 Briefly, a total of 51 primary outcome events (1.6% per year) were recorded in the apixaban group and 113 (3.7% per year) in the aspirin cohort (apixaban HR 0.45, 95% CI ; P <.001). Death rates were 3.5% per year in the apixaban group and 4.4% per year in the aspirin group (HR 0.79, 95% CI ; P =.07). Major bleeding was seen in 44 patients in the apixaban group (1.4% per year) and 39 (1.2% per year) in the aspirin group (apixaban HR 1.13, 95% CI ; not significant); intracranial bleeding was seen in 11 patients in the apixaban group and 13 taking aspirin. Finally, hospitalization for cardiovascular causes was significantly reduced in the apixaban group (12.6% per year vs 15.9% per year; P <.001). It was concluded that apixaban reduced the risk of stroke or systemic embolism without significantly increasing the risk of major bleeding or intracranial hemorrhage. 47 In both AVERROES and ARISTO- TLE, there were no distinct side effects associated with apixaban, and patients receiving apixaban had lower rates of discontinuation than those assigned to aspirin or warfarin. 40,47 The randomized, multicenter, phase III APPRAISE-2 (Apixaban for Prevention of Acute Ischemic and Safety Events) trial evaluated apixaban for safety and efficacy in patients with acute coronary syndrome (STEMI, NSTEMI, or unstable angina). Patients were randomly assigned in a 1:1 ratio to apixaban 5 mg twice daily or placebo in addition to treatment with aspirin (acetylsalicylic acid) and clopidogrel. 51 The primary end point was the composite 278 The American Journal of Pharmacy Benefi ts November/December

11 Stroke Prevention in Atrial Fibrillation of cardiovascular death, MI, or ischemic stroke, and the primary safety end point was major bleeding according to the Thrombolysis in Myocardial Infarction definition. 52 However, in November 2010, the trial was discontinued prematurely by the Data and Safety Monitoring Board because of an increase in major bleeding events with apixaban in the absence of a significant reduction in recurrent ischemic events. 51,53 Apixaban is a small-molecule inhibitor that selectively and reversibly targets Factor Xa in both its free and bound states. 22 The bioavailability of apixaban is approximately 50%, with peak plasma levels reached in approximately 3 hours, resulting in a half-life of 12 hours. Similar to the other new anticoagulants, apixaban has minimal drug interactions. Concomitant use of CYP3A4 inhibitors and P-gp should be avoided because they increase the risk of bleeding events significantly. In addition, combined inducers of CYP3A4 and P-gp (eg, rifampin, phenytoin, St. John s wort) can significantly reduce antithrombotic efficacy. 22 EXPERT OPINION The new generation of oral anticoagulants for stroke prophylaxis in AF includes a DTI (dabigatran) and 2 FXa inhibitors (rivaroxaban and apixaban). The pharmacologic profiles of these agents including their specific targeting of single coagulation factors, a wider therapeutic window, once-daily or twice-daily fixed dosing, obviation of the need for therapeutic drug monitoring, and lower propensity for harmful drug or dietary interactions are likely to result in significant clinical advantages over warfarin. Based on the data available from the published trials comparing the new anticoagulants with warfarin, it is not possible to Figure 4. Cumulative Hazard Rates for the Primary Efficacy (Panel A) and Safety (Panel B) Outcomes According to Treatment Group in the AVERROES Study a,b A. Stroke or Systemic Embolism Cumulative Hazard B. Major Bleeding Cumulative Hazard Hazard ratio with apixaban, 0.45 (95% Cl ) P <.001 Months Hazard ratio with apixaban, 1.13 (95% Cl ) P =.57 Months a The primary effi cacy outcome was stroke or systemic embolism. The primary safety outcome was major bleeding. Patients received either apixaban or aspirin. b This fi gure was reproduced from Connolly SJ, Eikelboom J, Joyner C, et al; AVERROES Steering Committee and Investigators. Apixaban in patients with atrial fi brillation. N Engl J Med. 2011;364: by express permission of the owner of the copyright, the Massachusetts Medical Society. reach conclusions about the relative efficacy of one agent against another. Differences in the characteristics of the study populations, the study designs of the trials, and definitions of some key study end points make cross-study Vol. 4, No. 6 The American Journal of Pharmacy Benefi ts 279

12 Hilleman comparisons impossible. In addition to different mechanisms of action, the new oral anticoagulants have different pharmacokinetic properties (Table 1), potential drug interactions, and dose-adjustment requirements in patients with renal impairment (Table 2), 20-22,42,46,54 further hampering the possibility of any meaningful comparative analyses. Ultimately, the drug product selection and decision process will be dictated by the level of postmarketing experience, as well as the number and various types of FDA-approved indications. Data from phase III studies and recent FDA approvals indicate that these drugs may provide promising alternatives to warfarin in the prevention of stroke in patients with AF. Dabigatran and apixaban demonstrated superior efficacy compared with warfarin in reducing stroke and systemic embolism 29,40 ; rivaroxaban demonstrated noninferiority to warfarin with regard to this end point. 39 Dabigatran 150 mg twice daily and rivaroxaban had similar rates of major hemorrhage, while dabigatran 110 mg and apixaban were shown to have lower rates of major bleeding events compared with warfarin. All of the new agents were associated with significantly lower rates of critical/ fatal and intracranial bleeding compared with warfarin. 29,39,40,47 However, dabigatran and rivaroxaban increased the risk of GI bleeding compared with warfarin, whereas apixaban did not. 29,39 Furthermore, in January 2012, the Institute for Safe Medication Practices reported FDA data from the first quarter of 2011 indicating a 19.5% increase in reports of serious, disabling, or fatal injuries associated with dabigatran therapy compared with reports from the first quarter of These findings were corroborated in a multicenter observational study of periprocedural dabigatran compared with warfarin treatment in patients undergoing AF ablation. 56 Results of the study showed that periprocedural dabigatran (150 mg twice daily) use for AF ablation was associated with an increased risk of bleeding and thromboembolic complications compared with warfarin (6% vs 1%; P =.019). 56 Findings from reports and studies such as the aforementioned have increased physician concerns regarding the potential risks associated with dabigatran and emphasize the need for ongoing postmarketing surveillance and adverse-event reporting to detect specific risk factors in patients that may not be apparent in a clinical trial setting. In addition, because bleeding is potentially compounded by poor renal function and low body weight, careful evaluation of the risks and benefits of dabigatran must be exercised in all patients prior to treatment. As demonstrated in the AVERROES trial, apixaban offers clear benefits over aspirin in warfarin-intolerant or warfarin-unsuitable patients. 47 In terms of study design, ARISTOTLE and ROCKET-AF used a more rigorous approach to minimizing bias through the double-dummy and sham INR methodology. 40,48 However, many questions remain unanswered with regard to these agents. First, the reduced 75-mg dose of dabigatran approved by the FDA was never tested in RE-LY and was based solely on pharmacokinetic data modeling. 54 In addition, according to the recently updated ACCP guidelines, this dose is contraindicated in patients with severe renal impairment 6 ; thus, it remains unclear whether this dose will be as efficacious as warfarin in stroke prevention. Second, the variable INR control of patients in the RE- LY and ROCKET AF study had an important impact on the difference between dabigatran 150 mg twice daily and rivaroxaban and warfarin. 30 This type of subanalysis based on the results of the ARISTOTLE trial has not been published to date. Finally, the true comparative efficacy of dabigatran, apixaban, and rivaroxaban can only be determined in head-to-head clinical trials, and it is highly unlikely that such trials will be conducted. From a formulary perspective, the cost-effectiveness of these agents is also unclear. Warfarin is inexpensive, and its cost-effectiveness has been proved in a number of clinical trials, with substantial savings arising from prevention of strokes. 7,57,58 However, the cost-effectiveness of warfarin is highly dependent on INR control, and the need for frequent monitoring is a substantial economic burden. 7,57 Indirect costs associated with transportation to anticoagulation clinics, lost time from work, appointments, and blood tests are seldom considered in cost-effectiveness studies, which tend to focus on direct medical costs, but these may be important factors to patients. 59 Unlike warfarin, none of the new anticoagulants require monitoring an important advantage in terms of both convenience and cost. However, the absence of necessary monitoring may not be sufficient to designate the novel agents more cost-effective than warfarin. Recent cost-comparison analyses have indicated that dabigatran 150 mg twice daily is cost-effective compared with warfarin in AF patient populations at high risk of hemorrhage or high risk of stroke. Using a decision analysis model, Shah and Gage demonstrated that dabigatran was cost-effective versus warfarin in a hypothetical cohort of 70-year-old AF patients, based on patient criteria derived from the RE-LY study. 60 Their model showed that dabigatran was cost-effective in patients with a high stroke risk (CHADS 2 >3) and in lower-risk patients (CHADS 2 of 2) with high risk of major hemorrhage. Kamel and colleagues used a similar model to show the 280 The American Journal of Pharmacy Benefi ts November/December

NeuroPI Case Study: Anticoagulant Therapy

NeuroPI Case Study: Anticoagulant Therapy Case: An 82-year-old man presents to the hospital following a transient episode of left visual field changes. His symptoms lasted 20 minutes and resolved spontaneously. He has a normal neurological examination

More information

Debate: New Generation Anti-Coagulation Agents are a Better Choice than Warfarin in the Management of AF

Debate: New Generation Anti-Coagulation Agents are a Better Choice than Warfarin in the Management of AF Debate: New Generation Anti-Coagulation Agents are a Better Choice than Warfarin in the Management of AF Bradley P. Knight, MD Director of Cardiac Electrophysiology Bluhm Cardiovascular Institute Northwestern

More information

New Anticoagulants Therapies

New Anticoagulants Therapies New Anticoagulants Therapies Rachel P. Rosovsky, MD, MPH October 22, 2015 Conflicts of Interest No disclosures 2 Agenda 3 Historical perspective Novel oral anticoagulants Stats Trials Approval Concerns/Limitations

More information

Anticoagulation Therapy in LTC

Anticoagulation Therapy in LTC Anticoagulation Therapy in LTC By: Cynthia Leung, RPh, BScPhm, PharmD. Clinical Consultant Pharmacist MediSystem Pharmacy Jun 11, 2013 Agenda Stroke and Bleeding Risk Assessment Review of Oral Anticoagulation

More information

Anticoagulation Beyond Coumadin

Anticoagulation Beyond Coumadin Anticoagulation Beyond Coumadin Saturday, September 21, 2013 Crystal Mountain Resort and Spa Pratik Bhattacharya MD, MPH Stroke Neurologist, Michigan Stroke Network; Assistant Professor of Neurology; Wayne

More information

Edoxaban. Direct Xa inhibitor Direct thrombin inhibitor Direct Xa inhibitor Direct Xa inhibitor

Edoxaban. Direct Xa inhibitor Direct thrombin inhibitor Direct Xa inhibitor Direct Xa inhibitor This table provides a summary of the pharmacotherapeutic properties, side effects, drug interactions and other important information on the four anticoagulant medications currently in use or under review

More information

Stroke. 2012;43: ; originally published online August 2, 2012; doi: /STR.0b013e a

Stroke. 2012;43: ; originally published online August 2, 2012; doi: /STR.0b013e a Oral Antithrombotic Agents for the Prevention of Stroke in Nonvalvular Atrial Fibrillation : A Science Advisory for Healthcare Professionals From the American Heart Association/American Stroke Association

More information

FACTOR Xa AND PAR-1 BLOCKER : ATLAS-2, APPRAISE-2 & TRACER TRIALS

FACTOR Xa AND PAR-1 BLOCKER : ATLAS-2, APPRAISE-2 & TRACER TRIALS New Horizons In Atherothrombosis Treatment 2012 순환기춘계학술대회 FACTOR Xa AND PAR-1 BLOCKER : ATLAS-2, APPRAISE-2 & TRACER TRIALS Division of Cardiology, Jeonbuk National University Medical School Jei Keon Chae,

More information

Apixaban for stroke prevention in atrial fibrillation. August 2010

Apixaban for stroke prevention in atrial fibrillation. August 2010 Apixaban for stroke prevention in atrial fibrillation August 2010 This technology summary is based on information available at the time of research and a limited literature search. It is not intended to

More information

What s new with DOACs? Defining place in therapy for edoxaban &

What s new with DOACs? Defining place in therapy for edoxaban & What s new with DOACs? Defining place in therapy for edoxaban & Use of DOACs in cardioversion Caitlin M. Gibson, PharmD, BCPS Assistant Professor, Department of Pharmacotherapy University of North Texas

More information

Individual Therapeutic Selection Of Anti-coagulants And Periprocedural. Miguel Valderrábano, MD

Individual Therapeutic Selection Of Anti-coagulants And Periprocedural. Miguel Valderrábano, MD Individual Therapeutic Selection Of Anti-coagulants And Periprocedural Management Miguel Valderrábano, MD Outline Does the patient need anticoagulation? Review of clinical evidence for each anticoagulant

More information

Results from RE-LY and RELY-ABLE

Results from RE-LY and RELY-ABLE Results from RE-LY and RELY-ABLE Assessment of the safety and efficacy of dabigatran etexilate (Pradaxa ) in longterm stroke prevention EXECUTIVE SUMMARY Dabigatran etexilate (Pradaxa ) has shown a consistent

More information

New Antithrombotic Agents DISCLOSURE

New Antithrombotic Agents DISCLOSURE New Antithrombotic Agents DISCLOSURE Relevant Financial Relationship(s) Speaker Bureau None Research Alexion (PNH) delought@ohsu.edu Tom DeLoughery, MD FACP FAWM Oregon Health and Sciences University What

More information

Lessons from recent antithrombotic studies and trials in atrial fibrillation

Lessons from recent antithrombotic studies and trials in atrial fibrillation Lessons from recent antithrombotic studies and trials in atrial fibrillation Thromboembolism cause of stroke in AF Lars Wallentin Uppsala Clinical Research Centre (UCR) Uppsala Disclosures for Lars Wallentin

More information

New Antithrombotic Agents

New Antithrombotic Agents New Antithrombotic Agents Tom DeLoughery, MD FACP FAWM Oregon Health and Sciences University DISCLOSURE Relevant Financial Relationship(s) Speaker Bureau None What I am Talking About 1. New Antithrombotic

More information

Anti-thromboticthrombotic drugs

Anti-thromboticthrombotic drugs Atrial Fibrillation 2011: Anticoagulation strategies and clinical outcomes Panos E. Vardas President Elect of the ESC, Prof. of Cardiology, University Hospital of Crete Clinical outcomes affected by AF

More information

Oral Anticoagulation Drug Class Prior Authorization Protocol

Oral Anticoagulation Drug Class Prior Authorization Protocol Oral Anticoagulation Drug Class Prior Authorization Protocol Line of Business: Medicaid P & T Approval Date: February 21, 2018 Effective Date: April 1, 2018 This policy has been developed through review

More information

Drug Class Monograph

Drug Class Monograph Drug Class Monograph Class: Oral Anticoagulants Drug: Coumadin (warfarin), Eliquis (apixaban), Pradaxa (dabigatran), Savaysa (edoxaban), arelto (rivaroxaban) Formulary Medications: Eliquis (apixaban),

More information

HERTFORDSHIRE MEDICINES MANAGEMENT COMMITTEE (HMMC) DABIGATRAN RECOMMENDED What it is Indications Date decision last revised

HERTFORDSHIRE MEDICINES MANAGEMENT COMMITTEE (HMMC) DABIGATRAN RECOMMENDED What it is Indications Date decision last revised Name: generic (trade) Dabigatran etexilate (Pradaxa ) HERTFORDSHIRE MEDICINES MANAGEMENT COMMITTEE (HMMC) DABIGATRAN RECOMMENDED What it is Indications Date decision last revised Direct thrombin inhibitor

More information

Joshua D. Lenchus, DO, RPh, FACP, SFHM Associate Professor of Medicine and Anesthesiology University of Miami Miller School of Medicine

Joshua D. Lenchus, DO, RPh, FACP, SFHM Associate Professor of Medicine and Anesthesiology University of Miami Miller School of Medicine Joshua D. Lenchus, DO, RPh, FACP, SFHM Associate Professor of Medicine and Anesthesiology University of Miami Miller School of Medicine Antithrombotics Antiplatelets Aspirin Ticlopidine Prasugrel Dipyridamole

More information

Oral Anticoagulants Update. Elizabeth Renner, PharmD, BCPS, BCACP, CACP Outpatient Cardiology and Anticoagulation

Oral Anticoagulants Update. Elizabeth Renner, PharmD, BCPS, BCACP, CACP Outpatient Cardiology and Anticoagulation Oral Anticoagulants Update Elizabeth Renner, PharmD, BCPS, BCACP, CACP Outpatient Cardiology and Anticoagulation Objectives List the direct oral anticoagulant (DOAC) drugs currently available Describe

More information

Reviews. Practical Considerations for Using Novel Oral Anticoagulants in Patients With Atrial Fibrillation

Reviews. Practical Considerations for Using Novel Oral Anticoagulants in Patients With Atrial Fibrillation Reviews Practical Considerations for Using Novel Oral Anticoagulants in Patients With Atrial Fibrillation Address for correspondence: A. John Camm, MD Division of Clinical Sciences St. George s University

More information

Stepheny Sumrall, FNP, AGACNP Cardiovascular Clinic of Hattiesburg

Stepheny Sumrall, FNP, AGACNP Cardiovascular Clinic of Hattiesburg Novel Oral Anticoagulants Analyzing Clinical Trial Findings of the Efficacy and Safety Profiles of Novel Anticoagulants for the Treatment of Atrial Fibrillation and Prevention of Stroke Stepheny Sumrall,

More information

Pros and Cons of Individual Agents Based on Large Trial Results: RELY, ROCKET, ARISTOTLE, AVERROES

Pros and Cons of Individual Agents Based on Large Trial Results: RELY, ROCKET, ARISTOTLE, AVERROES Pros and Cons of Individual Agents Based on Large Trial Results: RELY, ROCKET, ARISTOTLE, AVERROES Ralph L. Sacco, MS MD FAAN FAHA Olemberg Family Chair in Neurological Disorders Miller Professor of Neurology,

More information

Direct Oral Anticoagulants (DOACs). Dr GM Benson Director NI Haemophilia Comprehensive Care Centre and Thrombosis Unit BHSCT

Direct Oral Anticoagulants (DOACs). Dr GM Benson Director NI Haemophilia Comprehensive Care Centre and Thrombosis Unit BHSCT Direct Oral Anticoagulants (DOACs). Dr GM Benson Director NI Haemophilia Comprehensive Care Centre and Thrombosis Unit BHSCT OAC WARFARIN Gold standard DABIGATRAN RIVAROXABAN APIXABAN EDOXABAN BETRIXABAN

More information

NUOVI ANTICOAGULANTI NELL ANZIANO: indicazioni e controindicazioni. Mario Cavazza Medicina d Urgenza Pronto Soccorso AOU di Bologna

NUOVI ANTICOAGULANTI NELL ANZIANO: indicazioni e controindicazioni. Mario Cavazza Medicina d Urgenza Pronto Soccorso AOU di Bologna NUOVI ANTICOAGULANTI NELL ANZIANO: indicazioni e controindicazioni Mario Cavazza Medicina d Urgenza Pronto Soccorso AOU di Bologna Two major concerns Atrial Fibrillation: Epidemiology The No. 1 preventable

More information

DIRECT ORAL ANTICOAGULANTS

DIRECT ORAL ANTICOAGULANTS 2017 Cardiovascular Symposium DIRECT ORAL ANTICOAGULANTS ERNESTO UMAÑA, MD, FACC ORAL ANTICOAGULANTS Vitamin K Antagonists (VKAs): Warfarin Non Vitamin K Antagonists Direct oral anticoagulants Novel Oral

More information

NOAs for stroke prevention in Atrial Fibrillation: potential advantages in the elderly patients. Giancarlo Agnelli

NOAs for stroke prevention in Atrial Fibrillation: potential advantages in the elderly patients. Giancarlo Agnelli NOAs for stroke prevention in Atrial Fibrillation: potential advantages in the elderly patients Giancarlo Agnelli Internal & Cardiovascular Medicine - Stroke Unit University of Perugia, Italy My talk today

More information

Xarelto (rivaroxaban)

Xarelto (rivaroxaban) Xarelto (rivaroxaban) Policy Number: 5.01.575 Last Review: 7/2018 Origination: 6/2014 Next Review: 7/2019 LoB: ACA Policy Blue Cross and Blue Shield of Kansas City (Blue KC) will provide coverage for Xarelto

More information

6 th ACC-SHA Joint Meeting Jeddah, Saudi Arabia

6 th ACC-SHA Joint Meeting Jeddah, Saudi Arabia 6 th ACC-SHA Joint Meeting Jeddah, Saudi Arabia October 31 st - November 1 st, 2015 NOACS vs. Coumadin in Atrial Fibrillation: Is It Worth to Switch? Raed Sweidan, MD, FACC Consultant and Head of Cardiac

More information

ADC Slides for Presentation 02/10/2017

ADC Slides for Presentation 02/10/2017 ADC 2017 Slides for Presentation ANTI THROMBOTIC THERAPY FOR NON VALVULAR ATRIAL FIBRILLATION IN PATIENTS WITH CHRONIC KIDNEY DISEASE: CURRENT VIEWS Martin A. Alpert, MD Brent M. Parker Professor of Medicine

More information

Show Me the Outcomes!

Show Me the Outcomes! Show Me the Outcomes! Real-World Safety Data on Oral Anticoagulants in Nonvalvular Atrial Fibrillation Gabby Anderson, PharmD PGY1 Pharmacy Resident anderson.gabrielle@mayo.edu Pharmacy Grand Rounds October

More information

NEW/NOVEL ORAL ANTICOAGULANTS (NOACS): COMPARISON AND FREQUENTLY ASKED QUESTIONS

NEW/NOVEL ORAL ANTICOAGULANTS (NOACS): COMPARISON AND FREQUENTLY ASKED QUESTIONS NEW/NOVEL ORAL ANTICOAGULANTS (NOACS): COMPARISON AND FREQUENTLY ASKED QUESTIONS OBJECTIVES: To provide a comparison of the new/novel oral anticoagulants (NOACs) currently available in Canada. To address

More information

Utilizing Anticoagulants for Atrial Fibrillation Related Stroke Prevention

Utilizing Anticoagulants for Atrial Fibrillation Related Stroke Prevention Utilizing Anticoagulants for Atrial Fibrillation Related Stroke Prevention Rajat Deo, MD, MTR Assistant Professor of Medicine Division of Cardiology, Electrophysiology Section University of Pennsylvania

More information

Analysing Apixaban: Potential Growth Driver for Pfizer and Bristol Myers Squibb. Tro Kalayjian Chief Medical Analyst Chimera Research Group

Analysing Apixaban: Potential Growth Driver for Pfizer and Bristol Myers Squibb. Tro Kalayjian Chief Medical Analyst Chimera Research Group Analysing Apixaban: Potential Growth Driver for Pfizer and Bristol Myers Squibb Tro Kalayjian Chief Medical Analyst Chimera Research Group Prevalence of AFib in the US is expected to increase upwards of

More information

After acute coronary syndromes patients continue to have recurrent ischemic events despite revascularization and dual antiplatelet therapy

After acute coronary syndromes patients continue to have recurrent ischemic events despite revascularization and dual antiplatelet therapy Randomised Dabigatran Etexilate Dose Finding Study In Patients With Acute Coronary Syndromes Post Index Event With Additional Risk Factors For Cardiovascular Complications Also Receiving Aspirin and Clopidogrel

More information

New oral factor Xa inhibitors. Lessons from AVERROES and ARISTOTLE trials

New oral factor Xa inhibitors. Lessons from AVERROES and ARISTOTLE trials New oral factor Xa inhibitors. Lessons from AVERROES and ARISTOTLE trials Dimitri Richter, MD, FESC, FAHA Head of Cardiac Dept., Athens Euroclinic General Secretary of Hellenic Lipidology Society Member

More information

PRESENTATION TITLE. Case Studies

PRESENTATION TITLE. Case Studies PRESENTATION TITLE Case Studies 1) SH is a 67 year old male. He has a history of type 2 diabetes, controlled hypertension and peripheral artery disease. He takes naproxen 500mg bd for arthritis and admits

More information

RETROSPECTIVE CLAIMS DATABASE STUDIES OF DIRECT ORAL ANTICOAGULANTS (DOACS) FOR STROKE PREVENTION IN NONVALVULAR ATRIAL FIBRILLATION

RETROSPECTIVE CLAIMS DATABASE STUDIES OF DIRECT ORAL ANTICOAGULANTS (DOACS) FOR STROKE PREVENTION IN NONVALVULAR ATRIAL FIBRILLATION RETROSPECTIVE CLAIMS DATABASE STUDIES OF DIRECT ORAL ANTICOAGULANTS (DOACS) FOR STROKE PREVENTION IN NONVALVULAR ATRIAL FIBRILLATION Craig I. Coleman, PharmD Professor, University of Connecticut School

More information

Afib, Stroke, and DOAC. Albert Luo, MD. Cardiology Lindsey Frischmann, DO. Neurology Xiao Cai, MD. HBS

Afib, Stroke, and DOAC. Albert Luo, MD. Cardiology Lindsey Frischmann, DO. Neurology Xiao Cai, MD. HBS Afib, Stroke, and DOAC Albert Luo, MD. Cardiology Lindsey Frischmann, DO. Neurology Xiao Cai, MD. HBS Disclosure of Relevant Financial Relationships I have no relevant financial relationships with commercial

More information

NOACs in AF. Dr Colin Edwards Auckland Heart Group and Waitemata DHB. Dr Fiona Stewart Auckland Heart Group and Auckland DHB

NOACs in AF. Dr Colin Edwards Auckland Heart Group and Waitemata DHB. Dr Fiona Stewart Auckland Heart Group and Auckland DHB NOACs in AF Dr Colin Edwards Auckland Heart Group and Waitemata DHB Dr Fiona Stewart Auckland Heart Group and Auckland DHB Conflict of Interest Dr Fiona Stewart received funding from Pfizer to attend the

More information

Anticoagulation Task Force

Anticoagulation Task Force Anticoagulation Task Force Newest Recommendations Donald Zabriskie, BPharm, MBA, RPh Pharmacy Patient Care Services Cleveland Clinic- Fairview Hospital THE DRUGS THE PERFECT ANTICOAGULANT Oral administration

More information

CADTH CANADIAN DRUG EXPERT COMMITTEE FINAL RECOMMENDATION

CADTH CANADIAN DRUG EXPERT COMMITTEE FINAL RECOMMENDATION CADTH CANADIAN DRUG EXPERT COMMITTEE FINAL RECOMMENDATION Edoxaban (Lixiana SERVIER Canada Inc.) Indication: Prevention of Stroke and Systemic Embolic Events in Patients With Nonvalvular Atrial Fibrillation

More information

Direct Oral Anticoagulants An Update

Direct Oral Anticoagulants An Update Oct. 26, 2017 Direct Oral Anticoagulants An Update Kathleen Heintz, DO, FACC Assistant Professor of Medicine Cooper Heart Institute Direct Oral Anticoagulants: DISCLAIMERS No Conflicts of Interest So what

More information

Peer Review Report #2. Novel oral anticoagulants. (1) Does the application adequately address the issue of the public health need for the medicine?

Peer Review Report #2. Novel oral anticoagulants. (1) Does the application adequately address the issue of the public health need for the medicine? 20 th Expert Committee on Selection and Use of Essential Medicines Peer Review Report #2 vel oral anticoagulants (1) Does the application adequately address the issue of the public health need for the

More information

Triple Therapy: A review of the evidence in acute coronary syndrome. Stephanie Kling, PharmD, BCPS Sanford Health

Triple Therapy: A review of the evidence in acute coronary syndrome. Stephanie Kling, PharmD, BCPS Sanford Health Triple Therapy: A review of the evidence in acute coronary syndrome Stephanie Kling, PharmD, BCPS Sanford Health Objectives 1. Describe how the presented topic impacts patient outcomes. 2. Review evidence

More information

Clinical issues which drug for which patient

Clinical issues which drug for which patient Anticoagulants - a matter of heart! Towards a bright future? Clinical issues which drug for which patient Sabine Eichinger Dept. of Medicine I Medical University of Vienna/Austria Conflicts of interest

More information

Is Apixaban Effective for the Prevention of Stroke in Patients With Non-Valvular Atrial Fibrillation?

Is Apixaban Effective for the Prevention of Stroke in Patients With Non-Valvular Atrial Fibrillation? Philadelphia College of Osteopathic Medicine DigitalCommons@PCOM PCOM Physician Assistant Studies Student Scholarship Student Dissertations, Theses and Papers 2014 Is Apixaban Effective for the Prevention

More information

Technology appraisal guidance Published: 27 February 2013 nice.org.uk/guidance/ta275

Technology appraisal guidance Published: 27 February 2013 nice.org.uk/guidance/ta275 Apixaban for preventing enting stroke and systemic embolism in people with nonvalvular atrial fibrillation Technology appraisal guidance Published: 27 February 2013 nice.org.uk/guidance/ta275 NICE 2018.

More information

Technology appraisal guidance Published: 15 March 2012 nice.org.uk/guidance/ta249

Technology appraisal guidance Published: 15 March 2012 nice.org.uk/guidance/ta249 Dabigatran an etexilate for the preventionention of stroke and systemic embolism in atrial fibrillation Technology appraisal guidance Published: 15 March 2012 nice.org.uk/guidance/ta249 NICE 2012. All

More information

NOACS/DOACS*: COMPARISON AND FREQUENTLY-ASKED QUESTIONS

NOACS/DOACS*: COMPARISON AND FREQUENTLY-ASKED QUESTIONS NOACS/DOACS*: COMPARISON AND FREQUENTLY-ASKED QUESTIONS OBJECTIVES: To provide a comparison of the newer direct oral anticoagulants (DOACs) currently available in Canada. To address frequently-asked questions

More information

MODULE 1: Stroke Prevention in Atrial Fibrillation Benjamin Bell, MD, FRCPC

MODULE 1: Stroke Prevention in Atrial Fibrillation Benjamin Bell, MD, FRCPC MODULE 1: Stroke Prevention in Atrial Fibrillation Benjamin Bell, MD, FRCPC Specialty: General Internal Medicine Lecturer, Department of Medicine University of Toronto Staff Physician, General Internal

More information

ESC Congress 2012, Munich

ESC Congress 2012, Munich ESC Congress 2012, Munich Anticoagulation in Atrial Fibrillation 2012: Which Anticoagulant for Which Patient? Stefan H. Hohnloser J.W. Goethe University Frankfurt am Main S.H.H. has served as a consultant,

More information

New Aspects in the Diagnosis and Treatment of Atrial Fibrillation: Antithrombotic Therapy

New Aspects in the Diagnosis and Treatment of Atrial Fibrillation: Antithrombotic Therapy New Aspects in the Diagnosis and Treatment of Atrial Fibrillation: Antithrombotic Therapy Hans-Christoph Diener Department of Neurology and Stroke Center University Hospital Essen Germany Conflict of Interest

More information

Disclosure. Financial disclosure: National Advisory Board & Research Grant from Boehringer-Ingelheim

Disclosure. Financial disclosure: National Advisory Board & Research Grant from Boehringer-Ingelheim Randomised Dabigatran Etexilate Dose Finding Study In Patients With Acute Coronary Syndromes Post Index Event With Additional Risk Factors For Cardiovascular Complications Also Receiving Aspirin and Clopidogrel

More information

When and how to combine antiplatelet agents and anticoagulant?

When and how to combine antiplatelet agents and anticoagulant? When and how to combine antiplatelet agents and anticoagulant? Christophe Beauloye, MD, PhD Head, Division of Cardiology Cliniques Universitaires Saint-Luc Brussels, Belgium Introduction Anticoagulation

More information

An Overview of Non Vitamin-K Antagonist Oral Anticoagulants. Helen Williams Consultant Pharmacist for CV Disease South London

An Overview of Non Vitamin-K Antagonist Oral Anticoagulants. Helen Williams Consultant Pharmacist for CV Disease South London An Overview of Non Vitamin-K Antagonist Oral Anticoagulants Helen Williams Consultant Pharmacist for CV Disease South London Contents Drugs and drug classes Licensed indications and NICE recommendations

More information

True/False: Idarucizumab can be utilized for the management of bleeding associated with dabigatran.

True/False: Idarucizumab can be utilized for the management of bleeding associated with dabigatran. Discuss the role of idarucizumab for the management of bleeding associated with dabigatran Understand dosing, preparation and administration of idarucizumab I have no financial interest/arrangement or

More information

Volume 7; Number 16 October 2013

Volume 7; Number 16 October 2013 Greater East Midlands Commissioning Support Unit in association with Lincolnshire Clinical Commissioning Groups, Lincolnshire Community Health Services, United Lincolnshire Hospitals Trust and Lincolnshire

More information

FINAL CDEC RECOMMENDATION

FINAL CDEC RECOMMENDATION FINAL CDEC RECOMMENDATION APIXABAN (Eliquis Bristol-Myers Squibb Canada and Pfizer Canada Inc.) New Indication: Prevention of Stroke and Systemic Embolism in Patients with Atrial Fibrillation Recommendation:

More information

ANTI-THROMBOTIC THERAPY in NON-VALVULAR ATRIAL FIBRILLATION

ANTI-THROMBOTIC THERAPY in NON-VALVULAR ATRIAL FIBRILLATION ANTI-THROMBOTIC THERAPY in NON-VALVULAR ATRIAL FIBRILLATION Colin Edwards Auckland Heart Group Waitemata Health June 2015 PFIZER Lecture series Disclosures EPIDEMIOLOGY Atrial fibrillation is the most

More information

A Patient Unsuitable for VKA Treatment

A Patient Unsuitable for VKA Treatment Will Apixaban change practice in atrial fibrillation? A Patient Unsuitable for VKA Treatment Professor Yoseph Rozenman The E. Wolfson Medical Center Jerusalem June 2013 Disclosures I have the following

More information

Asif Serajian DO FACC FSCAI

Asif Serajian DO FACC FSCAI Anticoagulation and Antiplatelet update: A case based approach Asif Serajian DO FACC FSCAI No disclosures relevant to this talk Objectives 1. Discuss the indication for antiplatelet therapy for cardiac

More information

Discuss the role of idarucizumab for the management of bleeding associated with dabigatran

Discuss the role of idarucizumab for the management of bleeding associated with dabigatran Discuss the role of idarucizumab for the management of bleeding associated with dabigatran Understand dosing, preparation and administration of idarucizumab I have no financial interest/arrangement or

More information

Novel Anticoagulants : Bleeding and Bridging

Novel Anticoagulants : Bleeding and Bridging Novel Anticoagulants : Bleeding and Bridging Michael D. Ezekowitz, MBChB, DPhil, FACC, FAHA, FRCP, MA Professor, Thomas Jefferson Medical School Director Atrial Fibrillation Research and Education The

More information

Practical Considerations for Using Oral Anticoagulants in Patients with Chronic Kidney Disease

Practical Considerations for Using Oral Anticoagulants in Patients with Chronic Kidney Disease Practical Considerations for Using Oral Anticoagulants in Patients with Chronic Kidney Disease Cyrille K. Cornelio, Pharm.D. PGY2 Cardiology Pharmacy Resident The University of Oklahoma College of Pharmacy

More information

MEDICAL ASSISTANCE HANDBOOK PRIOR AUTHORIZATION OF PHARMACEUTICAL SERVICES. A. Prescriptions That Require Prior Authorization

MEDICAL ASSISTANCE HANDBOOK PRIOR AUTHORIZATION OF PHARMACEUTICAL SERVICES. A. Prescriptions That Require Prior Authorization MEDICAL ASSISTANCE HBOOK PRI AUTHIZATION OF PHARMACEUTICAL SERVICES I. Requirements for Prior Authorization of Anticoagulants A. Prescriptions That Require Prior Authorization Prescriptions for Anticoagulants

More information

NHS Lanarkshire Guidance on Anticoagulant treatment for patients with non-valvular atrial fibrillation

NHS Lanarkshire Guidance on Anticoagulant treatment for patients with non-valvular atrial fibrillation 1 NHS Lanarkshire Guidance on Anticoagulant treatment for patients with non-valvular atrial fibrillation Atrial fibrillation (AF) affects about 1.2% of the population in the United Kingdom and accounts

More information

Tim Brown, PharmD, BCACP, FASHP Director of Clinical Pharmacotherapy, Akron General Medical Center for Family Medicine Professor, Northeast Ohio

Tim Brown, PharmD, BCACP, FASHP Director of Clinical Pharmacotherapy, Akron General Medical Center for Family Medicine Professor, Northeast Ohio Tim Brown, PharmD, BCACP, FASHP Director of Clinical Pharmacotherapy, Akron General Medical Center for Family Medicine Professor, Northeast Ohio Medical University Objectives 1. 2. 3. 4. Review and discuss

More information

Engage AF-TIMI 48. Edoxaban in AF: What can we expect? Cardiology Update John Camm. St. George s University of London United Kingdom

Engage AF-TIMI 48. Edoxaban in AF: What can we expect? Cardiology Update John Camm. St. George s University of London United Kingdom Cardiology Update 2013 N S N O N H O H N S1 pocket Aryl binding N site O O N H N Cl Engage AF-TIMI 48 Edoxaban in AF: What can we expect? John Camm St. George s University of London United Kingdom Advisor

More information

Update on Oral Anticoagulants. Dr. Miten R. Patel Cancer Specialists of North Florida Cell

Update on Oral Anticoagulants. Dr. Miten R. Patel Cancer Specialists of North Florida Cell Update on Oral Anticoagulants Dr. Miten R. Patel Cancer Specialists of North Florida Cell 904-451-9820 Email miten.patel@csnf.us Overview Highlights of the 4 new approved oral anticoagulants Results from

More information

Antithrombotics in Stroke management

Antithrombotics in Stroke management Antithrombotics in Stroke management Faculty: Robert Beveridge Relationships with commercial interests: Grants/Research Support: N/A Speakers Bureau/Honoraria: Astra Zeneca, Bayer, Boerhinger Ingelheim,

More information

Drug Use Criteria: Direct Oral Anticoagulants

Drug Use Criteria: Direct Oral Anticoagulants Texas Vendor Drug Program Drug Use Criteria: Oral Anticoagulants Publication History 1. Developed March 2017. 2. Revised February 2018. Notes: Information on indications for use or diagnosis is assumed

More information

Atrial Fibrillation: Risk Stratification and Treatment New Cardiovascular Horizons St. Louis September 19, 2015

Atrial Fibrillation: Risk Stratification and Treatment New Cardiovascular Horizons St. Louis September 19, 2015 Atrial Fibrillation: Risk Stratification and Treatment New Cardiovascular Horizons St. Louis September 19, 2015 Christopher E. Bauer, MD, FACC, FHRS SSM Health Heart & Vascular Care Clinical Cardiac Electrophysiology

More information

Updates in Stroke Management. Jessica A Starr, PharmD, FCCP, BCPS Associate Clinical Professor Auburn University Harrison School of Pharmacy

Updates in Stroke Management. Jessica A Starr, PharmD, FCCP, BCPS Associate Clinical Professor Auburn University Harrison School of Pharmacy Updates in Stroke Management Jessica A Starr, PharmD, FCCP, BCPS Associate Clinical Professor Auburn University Harrison School of Pharmacy Disclosure I have no actual or potential conflict of interest

More information

NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE. Single Technology Appraisal (STA)

NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE. Single Technology Appraisal (STA) Rivaroxaban for the prevention of stroke and systemic embolism in people with atrial fibrillation Thank you for agreeing to give us a statement on your organisation s view of the technology and the way

More information

New Oral Anticoagulant Drugs in the Prevention of DVT

New Oral Anticoagulant Drugs in the Prevention of DVT New Oral Anticoagulant Drugs in the Prevention of DVT Targets for Anticoagulants ORAL DIRECT VKAs inhibit the hepatic synthesis of several coagulation factors Rivaroxaban Apixaban Edoxaban Betrixaban X

More information

Primary Prevention of Stroke

Primary Prevention of Stroke Primary Prevention of Stroke Dr Chris Ellis Cardiologist Green Lane CVS Service, Auckland City Hospital & Auckland Heart Group, Mercy Hospital, Auckland 67 Pages Long, 735 References 29 Sub-Headings for

More information

3/19/2012. What is the indication for anticoagulation? Has the patient previously been on warfarin? If so, what % of the time was the INR therapeutic?

3/19/2012. What is the indication for anticoagulation? Has the patient previously been on warfarin? If so, what % of the time was the INR therapeutic? Abigail E. Miller, PharmD, BCPS Clinical Specialist, Cardiology University of North Carolina Hospitals I have no personal financial relationships with the manufacturers of the products to disclose. Boehringer

More information

Transitions of care in anticoagulated patients

Transitions of care in anticoagulated patients Journal of Multidisciplinary Healthcare open access to scientific and medical research Open Access Full Text Article Transitions of care in anticoagulated patients Expert Opinion Franklin Michota Department

More information

Σεμινάπιο Ομάδων Δπγαζίαρ ΟΜΑΓΑ ΔΡΓΑΣΙΑΣ ΗΛΔΚΤΡΟΦΥΣΙΟΛΟΓΙΑΣ ΚΑΙ ΒΗΜΑΤΟΓΟΤΗΣΗΣ Κολπική μαπμαπςγή

Σεμινάπιο Ομάδων Δπγαζίαρ ΟΜΑΓΑ ΔΡΓΑΣΙΑΣ ΗΛΔΚΤΡΟΦΥΣΙΟΛΟΓΙΑΣ ΚΑΙ ΒΗΜΑΤΟΓΟΤΗΣΗΣ Κολπική μαπμαπςγή Σεμινάπιο Ομάδων Δπγαζίαρ ΟΜΑΓΑ ΔΡΓΑΣΙΑΣ ΗΛΔΚΤΡΟΦΥΣΙΟΛΟΓΙΑΣ ΚΑΙ ΒΗΜΑΤΟΓΟΤΗΣΗΣ Κολπική μαπμαπςγή Δξελίξειρ ζηην ανηιπηκηική αγωγή ζε αζθενείρ με κολπική μαπμαπςγή Ξςδώναρ Σωηήπιορ Μονάδα Δμθπαγμάηων και

More information

Appendix IV - Prescribing Guidance for Apixaban

Appendix IV - Prescribing Guidance for Apixaban Appendix IV - Prescribing Guidance for Apixaban Patient Factors Dose of Apixaban If your patient has any of the following MAJOR risk factors: Hypersensitivity to the active substance or to any of the excipients

More information

ADVANCES IN ANTICOAGULATION

ADVANCES IN ANTICOAGULATION ADVANCES IN ANTICOAGULATION The Clinicians Perspective Claudine M. Lewis Cardiologist OUTLINE Indications for anticoagulants Review - Physiology of Hemostasis Types of anticoagulants New anticoagulants

More information

Updates in Anticoagulation for Atrial Fibrillation and Venous Thromboembolism

Updates in Anticoagulation for Atrial Fibrillation and Venous Thromboembolism Disclosures Updates in Anticoagulation for Atrial Fibrillation and Venous Thromboembolism No financial conflicts of interest Member of the ABIM Focused- Practice in Hospital Medicine Self Examination Process

More information

Atrial Fibrillaiton and Heart Failure: Anticoagulation therapy in all cases?

Atrial Fibrillaiton and Heart Failure: Anticoagulation therapy in all cases? Atrial Fibrillaiton and Heart Failure: Anticoagulation therapy in all cases? Nicolas Lellouche Fédération de Cardiologie Hôpital Henri Mondor Créteil Disclosure Statement of Financial Interest I currently

More information

Modern management of atrial fibrillation, from blood pressure control to anticoagulation

Modern management of atrial fibrillation, from blood pressure control to anticoagulation Modern management of atrial fibrillation, from blood pressure control to anticoagulation Adel Khalifa S. Hamad, BMS, MD, FRCP(Canada) Consultant Cardiologist & Interventional Cardiac Electrophysiologist

More information

2 Summary of NICE TA 249: Atrial fibrillation - Dabigatran Etexilate

2 Summary of NICE TA 249: Atrial fibrillation - Dabigatran Etexilate Service Notification in response to DHSSPS endorsed NICE Technology Appraisals NICE TA 249: Atrial fibrillation - Dabigatran Etexilate 1 Name of Commissioning Team Long Term Conditions Commissioning Team

More information

Trends and Variation in Oral Anticoagulant Choice in Patients with Atrial Fibrillation,

Trends and Variation in Oral Anticoagulant Choice in Patients with Atrial Fibrillation, Trends and Variation in Oral Anticoagulant Choice in Patients with Atrial Fibrillation, 2010-2017 Junya Zhu, PhD Department of Health Policy and Management January 23, 2018 Acknowledgments Co-Authors G.

More information

Apixaban for Atrial Fibrillation in Patients with End-Stage Renal Disease on Dialysis

Apixaban for Atrial Fibrillation in Patients with End-Stage Renal Disease on Dialysis Apixaban for Atrial Fibrillation in Patients with End-Stage Renal Disease on Dialysis Caitlin Reedholm, PharmD PGY1 Pharmacy Resident St. David s South Austin Medical Center November 2, 2018 Abbreviations

More information

Survey patients for Sx, signs of AF. Establish AF Dx. Evaluate & Tx underlying heart disease/other causes. Assess adequacy of rate or rhythm control

Survey patients for Sx, signs of AF. Establish AF Dx. Evaluate & Tx underlying heart disease/other causes. Assess adequacy of rate or rhythm control Suggested General Approach to Managing Atrial Fibrillation Survey patients for Sx, signs of AF Establish AF Dx ECG Holter Event monitor Implanted device (pacer) Determine & Tx stroke risk (CHA 2 DS 2 VASc)

More information

Technology appraisal guidance Published: 23 May 2012 nice.org.uk/guidance/ta256

Technology appraisal guidance Published: 23 May 2012 nice.org.uk/guidance/ta256 Rivaroxaban for the prevention ention of stroke and systemic embolism in people with atrial fibrillation Technology appraisal guidance Published: 23 May 2012 nice.org.uk/guidance/ta256 NICE 2018. All rights

More information

pat hways Key therapeutic topic Published: 26 February 2016 nice.org.uk/guidance/ktt16

pat hways Key therapeutic topic Published: 26 February 2016 nice.org.uk/guidance/ktt16 pat hways Anticoagulants, including non-vitamin K antagonist oral anticoagulants (NOACs) Key therapeutic topic Published: 26 February 2016 nice.org.uk/guidance/ktt16 Options for local implementation NICE

More information

US FDA Approves Pradaxa (dabigatran etexilate) a breakthrough treatment for stroke risk reduction in non-valvular atrial fibrillation

US FDA Approves Pradaxa (dabigatran etexilate) a breakthrough treatment for stroke risk reduction in non-valvular atrial fibrillation Press Release For non-us Healthcare Media Boehringer Ingelheim GmbH Corporate Communications US FDA Approves Pradaxa (dabigatran etexilate) a breakthrough treatment for stroke risk reduction in non-valvular

More information

New Age Anticoagulants: Bleeding Considerations

New Age Anticoagulants: Bleeding Considerations Ontario Regional Blood Coordinating Network March 23, 2012 New Age Anticoagulants: Bleeding Considerations Bill Geerts, MD, FRCPC Thromboembolism Specialist, Sunnybrook HSC Professor of Medicine, University

More information

Nanik Hatsakorzian Pharm.D/MPH

Nanik Hatsakorzian Pharm.D/MPH Pharm.D/MPH 2014 1 Therapeutics FDA indication & Dosing Clinical Pearls Anticoagulants Heparin Antiphospholipid antibody syndrome Cerebral thromboembolism Prosthetic heart valve Acute coronary syndrome

More information

Stroke prevention, Clinical trials

Stroke prevention, Clinical trials Received: 13 May 2016 Revised: 8 August 2016 Accepted: 18 August 2016 DOI 10.1002/clc.22596 REVIEWS Special considerations for therapeutic choice of non vitamin K antagonist oral anticoagulants for Japanese

More information

Secondary Preven-on of Thromboembolic Stroke: Clinical Data and Recommenda-ons from the ESC Atrial Fibrilla-on Guideline Update 2012

Secondary Preven-on of Thromboembolic Stroke: Clinical Data and Recommenda-ons from the ESC Atrial Fibrilla-on Guideline Update 2012 Secondary Preven-on of Thromboembolic Stroke: Clinical Data and Recommenda-ons from the ESC Atrial Fibrilla-on Guideline Update 2012 Professor Dan Atar Head, Dept. of Cardiology Councillor of the ESC,

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction There are several disorders which carry an increased risk of thrombosis, clots that interfere with normal circulation, including: venous thromboembolism (VTE), comprising both deep

More information

Aims. AF and Stroke risk Guidance re anticoagulation Novel oral anticoagulants (NOACs) in non-valvular AF (NVAF) Practical Issues Patient Case Studies

Aims. AF and Stroke risk Guidance re anticoagulation Novel oral anticoagulants (NOACs) in non-valvular AF (NVAF) Practical Issues Patient Case Studies Aims AF and Stroke risk Guidance re anticoagulation Novel oral anticoagulants (NOACs) in non-valvular AF (NVAF) Practical Issues Patient Case Studies AF and Stroke AF prevalence approx doubles with each

More information

TSHP 2014 Annual Seminar 1

TSHP 2014 Annual Seminar 1 Debate: Versus the Rest of the World for Stroke Prevention in Non-valvular Atrial Fibrillation Matthew Wanat, PharmD, BCPS Clinical Assistant Professor University of Houston College of Pharmacy Clinical

More information