Mathematical and Computational study of blood flow through diseased artery

Size: px
Start display at page:

Download "Mathematical and Computational study of blood flow through diseased artery"

Transcription

1 Mathematical and Computational study of blood flow through diseased artery Abstract This paper presents the study of blood flow through a tapered stenosed artery. The fluid (blood) medium is assumed to be Power law fluid model. The governing equation for laminar, incompressible and non-newtonian fluid subject to the boundary conditions is solved by using a well known perturbation mathematical method. The analytical expressions for velocity component, volumetric flow rate, wall shear stress and pressure gradient are obtained. It is observed that the shape of artery have important impact on the velocity profile, pressure gradient and wall shear stress. It is also found that wall shear stress increases when peak is obtained then decreases for different values of tapering angle. Keywords: Tapered artery, Power Law fluid model, Blood flow, Stenosis, Volumetric flow rate, Wall shear stress. 1. INTRODUCTION Sapna Ratan Shah, Anamika School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi , (India) Cardiovascular diseases (CVDs) are a group of disorders of the heart and blood vessels and they include: CORONARY HEART DISEASE Disease of the blood vessels supplying the heart muscle. CEREBROVASCULAR DISEASE Disease of the blood vessels supplying blood to the brain. PERIPHERAL ARTERIAL DISEASE Disease of blood vessels supplying the blood to the arms and legs. RHEUMATIC HEART DISEASE Damage to the heart muscle and heart valves from rheumatic fever, caused by streptococcal bacteria. CONGENITAL HEART DISEASE Malformations of heart structure existing at birth. DEEP VEIN THROMBOSIS AND PULMONARY EMBOLISM Blood clots in the leg veins, which can dislodge and move to the heart and lungs. Fig.(1). Blood flow in a stenosed artery Fig.(2). Schematic diagram of blood flow in a stenosed tapered artery Heart attacks and strokes are usually acute events and are mainly caused by a blockage that prevents blood from flowing to the heart or brain [3, 7]. The most common reason for this is a build-up of fatty deposits on the inner walls of the blood vessels [fig. (1)]. Strokes can also be caused by bleeding from a blood vessel in the brain or from blood clots. The main cause of heart attacks and strokes are usually the presence of a combination of risk factors, such as Volume 5, Issue 6, June 2017 Page 1

2 tobacco use, unhealthy diet and obesity, physical inactivity and harmful use of alcohol, hypertension, diabetes and hyper lipidaemia etc. Various treatments are available to cure for heart attacks and strokes, like medication, bypass surgery, catheterization. Catheterization is the simple and frequently used approach as the procedure can open the narrowed heart valves, blocked arteries and repair the defects. Many researchers found that the study of blood flow through tapered tubes is important not only for an understanding of the behavior of the marvelous body fluid in arteries, but also for design of prosthetic blood vessels. Some researcher discussed heat and mass transfer effects on carreau fluid model for blood flow through a tapered artery with a stenosis. In (2011) [4], it is studied that the artificial neural network modeling for the system of blood flow through tapered artery with mild stenosis. In 2014 [2,6] A layered mathematical model for blood flow through tapering asymmetric stenosed artery with slip velocity at a interface under the effect of transverse magnetic field have been studied. Many researchers [1, 5, 9] studied the flow of blood as Newtonian and non- Newtonian fluid through tapered tubes. In this study pressure drop, pressure gradient and flux were measured in rigid wall model of tapered graphs under steady flow conditions. Both Newtonian and non- Newtonian fluids were examined. 2. FORMULATION OF THE PROBLEM Tapered blood arterial segment with stenosis in its lumen is modeled as a thin elastic tube with a circular cross-section containing an incompressible non-newtonian fluid characterized by Power law fluid model. The geometry of the timevariant stenosed arterial segment is given in Fig.(2) [8]. Consider an axially symmetric, laminar, and fully developed flow of blood in the z direction. It can be shown that the radial velocity is negligibly small in its magnitude and may be neglected for a low mean Reynolds number flow problem with stenosis. The momentum equation are where for a Power Law fluid model is given by where The boundary condition are Let us consider the pulsetile laminar flow of blood in the z direction through a compliant tube whose radius varies as (using non dimensional scheme) Volume 5, Issue 6, June 2017 Page 2

3 To solve the above system of equations following non-dimensional variables are introduced: where is the constant pressure gradient. The pressure gradient which is function of and, is represented as The pressure gradient which is function of and, is represented as In terms of these non-dimensional variables, eq. (1), (2), (7) reads The volumetric flow rate is given by u=0 at r=r, is finite at r=0. (10). (11) 3. SOLUTION OF THE PROBLEM Considering the Womersley parameter to be very small, the velocity u, shear stress as well as and can be expressed in the following form u(z, r, t) = u0(z, r, t) + α2u1(z, r, t) + (12) (z, r, t) = 0(z, r, t) + α2 1(z, r, t) + (13) Rp(z, t) = R0p(z, t) + α2r1p(z, t) + (14) up(z, t) = u0p(z, t) + α2u1p(z, t) + (15) Using (11) and (12) in (8) and boundary conditions. we have Volume 5, Issue 6, June 2017 Page 3

4 The plug core velocity can be obtain from Eq. (15) as Here R0p is the first approximation plug core radius. Neglecting the term with α2 and higher powers of α in Eq. (13), the expression for R0p can be obtain from Eq. (14) as Similarly, the solution for τ1, u1, and u1p can be obtained as The volumetric flow rate is given by It may be noted that if we write u = u0 + α2nu1. From Eq. (22) for small, we have 4. RESULTS AND DISCUSSION The volumetric flow rate and the wall shear stress are the two important characteristics in the study of fluid flow through a stenosed artery. Using appropriate boundary conditions, analytical expressions for the velocity profile, volumetric flow rate and shear stress have been obtained. The expressions for volumetric flow rate and wall shear stress, given by (26) and (27) respectively have been numerically evaluated using MATLAB software for different Volume 5, Issue 6, June 2017 Page 4

5 values of relevant parameters. For the purpose of numerical computation of the quantities of interest, we have performed a thorough quantitative analysis, by taking the following values of the different parameters involved in the present study. a = 0.5mm, L = 30, L0 = 10, d = 10, θ = 0.05, A = 0.7, δ = 0.1, α2 = 0.049, m = 2.0, T = 1.0. Fig. (3) depicts the effect of volumetric flow rate with z for different values of φ. It is shown in this figure that the volumetric blood flow will decreases as axial distance increases and it is increases with tapered angle (φ) as well.. This result is similar to the [5]. Fig.(4) shows the variation of volumetric flow rate with axial distance (z) for different values of time (t). it is observed in this figure that the volumetric flow rate decreases when the axial distance (z) increases [10]. Fig. (6) depicts the variation of wall shear stress with axial distance (z) for different values of time (t). This shows that the wall shear stress increases in the starting when z varies from14 to 16 then decreases from 16 to 18 and decreases for decreasing value of time (t) and also for decreasing values of tapered angle [3]. 5. CONCLUSION In this study it is obtained that the blood velocity decreases with the radial distribution for any given value of φ. It is also found that the velocity distribution of the two-fluid non- Newtonian Power law model are considerably higher than those of the Newtonian fluid models. It is also observed that the volumetric flow rate and wall shear stress are very low for the non- Newtonian power law fluid model than those of the Newtonian fluid model. Hence, the non- Newtonian Power Law fluid model would be more useful than the Newtonian model to analyze the blood flow through stenosed tapered arteries. References [1] D. Ssrikanth, J. V. Ramana Reddy and Vssnvg Krishna Murthy, (2015). Shear stress distribution at the wall of omega (ω) shaped stenotic tapered artery in the presence of catheter and velocity slip-effects of polar fluid, International Conference on Frontiers in Mathematics. [2] G. C. Hazarika, Barnali Sharma, (2014). Two Layered Mathematical Model for Blood Flow through Tapering Asymmetric Stenosed Artery with Velocity Slip at the Interface under the Effect of Transverse Magnetic Field, International Journal of Computer Applications, vol 105, pp [3] Jain, N., Singh, S., and M. Gupta, Steady flow of blood through an atherosclerotic artery: A non-newtonian model, International Journal of Applied Mathematics and Mechanics, (2012), Vol.8, pp [4] Jyoti Kumar Arora, (2011). Artificial Neural Network modelling for the System of blood flow through tapered artery with mild stenosis, International Journal of Mathematics Trends and Technology. [5] Kumar, S. and Kumar, S. (2006): Numerical study of the axisymmetric blood flow in a constricted rigid tube, Inter. Review of pure and Applied Mathematics, vol. 2(2), pp [6] Noreen Sher Akbar, S. Nadeem, (2014). Carreau fluid model for blood flow through a tapered artery with a stenosis. Ain Shams Engineering Journal,vol. 5, pp [7] Shah, S. R., An innovative solution for the problem of blood flow through Stenosed artery using generalized Bingham plastic fluid model. IMPACT, IJRANSS, (2013), Vol. 1(3), pp [8] Srivastava V.P. and Mishra S., "Non-newtonian arterial blood flow through an overlapping stenosis", Appl. and Appl. Math.: An Int. J. (AAM), (2010), Vol. 5, Issue 1, pp Volume 5, Issue 6, June 2017 Page 5

6 [9] Surendra Kumar, M. K. Sharma, Kuldip Singh and N. R. Garg, (2011) Mhd Two-Phase Blood Flow Through An Artery With Axially Non-Symmetric Stenosis, Int. J. of Math. Sci. & Engg. Appls, (2011), Vol. 5 No. II, pp [10] W. X. Chen, P. Barlis, (2015). Cfd analyses on incomplete stent apposition: from tapered to curved artery. Australian biomedical engineering conference. AUTHORS Dr. Sapna Ratan Shah, Associate Professor, School of Computational and Integrative Sciences, Jawaharlal Nehru, New Delhi, received M.Sc. and Pd.D degree in Mathematics from Christ Church P. G. College, and Harcourt Butler Technical University, Kanpur respectively. She has been doing research work in Applied Mathematics, Biomechanics, Biomathematics since She has published more than seventy research papers in various reputed international journals. Mrs. Anamika, Systems Analyst, School of Computational and Integrative Sciences, Jawaharlal Nehru, New Delhi, received B.E. degree in Computer Sciences from M.D.U Rohtak,, Post graduation diploma in advance design and development from CDAC Noida and M.S. degrees in Software Systems from BITS Pilani, Rajesthan. She is perusing her research work in applied Mathematics. Volume 5, Issue 6, June 2017 Page 6

A Two-layered Model for the Analysis of Arterial Rheology

A Two-layered Model for the Analysis of Arterial Rheology IJCSIT International Journal of Computer Science and Information Technology, Vol., o., June, pp. 37- A Two-layered Model for the Analysis of Arterial Rheology Sapna Singh Department of Mathematics, Harcourt

More information

Mathematical Modeling of Bingham Plastic Model of Blood Flow Through Stenotic Vessel

Mathematical Modeling of Bingham Plastic Model of Blood Flow Through Stenotic Vessel RESEARCH ARTICLE OPEN ACCESS Mathematical Modeling of Bingham Plastic Model of Blood Flow Through Stenotic Vessel S.R. Verma Department of Mathematics, D.A-V. (P.G.) College, Kanpur-208001, India Abstract

More information

Hematocrit Level on Blood flow through a Stenosed Artery with Permeable Wall: A Theoretical Study

Hematocrit Level on Blood flow through a Stenosed Artery with Permeable Wall: A Theoretical Study Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 12, Issue 1 (June 2017), pp. 291-304 Applications and Applied Mathematics: An International Journal (AAM) Hematocrit Level on Blood

More information

BLOOD FLOW THROUGH A COMPOSITE STENOSIS IN CATHETERIZED ARTERIES INTRODUCTION

BLOOD FLOW THROUGH A COMPOSITE STENOSIS IN CATHETERIZED ARTERIES INTRODUCTION 55 BLOOD FLOW THROUGH A COMPOSITE STENOSIS IN CATHETERIZED ARTERIES V P Srivastava, Rochana Vishnoi, Shailesh Mishra, Poonam Sinha * Department of Mathematics, Krishna Girls Engineering College, Kanpur-917,

More information

JADAVPUR UNIVERSITY & 2 SCHOOL OF BIOSCIENCE AND ENGINEERING ABHIRUP ROY CHOUDHURY 1, KRITTIKA DASGUPTA 2, ABHIJIT CHANDA 1,2, DEBABRATA NAG 1

JADAVPUR UNIVERSITY & 2 SCHOOL OF BIOSCIENCE AND ENGINEERING ABHIRUP ROY CHOUDHURY 1, KRITTIKA DASGUPTA 2, ABHIJIT CHANDA 1,2, DEBABRATA NAG 1 Presented at the COMSOL Conference 2010 India ABHIRUP ROY CHOUDHURY 1, KRITTIKA DASGUPTA 2, ABHIJIT CHANDA 1,2, DEBABRATA NAG 1 1 DEPARTMENT OF MECHANICAL ENGINEERING & 2 SCHOOL OF BIOSCIENCE AND ENGINEERING

More information

Non-Newtonian pulsatile blood flow in a modeled artery with a stenosis and an aneurysm

Non-Newtonian pulsatile blood flow in a modeled artery with a stenosis and an aneurysm Non-Newtonian pulsatile blood flow in a modeled artery with a stenosis and an aneurysm I. Husain, C. Langdon and J. Schwark Department of Mathematics Luther College University of Regina Regina, Saskatchewan

More information

Numerical Simulation of Blood Flow through Asymmetric and Symmetric Occlusion in Carotid Artery

Numerical Simulation of Blood Flow through Asymmetric and Symmetric Occlusion in Carotid Artery Proceedings of the 3 rd International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT 16) Ottawa, Canada May 2 3, 2016 Paper No. 170 Numerical Simulation of Blood Flow through Asymmetric and Symmetric

More information

Blood Flow Simulation toward Actual Application at Hospital

Blood Flow Simulation toward Actual Application at Hospital THE 5 TH ASIAN COMPUTAITIONAL FLUID DYNAMICS BUSAN, KOREA, OCTOBER 27 ~ OCTOBER 30, 2003 Blood Flow Simulation toward Actual Application at Hospital Abstract R. Himeno 1 1. Advanced Center for Computing

More information

Using Computational Fluid Dynamics Model to Predict Changes in Velocity properties in Stented Carotid Artery

Using Computational Fluid Dynamics Model to Predict Changes in Velocity properties in Stented Carotid Artery Excerpt from the Proceedings of the COMSOL Conference 2010 Paris (COMSOL Conference) Using Computational Fluid Dynamics Model to Predict Changes in Velocity properties in Stented Carotid Artery Vaidehi

More information

Numerical Simulation of Blood Flow in the System of Human Coronary Arteries with and without Bypass Graft

Numerical Simulation of Blood Flow in the System of Human Coronary Arteries with and without Bypass Graft Numerical Simulation of Blood Flow in the System of Human Coronary Arteries with and without Bypass Graft BURASKORN NUNTADILOK 1, BENCHAWAN WIWATANAPATAPHEE 1 MEECHOKE CHUEDOUNG 1, THANONGCHAI SIRIAPISITH

More information

Effects of Non-Newtonian Behavior of Blood on Wall Shear Stress in an Elastic Vessel with Simple and Consecutive Stenosis

Effects of Non-Newtonian Behavior of Blood on Wall Shear Stress in an Elastic Vessel with Simple and Consecutive Stenosis Biomedical & Pharmacology Journal Vol. 8(1), 123-131 (2015) Effects of Non-Newtonian Behavior of Blood on Wall Shear Stress in an Elastic Vessel with Simple and Consecutive Stenosis M. JAHANGIRI 1 *, M.

More information

Analysis of the effects of plaque deposits on the blood flow through human artery

Analysis of the effects of plaque deposits on the blood flow through human artery ISSN 2395-1621 Analysis of the effects of plaque deposits on the blood flow through human artery #1 Sajid S. Mulani, #2 Pankaj I. Jagad 1 sajidsmulani21@gmail.com 2 pjjagad.scoe@sinhgad.edu #12 Department

More information

CFD Analysis of Pulsatile Flow and Non-Newtonian Behavior of Blood in Arteries

CFD Analysis of Pulsatile Flow and Non-Newtonian Behavior of Blood in Arteries Copyright 2015 Tech Science Press MCB, vol.12, no.1, pp.37-47, 2015 CFD Analysis of Pulsatile Flow and Non-Newtonian Behavior of Blood in Arteries P. Jhunjhunwala,, P.M. Padole, and S.B. Thombre, Abstract:

More information

A Review of Study of the Effects of Plaque Deposits on the Blood Flow through Human Artery

A Review of Study of the Effects of Plaque Deposits on the Blood Flow through Human Artery A Review of Study of the Effects of Plaque Deposits on the Blood Flow through Human Artery 1 Sajid S. Mulani, 2 P. I. Jagad 1,2 Department of Mechanical Engineering, SCoE, Pune 411041, India Email: 1 sajidsmulani21@gmail.com,

More information

Contents 1 Computational Haemodynamics An Introduction 2 The Human Cardiovascular System

Contents 1 Computational Haemodynamics An Introduction 2 The Human Cardiovascular System Contents 1 Computational Haemodynamics An Introduction... 1 1.1 What is Computational Haemodynamics (CHD)... 1 1.2 Advantages of CHD... 3 1.3 Applications in the Cardiovascular System... 4 1.3.1 CHD as

More information

PHYSIOLOGICAL PULSATILE WAVEFORM THROUGH AXISYMMETRIC STENOSED ARTERIES: NUMERICAL SIMULATION

PHYSIOLOGICAL PULSATILE WAVEFORM THROUGH AXISYMMETRIC STENOSED ARTERIES: NUMERICAL SIMULATION PHYSIOLOGICAL PULSATILE WAVEFORM THROUGH AXISYMMETRIC STENOSED ARTERIES: NUMERICAL SIMULATION Jayme Pinto Ortiz University of São Paulo - Avenida Prof. Luciano Gualberto, travessa3 nº 380 - CEP - 05508-900

More information

COMPUTER SIMULATION OF BLOOD FLOW IN ARTERIES AFFECTED BY MULTIPLE ANEURYSM

COMPUTER SIMULATION OF BLOOD FLOW IN ARTERIES AFFECTED BY MULTIPLE ANEURYSM COMPUTER SIMULATION OF BLOOD FLOW IN ARTERIES AFFECTED BY MULTIPLE ANEURYSM H. GIRIJA BAI 1 and K.B. NAIDU 2 Department of Mathematics, Sathyabama University, Chennai-600 119, Tamil Nadu, India 1 girijanameprakash@gmail.com

More information

FOR many decades, cardiovascular disease has been one of

FOR many decades, cardiovascular disease has been one of Vol:1, No:2, 27 Effect of Non-Newtonian Behaviour of Blood on Pulsatile Flows in Stenotic Arteries Somkid Amornsamankul, Benchawan Wiwatanapataphee, Yong Hong Wu, Yongwimon Lenbury International Science

More information

Assessment of the Effects of Increasing Levels of Physiological Realism in the Computational Fluid Dynamics Analyses of Implanted Coronary Stents

Assessment of the Effects of Increasing Levels of Physiological Realism in the Computational Fluid Dynamics Analyses of Implanted Coronary Stents Dublin Institute of Technology ARROW@DIT Conference Papers School of Mechanical and Design Engineering 2008-09-01 Assessment of the Effects of Increasing Levels of Physiological Realism in the Computational

More information

Post-conditioning. P a g e 1. To my Thesis Committee,

Post-conditioning. P a g e 1. To my Thesis Committee, P a g e 1 To my Thesis Committee, This document seeks to clarify my research project. After describing what post-conditioning (PC) is, I will explain differences between my research and the recent peristaltic

More information

Computational Fluid Dynamics Analysis of Blalock-Taussig Shunt

Computational Fluid Dynamics Analysis of Blalock-Taussig Shunt Washington University in St. Louis Washington University Open Scholarship Mechanical Engineering and Materials Science Independent Study Mechanical Engineering & Materials Science 12-23-2017 Computational

More information

Mathematical Modeling of Blood Flow Through an Eccentric Catheterized Artery: A practical approach for a complex system

Mathematical Modeling of Blood Flow Through an Eccentric Catheterized Artery: A practical approach for a complex system Mathematical Modeling of Blood Flow Through an Eccentric Catheterized Artery: A practical approach for a complex system Sima S. Ahrabi 1, Mohammad Shojafar, Hamid Kazemi Esfeh 3, and Ajith Abraham 4,5

More information

Numerical simulations of fluid mechanical interactions between two abdominal aortic branches

Numerical simulations of fluid mechanical interactions between two abdominal aortic branches Korea-Australia Rheology Journal Vol. 16, No. 2, June 2004 pp. 75-83 Numerical simulations of fluid mechanical interactions between two abdominal aortic branches Taedong Kim, Taewon Seo* 1,2 and Abdul.I.

More information

Refinements in Mathematical Models to Predict Aneurysm Growth and Rupture

Refinements in Mathematical Models to Predict Aneurysm Growth and Rupture Refinements in Mathematical Models to Predict Aneurysm Growth and Rupture RAMON BERGUER, a,b JOSEPH L. BULL, a,b AND KHALIL KHANAFER a a Vascular Mechanics Laboratory, Department of Biomedical Engineering,

More information

A Mathematical Model for Flow and Diffusion through Stenotic Capillary-Tissue Exchange System

A Mathematical Model for Flow and Diffusion through Stenotic Capillary-Tissue Exchange System 1 A Mathematical Model for Flow and Diffusion through Stenotic Capillary-Tissue Exchange System Shailesh Mishra *, S.U.Siddiqui Department of Mathematics Harcourt Butler Technological Institute Kanpur-282,

More information

Simulation of Blood Flow Coronary Artery with Consecutive Stenosis and Coronary-Coronary Bypass

Simulation of Blood Flow Coronary Artery with Consecutive Stenosis and Coronary-Coronary Bypass BioImpacts, 2011, 1(2), 99-104 http://bi.tbzmed.ac.ir/ Simulation of Blood Flow Coronary Artery with Consecutive Stenosis and Coronary-Coronary Bypass Seyed Esmail Razavi *, Ramin Zanbouri, Omid Arjmandi-Tash

More information

NUMERICAL SIMULATION OF EFFECTS OF REYNOLDS NUMBER ON NON-NEWTONIAN BLOOD FLOW WITH SPIRAL COMPONENT THROUGH A REGULAR STENOSED ARTERY

NUMERICAL SIMULATION OF EFFECTS OF REYNOLDS NUMBER ON NON-NEWTONIAN BLOOD FLOW WITH SPIRAL COMPONENT THROUGH A REGULAR STENOSED ARTERY Proceedings of the International Conference on Mechanical Engineering and Renewable Energy 2017 (ICMERE2017) 18 20 December, 2017, Chittagong, Bangladesh ICMERE2017-PI-325 NUMERICAL SIMULATION OF EFFECTS

More information

A computational fluid dynamics simulation study of coronary blood flow affected by graft placement

A computational fluid dynamics simulation study of coronary blood flow affected by graft placement Interactive CardioVascular and Thoracic Surgery 19 (2014) 16 20 doi:10.1093/icvts/ivu034 Advance Access publication 22 April 2014 ORIGINAL ARTICLE ADULTCARDIAC A computational fluid dynamics simulation

More information

Arteriovenous Graft Modeling and Hemodynamic Interpretation

Arteriovenous Graft Modeling and Hemodynamic Interpretation Open Journal of Fluid Dynamics, 2012, 2, 324-330 http://dx.doi.org/10.4236/ojfd.2012.24a040 Published Online December 2012 (http://www.scirp.org/journal/ojfd) Arteriovenous Graft Modeling and Hemodynamic

More information

FFR Fundamentals and Measurements

FFR Fundamentals and Measurements FFR Fundamentals and Measurements Ghassan S. Kassab Thomas Linnemeier Chair Professor Biomedical Engineering, Indiana University Purdue University Indianapolis Principle of FFR Q S ( P P ) / R P max d

More information

Design and Simulation of Blocked Blood Vessel for Early Detection of Heart Diseases

Design and Simulation of Blocked Blood Vessel for Early Detection of Heart Diseases Proceedings of the 215 2nd International Symposium on Physics and Technology of Sensors, 8-1th March, 215, Pune, India Design and Simulation of Blocked Blood Vessel for Early Detection of Heart Diseases

More information

Comparison of Stent Designs using Computational Fluid Dynamics

Comparison of Stent Designs using Computational Fluid Dynamics Dublin Institute of Technology ARROW@DIT Conference Papers School of Mechanical and Design Engineering 2007-03-28 Comparison of Stent Designs using Computational Fluid Dynamics Jonathan Murphy Dublin Institute

More information

Simulations of the blood flow in the arterio-venous fistula for haemodialysis

Simulations of the blood flow in the arterio-venous fistula for haemodialysis Acta of Bioengineering and Biomechanics Vol. 16, No. 1, 2014 Original paper DOI: 10.5277/abb140109 Simulations of the blood flow in the arterio-venous fistula for haemodialysis DANIEL JODKO*, DAMIAN OBIDOWSKI,

More information

Keywords: Angioplasty, Explicit finite elements method, Tube hidroforming, Stents.

Keywords: Angioplasty, Explicit finite elements method, Tube hidroforming, Stents. Blucher Mechanical Engineering Proceedings May 2014, vol. 1, num. 1 www.proceedings.blucher.com.br/evento/10wccm AN ANALYSIS OF THE CONTACT BETWEEN THE STENT AND THE ARTERY USING TUBE HIDROFORMING SIMULATION

More information

FLUID MECHANICAL PERTURBATIONS INDUCED BY STENT IMPLANTATION: A NUMERICAL STUDY

FLUID MECHANICAL PERTURBATIONS INDUCED BY STENT IMPLANTATION: A NUMERICAL STUDY LABORATORY OF BIOLOGICAL STRUCTURE MECHANICS www.labsmech.polimi.it FLUID MECHANICAL PERTURBATIONS INDUCED BY STENT IMPLANTATION: A NUMERICAL STUDY Rossella Balossino, Francesca Gervaso, Francesco Migliavacca,

More information

Evaluate The Effectiveness Of Self Instructional Module On Knowledge Regarding Coronary..

Evaluate The Effectiveness Of Self Instructional Module On Knowledge Regarding Coronary.. IOSR Journal of Nursing and Health Science (IOSR-JNHS) e- ISSN: 2320 1959.p- ISSN: 2320 1940 Volume 7, Issue 4 Ver. VII (Jul.-Aug. 2018), PP 32-37 www.iosrjournals.org Evaluate The Effectiveness Of Self

More information

CVS Hemodynamics. Change in blood pressure:

CVS Hemodynamics. Change in blood pressure: CVS Hemodynamics -The distribution of blood inside the circulation: The major part of blood volume is found in the venous system 60% (2/3), that s why veins are called the capacitance vessels. -Arteries

More information

Simulations of pulsatile blood flow in tapered S-shaped inplane and out-of-plane coronary arteries

Simulations of pulsatile blood flow in tapered S-shaped inplane and out-of-plane coronary arteries Simulations of pulsatile blood flow in tapered S-shaped inplane and out-of-plane coronary arteries Author Johnston, Barbara, Johnston, Peter Published 2009 Conference Title 18th IMACS World Congress MODSIM09

More information

Cardiovascular Disease

Cardiovascular Disease Cardiovascular Disease Chapter 15 Introduction Cardiovascular disease (CVD) is the leading cause of death in the U.S. One American dies from CVD every 33 seconds Nearly half of all Americans will die from

More information

Lecture 8 Cardiovascular Health Lecture 8 1. Introduction 2. Cardiovascular Health 3. Stroke 4. Contributing Factors

Lecture 8 Cardiovascular Health Lecture 8 1. Introduction 2. Cardiovascular Health 3. Stroke 4. Contributing Factors Lecture 8 Cardiovascular Health 1 Lecture 8 1. Introduction 2. Cardiovascular Health 3. Stroke 4. Contributing Factors 1 Human Health: What s Killing Us? Health in America Health is the U.S Average life

More information

10/8/2018. Lecture 9. Cardiovascular Health. Lecture Heart 2. Cardiovascular Health 3. Stroke 4. Contributing Factor

10/8/2018. Lecture 9. Cardiovascular Health. Lecture Heart 2. Cardiovascular Health 3. Stroke 4. Contributing Factor Lecture 9 Cardiovascular Health 1 Lecture 9 1. Heart 2. Cardiovascular Health 3. Stroke 4. Contributing Factor 1 The Heart Muscular Pump The Heart Receives blood low pressure then increases the pressure

More information

Cardiovascular Diseases and Diabetes

Cardiovascular Diseases and Diabetes Cardiovascular Diseases and Diabetes LEARNING OBJECTIVES Ø Identify the components of the cardiovascular system and the various types of cardiovascular disease Ø Discuss ways of promoting cardiovascular

More information

Study of Newtonian and Non-Newtonian Effect of Blood Flow in Portal Vein in Normal and Hypertension Conditions using CFD Technique

Study of Newtonian and Non-Newtonian Effect of Blood Flow in Portal Vein in Normal and Hypertension Conditions using CFD Technique International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 3 (2013), pp. 399-406 International Research Publication House http://www.irphouse.com Study of Newtonian and

More information

RADIATION-EPIDEMIOLOGICAL STUDY OF GROUP OF DIFFERENT DISEASES OF CIRCULATORY SYSTEM AND CONCOMITANT DISEASES AMONG CHERNOBYL LIQUIDATORS

RADIATION-EPIDEMIOLOGICAL STUDY OF GROUP OF DIFFERENT DISEASES OF CIRCULATORY SYSTEM AND CONCOMITANT DISEASES AMONG CHERNOBYL LIQUIDATORS National Radiation-Epidemiological Registry A. Tsyb Medical Radiological Research Center - branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation

More information

Accurate Prediction of Heart Disease Diagnosing Using Computation Method

Accurate Prediction of Heart Disease Diagnosing Using Computation Method Accurate Prediction of Heart Disease Diagnosing Using Computation Method 1 Hanumanthappa H, 2 Pundalik Chavan 1 Assistant Professor, 2 Assistant Professor 1 Computer Science & Engineering, 2 Computer Science

More information

CPM Specifications Document Aortic Coarctation: Exercise

CPM Specifications Document Aortic Coarctation: Exercise CPM Specifications Document Aortic Coarctation: Exercise OSMSC 0091_2000 0102_2000 0107_0000 0111_0000 May 29, 2013 Version 1 Open Source Medical Software Corporation 2013 Open Source Medical Software

More information

History of Vascular Modelling. William Harvey discovery of the circulation 1628

History of Vascular Modelling. William Harvey discovery of the circulation 1628 History of Vascular Modelling William Harvey discovery of the circulation 1628 William Harvey (1578-1657) Since all things, both argument and ocular demonstration, show that the blood passes through the

More information

Heart Disease. Signs and Symptoms

Heart Disease. Signs and Symptoms Heart Disease The term "heart disease" refers to several types of heart conditions. The most common type is coronary artery disease, which can cause heart attack, angina, heart failure, and arrhythmias.

More information

Asymmetric flows of non-newtonian fluids in symmetric stenosed artery

Asymmetric flows of non-newtonian fluids in symmetric stenosed artery Korea-Australia Rheology Journal Vol. 16, No. 2, June 2004 pp. 101-108 Asymmetric flows of non-newtonian fluids in symmetric stenosed artery Hun Jung*, Jong Wook Choi 1 and Chan Guk Park 2 Graduate School,

More information

NUMERICAL STUDY OF PULSATILE BLOOD FLOW IN THE CORONARY SYSTEM WITH THE RCA BYPASS GRAFT

NUMERICAL STUDY OF PULSATILE BLOOD FLOW IN THE CORONARY SYSTEM WITH THE RCA BYPASS GRAFT Journal of Pure and Applied Mathematics: Advances and Applications Volume 9, Number 2, 2013, Pages 81-106 NUMERICAL STUDY OF PULSATILE BLOOD FLOW IN THE CORONARY SYSTEM WITH THE RCA BYPASS GRAFT BURASKORN

More information

BLOOD FLOW VISUALISATION THROUGH CAROTID BIFURCATION USING ANSYS CFD

BLOOD FLOW VISUALISATION THROUGH CAROTID BIFURCATION USING ANSYS CFD BLOOD FLOW VISUALISATION THROUGH CAROTID BIFURCATION USING ANSYS CFD Roopa.V.Chanashetty 1, Dr.Channappa Bhyri 2 and Vijaykumar Chanashetty 3 1 Department of Electronics and Communication Engineering,

More information

Detection of Coronary Plaque and Sensing Risks Factors of Heart at early stages using various Image Processing and Segmentation Techniques

Detection of Coronary Plaque and Sensing Risks Factors of Heart at early stages using various Image Processing and Segmentation Techniques International Journal of Current Engineering and Technology E-ISSN 2277 406, P-ISSN 2347 56 206 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Detection

More information

The Cardiovascular System Part I: Heart Outline of class lecture After studying part I of this chapter you should be able to:

The Cardiovascular System Part I: Heart Outline of class lecture After studying part I of this chapter you should be able to: The Cardiovascular System Part I: Heart Outline of class lecture After studying part I of this chapter you should be able to: 1. Describe the functions of the heart 2. Describe the location of the heart,

More information

FSI Analysis of Diseased Coronary using Patient Specific Data

FSI Analysis of Diseased Coronary using Patient Specific Data FSI Analysis of Diseased Coronary using Patient Specific Data Mingchao Cai, * Haofei Liu, a Chun Yang, a,c Jie Zheng, b Richard Bach, b Mehmet H. Kural, d Kristen L. Billiar, d David Muccigrosso, b Dongsi

More information

EVALUATION OF ABDOMINAL AORTIC ANEURYSM WALL STESS BASED ON FLOW INDUCED LOAD

EVALUATION OF ABDOMINAL AORTIC ANEURYSM WALL STESS BASED ON FLOW INDUCED LOAD International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 11, November 2018, pp. 684 688, Article ID: IJMET_09_11_068 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=11

More information

A Review: Hemodynamics of Cerebral Aneurysm with Mathematical Modeling

A Review: Hemodynamics of Cerebral Aneurysm with Mathematical Modeling International Mathematical Forum, Vol. 7, 2012, no. 54, 2687-2693 A Review: Hemodynamics of Cerebral Aneurysm with Mathematical Modeling Duangkamol Poltem Department of Mathematics, Faculty of Science

More information

CPM Specifications Document Aortofemoral Normal:

CPM Specifications Document Aortofemoral Normal: CPM Specifications Document Aortofemoral Normal: OSMSC 0110_0000 May 27, 2013 Version 1 Open Source Medical Software Corporation 2013 Open Source Medical Software Corporation. All Rights Reserved. 1. Clinical

More information

Physics of the Cardiovascular System

Physics of the Cardiovascular System Dentistry College Medical Physics Physics of the Cardiovascular System The cells of the body act like individual engines. In order for them to function they must have: - 1. Fuel from our food to supply

More information

Simulation of blood flow through endovascular prosthesis in patients with Abdominal Aortic Aneurysm

Simulation of blood flow through endovascular prosthesis in patients with Abdominal Aortic Aneurysm Simulation of blood flow through endovascular prosthesis in patients with Abdominal Aortic Aneurysm Andrzej Polańczyk, MSc Ireneusz Zbiciński, PhD, DSc Abstract The aim of this study was to estimate whether

More information

DEVELOPMENT OF AN EXPERT SYSTEM ALGORITHM FOR DIAGNOSING CARDIOVASCULAR DISEASE USING ROUGH SET THEORY IMPLEMENTED IN MATLAB

DEVELOPMENT OF AN EXPERT SYSTEM ALGORITHM FOR DIAGNOSING CARDIOVASCULAR DISEASE USING ROUGH SET THEORY IMPLEMENTED IN MATLAB DEVELOPMENT OF AN EXPERT SYSTEM ALGORITHM FOR DIAGNOSING CARDIOVASCULAR DISEASE USING ROUGH SET THEORY IMPLEMENTED IN MATLAB Aaron Don M. Africa Department of Electronics and Communications Engineering,

More information

UNDERSTANDING ATHEROSCLEROSIS

UNDERSTANDING ATHEROSCLEROSIS UNDERSTANDING ATHEROSCLEROSIS UNDERSTANDING ATHEROSCLEROSIS ARTERIES Arteries are blood vessels that carry oxygenated blood to all the organs of the body. Arteries are made up of three important layers:

More information

Strokes , The Patient Education Institute, Inc. hp Last reviewed: 11/11/2017 1

Strokes , The Patient Education Institute, Inc.   hp Last reviewed: 11/11/2017 1 Strokes Introduction A stroke or a brain attack is a very serious condition that can result in death and significant disability. This disease is ranked as the third leading cause of death in the United

More information

Medical device design using Computational Fluid Dynamics (CFD)

Medical device design using Computational Fluid Dynamics (CFD) Medical device design using Computational Fluid Dynamics (CFD) Session: Winter 2016 IMPORTANT NOTE: This project has 8 deliverables, for each one timely work is expected. 1. General Design Specifications

More information

Unit 1: Human Systems. The Circulatory System

Unit 1: Human Systems. The Circulatory System Unit 1: Human Systems The Circulatory System nourish all cells with oxygen, glucose, amino acids and other nutrients and carry away carbon dioxide, urea and other wastes Purposes Transport chemical messengers

More information

Blood flow in vessels with artificial or pathological geometrical changes

Blood flow in vessels with artificial or pathological geometrical changes Blood flow in vessels with artificial or pathological geometrical changes P. Tibaut 1, B. Wiesler 1, M. Mayer 2 & R. Wegenkittel 3 1 AVL LIST GmbH, Graz, Austria 2 VRVIs, Vienna, Austria 3 Tiani Medgraph

More information

Keywords: Blood pressure, Blood flow, Subjective experiment, Human simulation model

Keywords: Blood pressure, Blood flow, Subjective experiment, Human simulation model F: Physical responses & physiology F.2. Health assessment (incl. Thermal comfort) MEASUREMENTS OF BLOOD FLOW AND BLOOD PRESSURE UNDER DIFFERENT INDOOR TEMPERATURE AND BODY POSTURAL CONDITIONS, AND DEVELOPMENT

More information

54. Simulation and research on the influence of the shape and the geometrical parameters of a blood vessel bypass graft upon hemodynamics

54. Simulation and research on the influence of the shape and the geometrical parameters of a blood vessel bypass graft upon hemodynamics 54. Simulation and research on the influence of the shape and the geometrical parameters of a blood vessel bypass graft upon hemodynamics Andžela Šešok 1, Donatas Lukšys 2 Vilnius Gediminas Technical University,

More information

Development of Computational Models for Evaluation of Mechanical and Hemodynamic Behavior of an Intravascular Stent

Development of Computational Models for Evaluation of Mechanical and Hemodynamic Behavior of an Intravascular Stent Development of Computational Models for Evaluation of Mechanical and Hemodynamic Behavior of an Intravascular Stent Kuang-Huei Lee, Hao-Ming Hsiao, Ying-Chih Liao, Yi-Hsiang Chiu, Yu-Seng Tee Dept. of

More information

Effects of surface geometry and non-newtonian viscosity on the flow field in arterial stenoses

Effects of surface geometry and non-newtonian viscosity on the flow field in arterial stenoses Journal of Mechanical Science and Technology 23 (2009) 2424~2433 Journal of Mechanical Science and Technology www.springerlink.com/content/1738-494x DOI 10.1007/s12206-009-0627-6 Effects of surface geometry

More information

Circulatory System 10.1

Circulatory System 10.1 1 Circulatory System 10.1 2 ARTERIES Arteries-blood vessels that carry blood away from the heart Thick walls Inner & Outer layers: connective tissue Middle layers are muscle and elastic connective tissue

More information

Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien Tanner) within carotid artery

Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien Tanner) within carotid artery Acta of Bioengineering and Biomechanics Vol. 19, No. 3, 2017 Original paper DOI: 10.5277//ABB-00775-2016-05 Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien Tanner)

More information

End of chapter exercises

End of chapter exercises End of chapter exercises Problem 1: The following diagrams show the heart during the cardiac cycle. The arrows represent the flow of blood. Study the diagrams and answer the questions that follow: Figure

More information

Microrheology P38. Laminar blood flow in stenotic microchannels

Microrheology P38. Laminar blood flow in stenotic microchannels Microrheology P38 Laminar blood flow in stenotic microchannels Joana A. C. Calejo, Valdemar Garcia, Carla S. Fernandes School of Technology and Management, Polytechnic Institute of Bragança, Campus de

More information

Heart Valve Replacement

Heart Valve Replacement Heart Valve Replacement Introduction Sometimes people have serious problems with the valves in their hearts. A heart valve repair or replacement surgery restores or replaces a defective heart valve. If

More information

Physiological flow analysis in significant human coronary artery stenoses

Physiological flow analysis in significant human coronary artery stenoses Biorheology 40 (2003) 451 476 451 IOS Press Physiological flow analysis in significant human coronary artery stenoses Rupak K. Banerjee a,, Lloyd H. Back b, Martin R. Back c and Young I. Cho d a Department

More information

BEE 453. May 4, Ravi Sood, David Nahlik, Weston Nichols, and Evan Graham

BEE 453. May 4, Ravi Sood, David Nahlik, Weston Nichols, and Evan Graham Laser Irradiation of Tumors for the Treatment of Cancer: An Analysis of Blood Flow, Temperature and Oxygen Transport BEE 453 May 4, 2007 Ravi Sood, David Nahlik, Weston Nichols, and Evan Graham 2 Executive

More information

Properties and modelling of the venous blood flow. 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em Tel: Fax:

Properties and modelling of the venous blood flow. 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em Tel: Fax: Properties and modelling of the venous blood flow 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em Tel: 463 16 80 Fax: 463 30 91 www.hds.bme.hu Overview of the lectures Introduction Properties of the venous

More information

Original. Stresses and Strains Distributions in Three-Dimension Three-Layer Abdominal Aortic Wall Based on in vivo Ultrasound Imaging

Original. Stresses and Strains Distributions in Three-Dimension Three-Layer Abdominal Aortic Wall Based on in vivo Ultrasound Imaging Original Stresses and Strains Distributions in Three-Dimension Three-Layer Abdominal Aortic Wall Based on in vivo Ultrasound Imaging P. Khamdaengyodtai 1, T. Khamdaeng 1, P. Sakulchangsatjatai 1, N. Kammuang-lue

More information

A Study of Non-Newtonian Viscosity and Yield Stress of Blood. in a Scanning Capillary-Tube Rheometer. A Thesis. Submitted to the Faculty

A Study of Non-Newtonian Viscosity and Yield Stress of Blood. in a Scanning Capillary-Tube Rheometer. A Thesis. Submitted to the Faculty A Study of Non-Newtonian Viscosity and Yield Stress of Blood in a Scanning Capillary-Tube Rheometer A Thesis Submitted to the Faculty of Drexel University by Sangho Kim in partial fulfillment of the requirements

More information

ANALYSIS OF FLUID-STRUCTURE INTERACTION IN ABDOMINAL AORTIC ANEURYSM WITH HIGH AND NORMAL BLOOD PRESSURE

ANALYSIS OF FLUID-STRUCTURE INTERACTION IN ABDOMINAL AORTIC ANEURYSM WITH HIGH AND NORMAL BLOOD PRESSURE ANALYSIS OF FLUID-STRUCTURE INTERACTION IN ABDOMINAL AORTIC ANEURYSM WITH HIGH AND NORMAL BLOOD PRESSURE Badreddin Giuma s.k\ Kahar Osman 1 and Mohamed Rafiq Abdul Kadir 1,2 1Faculty of Mechanical Engineering,

More information

Cerebrospinal fluid flow in the upper cervical canal in patients with the Chiari I malformation

Cerebrospinal fluid flow in the upper cervical canal in patients with the Chiari I malformation Cerebrospinal fluid flow in the upper cervical canal in patients with the Chiari I malformation Kent-Andre Mardal K. H. Støverud, S. Linge, G. Rutkowska, I. Drøsdal, H.P. Langtangen, V. Haughton Outline

More information

ISSUES ON COMPUTATIONAL MODELING FOR COMPUTATION-AIDED DIAGNOSIS 臨床診断支援ツールのための計算力学モデリング

ISSUES ON COMPUTATIONAL MODELING FOR COMPUTATION-AIDED DIAGNOSIS 臨床診断支援ツールのための計算力学モデリング ISSUES ON COMPUTATIONAL MODELING FOR COMPUTATION-AIDED DIAGNOSIS 臨床診断支援ツールのための計算力学モデリング Hao LIU Advanced Computer and Information Division, RIKEN 2-1, Hirosawa, Wako-shi, Saitama 351-0198 JAPAN e-mail:

More information

Numerical investigation on the blood flow characteristics considering the axial rotation in stenosed artery

Numerical investigation on the blood flow characteristics considering the axial rotation in stenosed artery Korea-Australia Rheology Journal Vol. 21, No. 2, June 2009 pp. 119-126 Numerical investigation on the blood flow characteristics considering the axial rotation in stenosed artery Kun Hyuk Sung, Kyoung

More information

BLOOD PRESSURE. Unit 3: Transportation and Respiration

BLOOD PRESSURE. Unit 3: Transportation and Respiration BLOOD PRESSURE Unit 3: Transportation and Respiration Blood Pressure The force of your blood pushing on the walls of your arteries. How is Blood Pressure Measured? Measured at an artery in the arm and

More information

Image Analysis and Cytometry in Three-Dimensional Digital Reconstruction of Porcine Native Aortic Valve Leaflets

Image Analysis and Cytometry in Three-Dimensional Digital Reconstruction of Porcine Native Aortic Valve Leaflets Image Analysis and Cytometry in Three-Dimensional Digital Reconstruction of Porcine Native Aortic Valve Leaflets Introduction Chi Zheng, M1 - University of Pittsburgh; BSE - University of Michigan In association

More information

Arteries and Arterioles - Teacher s Guide (Human Biology)

Arteries and Arterioles - Teacher s Guide (Human Biology) Arteries and Arterioles - Teacher s Guide (Human Biology) The Program in Human Biology, Stanford Uni- versity, (HumBio) CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign

More information

Hemodynamic Assessment. Assessment of Systolic Function Doppler Hemodynamics

Hemodynamic Assessment. Assessment of Systolic Function Doppler Hemodynamics Hemodynamic Assessment Matt M. Umland, RDCS, FASE Aurora Medical Group Milwaukee, WI Assessment of Systolic Function Doppler Hemodynamics Stroke Volume Cardiac Output Cardiac Index Tei Index/Index of myocardial

More information

Transcatheter Pulmonary Valve Therapy

Transcatheter Pulmonary Valve Therapy Transcatheter Pulmonary Valve Therapy With the Edwards SAPIEN XT Transcatheter Heart Valve For Patients and Caregivers This booklet was created to help you learn more about the Edwards SAPIEN XT Transcatheter

More information

CVS Hemodynamics. Faisal I. Mohammed, MD,PhD.

CVS Hemodynamics. Faisal I. Mohammed, MD,PhD. CVS Hemodynamics Faisal I. Mohammed, MD,PhD. Objectives point out the physical characteristics of the circulation: distribution of blood volume total cross sectional area velocity blood pressure List the

More information

Femoro-popliteal bypass surgery. Brought to you in association with EIDO Healthcare and endorsed by the Royal College of Surgeons England.

Femoro-popliteal bypass surgery. Brought to you in association with EIDO Healthcare and endorsed by the Royal College of Surgeons England. Femoro-popliteal bypass surgery Brought to you in association with EIDO Healthcare and endorsed by the Royal College of Surgeons England. Discovery has made every effort to ensure that we obtained the

More information

CFD Challenge: Simulation of Hemodynamics in a Patient-Specific Aortic Coarctation Model

CFD Challenge: Simulation of Hemodynamics in a Patient-Specific Aortic Coarctation Model CFD Challenge: Simulation of Hemodynamics in a Patient-Specific Aortic Coarctation Model Background Coarctation of the aorta (CoA) accounts for 8%-11% of congenital heart defects, affecting tens of thousands

More information

Introduction. Every organism must exchange materials and energy with its environment, and this exchange ultimately occurs at the cellular level.

Introduction. Every organism must exchange materials and energy with its environment, and this exchange ultimately occurs at the cellular level. Introduction Every organism must exchange materials and energy with its environment, and this exchange ultimately occurs at the cellular level. Cells live in aqueous environments. The resources that they

More information

Reducing the risk of CVD

Reducing the risk of CVD 1 The risk of developing cardiovascular disease (CVD) can be reduced in several ways. Lowering blood cholesterol levels and lowering blood pressure are two ways of reducing CVD. (a) (i) Complete the diagram

More information

CHAPTER 4 Basic Physiological Principles

CHAPTER 4 Basic Physiological Principles 4-1 CHAPTER 4 Basic Physiological Principles Now that we have a working anatomical knowledge of the heart and circulatory system, we will next develop a functional and quantitative knowledge of the cardiovascular

More information

REBEL. Platinum Chromium Coronary Stent System. Patient Information Guide

REBEL. Platinum Chromium Coronary Stent System. Patient Information Guide REBEL Patient Information Guide REBEL PATIENT INFORMATION GUIDE You have recently had a REBEL bare metal stent implanted in the coronary arteries of your heart. The following information is important for

More information

International Journal of Innovative Research and Advanced Studies (IJIRAS) Volume 4 Issue 1, January 2017 ISSN:

International Journal of Innovative Research and Advanced Studies (IJIRAS) Volume 4 Issue 1, January 2017 ISSN: A Mathematical Study Of Two Phase (One Phase Is Newtonian And Other Is Non-Newtonian) Coronary Blood Flow In Venules Using Herschel Bulkley Model During Angina Sunita Mishra Ph.D. Research Scholar of Mathematics,

More information

Duplex Ultrasound. A Detailed Look at Your Blood Vessels

Duplex Ultrasound. A Detailed Look at Your Blood Vessels Duplex Ultrasound A Detailed Look at Your Blood Vessels What Is Duplex Ultrasound? Ultrasound is a test that uses sound waves to create detailed pictures of the inside of your body. Duplex ultrasound is

More information

Topic Page: Circulatory system

Topic Page: Circulatory system Topic Page: Circulatory system Definition: circulatory system from Collins English Dictionary n 1 anatomy, zoology the system concerned with the transport of blood and lymph, consisting of the heart, blood

More information

A STUDY OF BIOMECHANICAL BEHAVIOUR OF FENESTRATED CAPILLARIES IN THE GLYCOCALYX OF GLOMERULUS

A STUDY OF BIOMECHANICAL BEHAVIOUR OF FENESTRATED CAPILLARIES IN THE GLYCOCALYX OF GLOMERULUS A STUDY OF BIOMECHANICAL BEHAVIOUR OF FENESTRATED CAPILLARIES IN THE GLYCOCALYX OF GLOMERULUS G Lavanya**, Anbarasu S*, Sarathkumar A*, Mohammed Shaheen P P* ** Assistant Professor, Department of Biomedical

More information

Estimation and Comparison of T Graft Versus Conventional Graft for Coronary Arteries

Estimation and Comparison of T Graft Versus Conventional Graft for Coronary Arteries World Applied Sciences Journal 27 (10): 1336-1344, 2013 ISSN 1818-4952 IDOSI Publications, 2013 DOI: 10.5829/idosi.wasj.2013.27.10.2908 Estimation and Comparison of T Graft Versus Conventional Graft for

More information